数字通信系统的映射布置 相关申请
本申请要求下列美国临时申请的利益:2000年4月18日提交的No.60/198,014和2000年12月13日提交的No.60/255,476。
发明的技术领域
本发明涉及发射和/或接收数字数据。
【发明背景】
在美国,发射数字电视信号的标准是8VSB数据(ATSC数字电视标准A/53)。这种8VSB数据有一种由8个码元电平组成的格局。在VSB系统中,这8个码元电平均同相。但在QAM系统中,诸码元是以相位正交关系发射的。
上述标准规定了数字音视频数据的格式与调制。被发射数据取码元形式,每个码元代表两位数据,且被格状编码成三位格状编码数据。每三位格状编码数据映射成一个码元,具有8个电平中相应一个电平。里德/索罗门编码与交错法也可增强被发射信息的稳健性。
辅助数据(非数字音视频数据)也可在数字电视频道中发射,这些数据像音视频数据一样按该标准以同样的方法格式化与调制。按8VSB标准制造的接收机能读出包标识(PID),而包标识让接收机能区分音频数据、视频数据与辅助数据。
然而,尽管被发射数字电视信号的稳健性足以供数字电视接收,但是未必足以发射辅助数据,在辅助数据重要时尤其如此。因此,本发明的申请之一是以VSB格式发射辅助数据,利用外层编码增强稳健性。这里把按本发明该申请发射的辅助数据称为稳健VSB数据(RVSB)。
【发明内容】
本发明一个方面中,一种方法包括:接收数字信号,该数字信号含有稳健VSB数据,还含有让接收机处理该稳健VSB数据的映射,该稳健VSB数据含有复制的映射;响应于映射,处理稳健VSB数据与复制的映射。
在本发明另一个方面中,一设备包括接收机、译码器与处理器。接收机接收数字信号,该信号包含第一与第二8VSB数据帧。第一与第二8VSB数据的位速率不同。该数字信号还包含映射,该映射包含的信息指明第一与第二8VSB数据中至少一个在帧中的位置。译码器对数字信号译码。处理器按映射包含的位置信息处理第一8VSB数据。
在本发明又一个方面中,电信号包括映射、第一数据码元与第二数据码元。第一与第二数据码元的格局相同,但位速率不同,它们混合在数据帧内,而映射包含指明第一与第二8VSB数据中至少一个在电信号位置的信息。
在本发明再一个方面中,一设备包括接收机、译码器与处理器。接收机接收数字信号,该信号包含第一与第二8VSB数据帧。第一与第二8VSB数据的格局相同,但位速率不同。数字信号还包含映射,该映射包含地信息指明第一8VSB数据在帧中的位置。译码器对数字信号译码。处理器丢弃第二VSB数据而处理第一8VSB数据。
在本发明还有一个方面中,一设备包括接收机和第一与第二处理器。接收机接收数字信号,该信号包含稳健VSB数据帧、ATSC数据帧或两者。至少ATSC数据具有与之相关的PID号。数字信号还包含映射,该映射包含的信息指明稳健VSB数据在帧中的位置。第一处理器按映射处理稳健VSB数据,第二处理器按PID号处理ATSC数据。
附图简介
通过结合附图详细研究本发明内容,种种特征与优点将更清楚了,附图中:
图1示出按本发明发射稳健VSB数据与ATSC数据的稳健VSB发射机;
图2示出接收图1中稳健VSB发射机发射的ATSC数据的普通ATSC接收机;
图3示出接收图1中稳健VSB发射机发射的稳健VSB数据的稳健VSB接收机;
图4更详细地示出图1的2/3比率编码器;
图5示出图4中映射器执行的映射功能;
图6示出图2与3中2/3比率译码器的操作;
图7示出按本发明发射稳健VSB数据和ATSC数据的另一个稳健VSB发射机;
图8示出接收图7中稳健VSB发射机发射的ATSC数据的普通ATSC接收机;
图9示出接收图7中稳健VSB发射机发射的稳健VSB数据的稳健VSB接收机;
图10示出在图9的丢弃控制线上产生有关控制信号的电路;
图11示出按本发明发射稳健VSB数据和ATSC数据的又一稳健VSB发射机;
图12示出一例包含稳健VSB发射机按本发明发射的1/2比率外层编码数据的四个数据段;
图13示出一例包含稳健VSB发射机按本发明发射的1/4比率外层编码数据的四个数据段;
图14示出一例包含稳健VSB发射机按本发明发射的3/4比率外层编码数据的四个数据段;
图15更详细示出图1、9和11中的交错器(Ir);
图16更详细示出图3和9中的去交错器(Dr);
图17示出帧中第一稳健VSB数据包的映射定义结构;
图18示出一部分帧的帧同步段,携带的映射指明可在该帧中找到稳健VSB数据的地点;
图19示出本发明一实施例的增强型数据片预测器;
图20示出图19中内层译码的格网编排;
图21示出图19中外层译码器可能的状态转换;
图22示出本发明另一实施例的增强型数据片预测器。
详细描述
RVSB与ATSC数据的发射和接收
图1示出按本发明一实施例发射ATSC数据与稳健VSB数据的稳健VSB发射机10,图2示出接收稳健VSB发射机10发射的ATSC数据的普通ATSC接收机12,图3示出接收稳健VSB发射机10发射的稳健VSB数据的稳健VSB接收机14。
稳健VSB发射机10包括里德/索罗门编码器16,通过把里德/索罗门奇偶字节加到非编码的辅助数据字节而对其编码。非编码辅助数据字节和里德/索罗门奇偶字节用交错器18交错,然后外层编码器20用卷积码或其它纠错码对它们作逐位编码。外层编码器20提高了非编码辅助数据字节和里德/索罗门奇偶字节的稳健性,把它们转换成稳健数据字节(下称稳健VSB数据字节)和里德/索罗门奇偶字节。
例如,外层编码器20可以是对每一输入位产生两个输出位的1/2比率编码器、对每一输入位产生四个输出位的1/4比率编码器,或者对每三个输入位产生四个输出位的3/4比率编码器。也可用其它编码器代替。
在外层编码器20的输出端,对每组184个编码的稳健VSB数据与里德/索罗门字节加上三字节输送(tx)头部,形成稳健VSB数据包。复用器24将这些稳健VSB数据包与各自包含三字节输送头部和184字节ATSC数据的ATSC数据包(通常为音频数据视频数据)复用。可按逐包原则选择复用器24的输入,并把每个选择的输入供给ATSC发射机26。复用器24对ATSC发射机26选送输入以下面要描述的稳健VSB映射为基础。
ATSC发射机26一般包括里德/索罗门编码器28、交错器30和2/3比率内层编码器32,全都按照ATSC标准工作。
普通ATSC接收机,诸如图2的普通ATSC接收机12,用于接收和处理ATSC数据,丢弃稳健VSB数据。相应地,该接收机12包括按ATSC标准工作的2/3比率内层译码器34、去交错器36和里德/索罗门译码器38。然而,普通ATSC接收机12被编程为译码ATSC数据与稳健VSB数据输送头部(包括包标识或PID,且未被外层编码器20编码)。该接收机12读取所有包的PID,在40丢弃具有稳健VSB数据的PID的包。该接收机12还包括一响应于内层译码数据并将输出送回相位跟踪器和/或均衡器的数据片预测器42(如美国专利No.5,923,711揭示的数据片预测器),如本领域众所周知。
稳健VSB数据包可用图3所示的稳健VSB接收机14进行接收、译码与处理。如图4所示,ATSC发射机26的2/3比率内层编码器32包括预编码器44和四态格状编码器46,二者合起来可看作一种八态编码器,对每两个输入位(X1,X2)产生三个格状编码的输出位(Z0,Z1,Z2)。映射器48把三个格状编码输出位映射成具有图5所示八电平之一的码元。由卷积码理论可知,可以把预编码器44和四态格状编码器46的操作视作八态4元格网编排。
因此在稳健VSB接收机14中,2/3比率内层译码器50可按八态元格网编排进行工作,像图6那样合起来观看预编码器44和2/3比率内层编码器32的四态格状编码器46,以作出软输出判决(如应用Li、Vusetic与Sato在“Optimum soft Output Detection for Channels with IntersymobolInterference“(IEEE Transactions on Information Theory,May,1995)中描述的SSA算法)。该软判决操作比普遍应用的产生硬判决输出的Viterbi算法更复杂,但是更充分地利用了外层编码器20提供的编码增益。
2/3比率内层译码器50的输出由去交错器52解除交错。稳健VSB接收机14在去交错器52输出端读取所有数据包的PID。根据这些PID,接收机14在54丢弃那些具有ATSC数据PID的数据包,还丢弃加在外层编码器20后面的输送头部和里德/索罗门编码器28所加的奇偶字节。这样,接收机14在54只传递包含外层编码器29编码的稳健VSB数据的稳健VSB数据包。为了重建提供给图1中里德/索罗门编码器16的原始非编码辅助数据,该稳健VSB数据包由外层译码器56译码,由去交错器58(倒置的交错器18)解除交错,并由里德/索罗门译码器60作里德/索罗门译码。
为了把外层译码数据的顺序恢复到数据在频道中的顺序,交错器62(对应于交错器30)对外层译码器56可靠的输出(可用软或硬输出)作交错。这一交错的外层译码数据可以被例如数据片预测器66用来对相位跟踪器和/或均衡器产生可靠的反馈。然而,稳健VSB接收机14中去交错器52和交错器62引起的总反馈延迟过长,一般无法向相位跟踪器和/或均衡器提供有用的反馈。
图7-9所示的配置,避免了稳健VSB接收机14的去交错器52和交错器62造成的反馈延迟。在图7所示的稳健VSB发射机80中,非编码的辅助数据字节由里德/索罗门编码器82编码,该编码器82把里德/索罗门奇偶字节加到非编码的辅助数据字节里。交错器84将非编码的辅助数据字节与里德/索罗门奇偶字节相交错,然后外层编码器86运用卷积码或Turbo乘积码对其逐位编码,如上所述。为减小频道猝发误差对外层译码的影响,外层编码器86的逐位输出是小数据块交错器88交错的小数据块。小数据块交错器88提供的数据称为Rdata(n.o.),代表正常排序的稳健VSB数据。
第一复用器92的一个输入端接收ATSC格式的数据包,每个数据包包括(i)带稳健VSB数据PID号的有效三字节输送头部、(ii)仿真稳健VSB数据的184个占位符字节和(iii)仿真ATSC里德/索罗门奇偶数据的20个占位符字节。第一复用器92的另一输入端接收各自包含207字节的仿真ATSC数据的ATSC格式仿真数据包。这些ATSC格式仿真包对准备加到下游的实际ATSC数据包起到占位符的作用。第一复用器92的这些输入端可按逐包原则选用,而且这种选择以后面要描述的稳健VSB映射为基础。
交错器94按卷积字节交错的ATSC标准交错第一复用器92选择的输出。数据置换器96接收交错器94和小数据块交错器88二者的输出,用小数据块交错器88的下一个正常排序的稳健VSB数据字节置换交错器94的各仿真稳健VSB数据占位符字节。
数据置换器96的输出包括正常排序的稳健VSB数据,带有散布的输送头部、仿真ATSC里德/索罗门奇偶字节与仿真ATSC数据包字节。按字节解交错ATSC标准工作的解交错器98对数据置换器96的输出解交错,从而把该数据有效地“重新包装”成由输送头部、重排的稳健VSB数据(Rdata(r.o.))、仿真ATSC里德/索罗门奇偶字节与仿真ATSC数据组成的包。正常重排稳健VSB数据的重排通过解交错器98的解交错实现,而重排的数据可称为重排的稳健VSB数据。
稳健VSB包的仿真ATSC里德/索罗门奇偶字节(每个包20个)和仿真ATSC数据包(各包207字节)在100丢弃第二复用器102。把余下的稳健VSB包(各自包含输送头部和重排的稳健VSB数据与实际ATSC数据包复用,后者分别含有187字节的输送头部与ATSC数据。第二复用器102的任一输入可按逐包原则选择并供给ATSC发射机104。第二复用器102选择哪一输入传给ATSC发射机104,以下面要描述的稳健VSB映射为基础。
ATSC发射机104一般包括都按ATSC标准工作的里德/索罗门编码器106、交错器108和12路向2/3比率内层编码器110。里德/索罗门编码器106输出由输送头部、重排的稳健VSB数据和ATSC里德/索罗门奇偶字节组成的包,与由输送头部、ATSC数据和ATSC里德/索罗门奇偶字节组成的包复用。稳健VSB数据的ATSC里德/索罗门奇偶字节根据重排的稳健VSB数据算出。另外,交错器108改变稳健VSB数据的排序,使交错器108输出端的稳健VSB数据依然是正常排序的稳健VSB数据。交错器108还散布输送头部、ATSC里德/索罗门奇偶字节与该ATSC数据。该数据被12路向2/3比率内层编码器110作2/3比率编码后发射。发射的稳健VSB数据为正常顺序,即在小数据块交错器88输出端提供的顺序,从而让稳健VSB接收机避免了稳健VSB接收机14的解交错器52和交错器62造成的延迟。
如图8所示,普通ATSC接收机120包括12路向2/3内层译码器122,它对发射的数据作译码而提供一输出数据流,包括正常排序稳健数据,且散布输送头部、ATSC数据与ATSC里德/索罗门奇偶字节按交错器108提供的ATSC卷积字节交错定位。ATSC解交错器124把这些输送头部、ATSC数据与ATSC里德/索罗门奇偶字节恢复到它们的输送“打包”位置。ATSC解交错器124还将正常排序的稳健VSB数据转换成重排的稳健VSB数据,这一重排形式允许普通ATSC接收机120的ATSC里德/索罗门译码器126正确地测试稳健VSB数据包的奇偶性。然后,普通ATSC接收机120读取该稳健VSB数据包输送头部,并在128按其PID适度地丢弃稳健VSB数据包。
如图9所示,稳健VSB接收机130包括软输出12路向2/3比率内层译码器132。(硬输出2/3译码器会明显损失编码增益)软输出12路向2/3比率内层译码器132的输出包括正常排序的稳健VSB数据,且重排的ATSC数据、输送头部与ATSC里德/索罗门奇偶码元散布在该稳健VSB数据内,位置由下述的丢弃控制线路134指示。在丢弃控制线路134控制下,丢弃块136丢弃重排的ATSC数据、输送头部与ATSC里德/索罗门奇偶码元。
小数据块解交错器138对稳健VSB数据解交错,其延时相对短。这一解交错在软输出12路tm 2/3比率内层译码器132的输出端把可能的猝发误差散布在稳健VSB数据里。外层译码器140逐位译码该正常排序的稳健VSB数据,还把该稳健VSB数据组成字节。在RMAP数据输入端向外层译码器140提供amp信息,告诉该译码器140对何种数据使用何种译码速率。在对相位跟踪器和/或均衡器提供较低总反馈延迟的稳健VSB接收机130中,既不需要解交错器52,也不要求交错器62。例如,增强型数据片预测器142可用外层译码的数据对相位跟踪器和/或均衡器产生反馈。需要的话,可以选通该反馈,或者与译码数据的可靠性成比例地调节均衡器梯度算法的步幅。
为重建供给图7中里德/索罗门编码器82的原始非编码的辅助数据,外层译码器140译码的稳健VSB数据包有效负载由解交错器144(倒置的交错器84)解交错,并由里德/索罗门译码器146(对应于里德/索罗门编码器82)作里德/索罗门译码。
如ATSC标准所规定,帧包括多个段,每一段含预定个数的字节。帧的第一段是帧同步段,其余的段为数据段。虽然稳健VSB数据能以诸段或部分段发射,但是段成对发射较便利。上述的稳健VSB映射指明哪些段对包含稳健VSB数据,因而丢弃块136能正确地在重排的ATSC数据到达外层译码器140之前将它丢弃。丢弃块136还必须丢弃所有段(稳健VSB和ATSC)的输送头部与ATSC里德/索罗门奇偶数据。
图10示出在丢弃控制线路134上产生有关控制信号以控制丢弃功能的理论简化电路以及稳健VSB接收机130的相关部分。在建立仿真207字节段时,稳健VSB接收机130用收到的映射信息(映射信息的发射与接收方法下面描述)控制仿真段发生器150,而后者还使用帧同步信号。对每个ATSC仿真段,仿真段发生器150把所有字节置成FF。对每个稳健VSB数据仿真段,仿真段发生器150把输送头部和ATSC里德/索罗门奇偶字节置成FF。发生器150将各稳健VSB数据仿真段的其余字节置成00。
仿真段发生器150把这些仿真段馈给ATSC卷积字节交错器152,然后用后者的输出控制丢弃块136,而丢弃块136响应于FF与00码正确地丢弃在收到的数据流内交错的重排的ATSC数据、输送头部和ATSC里德/索罗门奇偶数据。因此,丢弃块136只传递该稳健VSB数据。
图11示出一种多重外层码稳健VSB发射机160,其操作类似于图7的稳健VSB发射机80。该发射机160具有把里德/索罗门奇偶字节加到第一非编码辅助数据里而对其编码的第一里德/索罗门编码器162、把里德/索罗门奇偶字节加到第二非编码辅助数据里对其编码的第二里德/索罗门编码器164,以及把里德/索罗门奇偶字节加到第三非编码辅助数据里对其编码的第三里德/索罗门编码器166。经里德/索罗门编码的第一、第二和第三非编码辅助数据分别用第一、第二和第三交错器168、170和172交错。接着,交错的里德/索罗门编码的第一、第二和第三非编码辅助数据分别被第一、第二和第三外层编码器174、176和178逐位编码。第一、第二和第三外层编码器174、176和178的逐位输出分别被第一、第二和第三小数据块交错器180、182和184交错。
第一外层编码器174是1/4比率编码器,第二外层编码器176是1/2比率编码器,第三外层编码器178是3/4比率编码器,虽然可以应用编码率不同的种种外层编码器的任何其它组合。在选择输入控制下(该输入确定把不同外层编码的数据插入准备发射帧里的顺序),复用器186选择第一、第二和第三小数据块交错器180、182和184的数据输出。复用器186输出端的数据称为Rdata(n.o.),与前面一样,代表正常排序的稳健VSB数据。
复用器190的上面三个输入端接收ATSC格式包,各包有一有效的三字节输送头部,带有稳健VSB数据PID号、184占位符字节的仿真稳健VSB数据和20仿真占位符字节的ATSC里德/索罗门奇偶数据。复用器190最上面输入端的稳健VSB数据对应于第一外层编码器174的1/4比率编码数据,其下一个输入端的稳健VSB数据对应于第二外层编码器176的1/2比率编码数据,其再下一个输入端的稳健VSB数据对应于第三外层编码器178的3/4比率编码数据。供给复用器190最底部输入端的数据,包括各包含207字节仿真ATSC数据的ATSC格式仿真包。这些仿真ATSC数据包对准备加到复用器190下游的实际ATSC数据包起到占位符的作用。根据选择线路上的输入,按逐包原则选择复用器190的输入端。这种选择以下面要描述的稳健VSB数据映射为基础。
为实现正确的ATSC卷积交错,交错器192对复用器190的输出作交错。数据置换器194接收交错器192和复用器186二者的输出。数据置换器194用来自复用器186下一个相应的正常排序的稳健VSB数据字节置换来自复用器190的每个仿真稳健VSB数据占位符字节。
数据置换器194的输出包含正常排序的稳健VSB数据(适当经1/4比率编码、1/2比率编码和/或3/4比率编码),带散布的输送头部、仿真ATSC里德/索罗门奇偶字节和仿真ATSC数据包字节。卷积字节解交错器196(如ATSC标准描述的)对数据置换器194的输出解交错,以有效地把该数据“重新包装”成由输送头部、重排的稳健VSB数据(经1/4、1/2和/或3/4比率编码)、仿真ATSC里德/索罗门奇偶字节与ATSC数据仿真包组成的包。解交错器196的解交错作用可重排正常排序的稳健VSB数据。
在198丢弃仿真ATSC里德/索罗门奇偶字节(每包20个)与仿真ATSC数据包(每包207字节)的方式类似于图9中丢弃控制线路134和丢弃块136的方式。复用器200把余下的各自包括输送头部和重排的稳健VSB数据的稳健VSB包与包含187字节的输送头部和ATSC数据的实际ATSC数据包复用。复用器200的任一输入端按逐包原则选择并提供给ATSC发射机。复用器200选择哪个输入传给ATSC发射机202,以下面要描述的稳健VSB映射为基础。
ATSC发射机202一般包括均按ATSC标准工作的里德/索罗门编码器204、交错器206和12路向2/3比率内层编码器208。里德/索罗门编码器204输出由输送头部、重排的稳健VSB数据和ATSC里德/索罗门奇偶字节组成的包,与由输送头部、ATSC数据和ATSC里德/索罗门奇偶字节组成的包复用。根据该重排的稳健VSB数据,对稳健VSB数据算出ATSC里德/索罗门奇偶字节。另外,交错器206改变该稳健VSB数据的顺序,使交错器206输出端的稳健VSB数据仍为正常排序的稳健VSB数据。交错器206还散布输送头部字节、ATSC里德/索罗门奇偶字节和ATSC数据。这些数据经12路向2/3比率内层编码器208编码后发射。发射的稳健VSB数据为正常顺序,即在复用器186输出端规定的顺序。这一正常数据顺序使稳健VSB接收可避免解交错器52和交错器62造成的延迟。
如上所述,ATSC帧包括一帧同步段和多个数据段,为方便起见,把稳健VSB数据包装成4段的组。具体而言,图12示出一例可在帧中用来发射经1/2比率编码的稳健VSB数据的4个数据段,图13示出一例可在帧中用于发射经1/4比率编码的稳健VSB数据的4个数据段,而图14示出一例可在帧中用于发射经3/4比率编码的稳健VSB数据的4个数据段。这些例子代表在交错器108前面的帧,并假定每组4个稳健VSB数据段包含整数个稳健里德/索罗门编码数据块,每个数据块长184字节,有20个字节是奇偶字节。
对于1/2比率外层编码,图12示出该外层编码器对每一输入位输出两位。对一对数据段把一个稳健VSB数据包作为一个RVSB里德/索罗门数据块包装(每个码元一位),故对于1/2比率外层编码而言,4段包含两个稳健里德/索罗门编码数据块。如图13所示,对于1/4比率外层编码,该外层编码器对每一输入位输出四位。对每四个数据段把稳健VSB数据包装为一个RVSB里德/索罗门数据块(每个码元1/2位),故对1/4比率外层编码而言,4段包含一个稳健里德/索罗门编码数据块。如图14所示,对于3/4比率外层编码,该外层编码器对每个三输入位输出四位,此时发射的码元与字节边界并不总是匹配。然而,三个完整的RVSB里德/索罗门数据块将准确地包装成4个数据段(各码元1.5位),故对3/4比率外层编码而言,4个段包含三个稳健里德/索罗门编码数据块。
相应地,可用下表代表图12-14: S X Y 1/2 1 2 1/4 1 4 3/4 3 4
表中X代表完整稳健里德/索罗门编码数据块的数量,Y代表获得稳健里德/索罗门编码数据块相应数量X所需的帧段数量。
但应理解,本发明可结合使用其它编码比率,因而上表将按使用的具体编码比率而变。
图15更详细示出了交错器18、84、168、170与172,图16详细示出了解交错器58和144,假设把稳健里德/索罗门编码数据块选成184字节长。交错器18、84、168、170和172是B=46、M=4、N=184的卷积交错器,对稳健VSB数据作逐字节交错。该交错方案与ATSC数字电视标准A/53和ATSC数字电视标准A/54使用指南中描述的ATSC交错方案相同,只是稳健交错器的B参数是46,不是52,参数N为184而不是208。这种交错器是必需的,即使ATSC解交错器(Da)被旁路,也能使稳健VSB接收机克服频道上的长噪声猝发脉冲,如图9所示。
如图16所示,解交错器58和144是B=46、M=4、N=184的卷积交错器,对稳健VSB数据作逐字节解交错。该解交错方案也与ATSC数字电视标准A/53和ATSC数字电视标准A/54使用指南中描述的ATSC解交错器方案相同,只是稳健解交错器的B参数为46,不是52,参数N为184而不是208。
由于稳健VSB里德/索罗门数据块包括184字节,而且数据帧有整数个稳健VSB里德/索罗门数据块,所以在一个数据帧中,稳健VSB数据字节加上稳健VSB里德/索罗门奇偶字节的数量总可被46均分。因此,对接收机里的解交错器58和144(Dr)而言,可将帧同步段用作同步符,不管G值如何(下面描述)。帧同步时,迫使解交错器换向符进入顶部位置。解交错器58和144均为逐字节解交错器。
数据映射
如上所述,各数据帧混有稳健VSB数据段与ATSC(非稳健编码的)数据段。再者,稳健VSB数据可包含用混合编码比率编码的数据。稳健VSB接收机14或130必须有稳健VSB的映射,指明哪些段为稳健VSB编码,哪些外层码用于稳健VSB编码,使稳健VSB接收机14或130能正确地处理稳健VSB数据并丢弃ATSC数据。稳健VSB发射机10、80和160也用该稳健VSB映射来控制其相应的复用与丢弃功能。稳健VSB发射机10、80或160把该稳健VSB映射与所有其它数据一起发送给稳健VSB接收机14或130,方法如下。
在用特定外层码加以编码的数据帧中,稳健VSB数据的存在、数量和位置由一个或多个数Sc指示,这些数Sc在数据帧的帧同步中作为双电平数据出现。众所周知,帧同步段是帧里的第一段,所以对上述的外层编码而言(1/4、1/2和3/4比率),帧同步段应该较佳地包含[S1/4、S1/2、S3/4]。将每个Sc如S1/4或S1/2或S3/4编码为数据的18个码元(位)。对所有三种码,要用总数为3×18=54码元定义该稳健VSB的映射。把这些码元插入各帧同步段末端附近的保留区(恰好在1 2个预编码位前面)。对每组18位(b18……b1),后6位(B6……b1)代表当前帧中作为稳健VSB数据映射的8段组数G(根据外层码,8段=2、4或6个稳健VSB数据包)。这12个预编码位用于梳状滤波器补偿(见ATSC数字电视标准A/54使用指南)。因此如图18所示,位b8……b1代表数据G,位b18……b13是位b6……b1的补码,而位b12……b7可以是交替的+1和-1(或任何其它方式)。
设S=S1/4+S1/2+S3/4。由于312/8=39,故可将0-39组8段映射为稳健VSB数据或8VSB数据(ATSC数据)。因此,每个Sc的值可以是0…39,只要其和S≤39即可。
稳健VSB数据段较佳地在数据帧内尽量均匀地分布。例如,若S=1,就把下列8段映射为稳健VSB数据段,而所有其它段映射为ATSC数据段:1,40,79,118,157,196,235和274。若S=2,则把下列16段映射为稳健VSB数据段,而所有其它段映射为ATSC数据段:1,20。39,58,77,96,115,134,153,172,191,210,229,248,267和286。这些例子一直继续到S=39,把整个数据帧都映射为稳健VSB数据段。对有些S值,稳健VSB数据段对的间隔最好不均一。但对任何S值而言,间隔都预先固定,均为所有接收机所知。
若帧含有三只工作于1/4比率、1/2比率与3/4比率的外层编码器提供的稳健VSB数据,则可在帧内分割来自这三只编码器的数据,因而对RVSB段,第一个8×S1/4段含1/4比率外层编码数据,下一8×S1/2段含1/2比率外层编码数据,而最后的8×S3/4段含3/4比率外层编码数据。然而,这三只外层编码器或任意数字的其它类型外层编码器也可有其它稳健VSB数据段结构。
如上所述,由于这种稳健VSB和映射包含在帧同步段内,所以该映射不享有与稳健VSB数据一样的编码增益电平。然而,稳健VSB接收机通过使稳健VSB映射在某些数量的帧上的相关,仍可可靠地得到该映射,因此该映射不要经常变化(如不超过每隔约60帧)。
上述映射法让接收机运用相关法可靠而简单地获得稳健VSB的映射。接收机一旦获得该映射,希望立即可靠地跟踪映射的变化。为此,可在该帧的第一稳健VSB里德/索罗门编码块内复制该稳健VSB映射对各外层码的定义,但不包括梳状补偿位。此外,还有数据指明(i)该映射将来变化的时间和(ii)将来新的映射的定义。因此,外层编码器帧的第一稳健VSB数据包具有图17的结构,给出的稳健VSB映射定义数据如下:8位指定当前映射(只用其中6位)8位指定映射变化之前的帧数(1-125;若为0,则不变化);还存8位指定下一映射(仍只用其中6位)。第一稳健VSB数据包的其余部分是数据。各个外层编码器帧中的第一RVSB段的配置见图17。
这样,接收机可用可靠的稳健VSB数据跟踪映射的变化。即使猝发误差毁坏了一些帧,接收机也能用读自事先收到帧的帧数据保持其自己的帧递减计数。若接收机在任何时刻发现先前通过帧同步相关得到的外层码的定义与第一稳健VSB数据段中外层码的定义不符,就再启动其映射获取过程。
RVSB增强型数据片预测与均衡器反馈
在同为先进电视系统委员会出版的ATSC数字电视标准A/53和ATSC数字电视标准A/54使用指南中,说明了ATSC 8VSB接收机对自适应均衡与相位跟踪的主要应用。如上所述,RVSB的特征在于改进了自适应均衡与相位跟踪。
一种改进是将输入码元电平延迟的可靠估值反馈给自适应均衡器和/或相位跟踪器而实现的,它以来自增强型Viterbi算法的序列估值为基础(见“TheViterbi Algorithan,G.D.Forney,Jr.,Proc.IEEE,Vol61,pp,268-278,March,1973)。这类反馈不需要存在状态初始化问题的“再编码”。
题为“Slice Predictor for a Signal Receiver“的美国专利No.5,923,711揭示的一种ATSC 8VSB接收机,使用了数据片预测对相位跟踪器或自适应均衡器提供更可靠的反馈。该反馈可通过图19的增强型数据片预测系统300变得更可靠。系统300的内外层译码器302和304的工作原理类似于上述的内外层译码器。
内层译码器302输出的数据片预测,以上述美国专利No.5,923,711所述的类似方式工作。如上所述,内层译码器302基于一种包含预编码器的8态4元格网编排。根据当前时刻t的最佳路径度量,内层译码器302的数据片预测器判定时刻t最可能的状态,然后根据下一可能的状态对,选择下一码元在时刻t+1的四个预测的输入电平(从8个电平中选出)。如图20由内层译码器格网编排所示,若时刻t的最可能态是状态1,则下一状态为ε[1526],因而时刻t+1的下一输入电平为-7、+1、-3或+5,这些电平分别对应于译码的位对00,10、10、01和11。
外层译码器304同样对各个格网编排找出当前时刻t的最佳路径度量。图21对一示例外层译码器示出该格网编排的一部分,通常适用于所有三种外层码。如图21所示,根据下一可能的状态对,对时刻t+1选出两个可能的外层译码器输入位对。举例来说,这两个位对可能是11或01。把外层译码器304选出的位对送给预测增强器306,像对时刻t+1的增强型数据片预测那样,预测增强器306从先前由内层译码 302的数据片预测器选择的四电平组中选出幅值电平+5或-3。由于内层译码器302的数据片预测几乎为零延迟,而外层译码器304要等到内层译码器302提供了译码的软输出后才能以同一码元工作,所以延迟模块308提供的延时稍大于内层译码器302的回寻延时,预测增强器306提供的数据片预测,作为反馈提供给相位跟踪器310的均衡器。
外层译码器304带一点附加的延时,对时刻t+1作出最终的硬判决并选择单个最可能的输入位对。例如,若其Vitervi算法判定11是外层译码器304最可能的输入位对,外层译码器304就把该信息送给预测增强器306,于是后者从四电平组里选择+5和内层译码器302的数据片预测器已经选择的相应位对。该外层码可以是卷积码或其它类纠借码。在接收ATSC数据一段时间内,预测增强器306被禁止。
反馈增强型最大似然序列评估器(MLSE)数据片预测系统320应用该Viterbi算法,它与RVSB接收机的其它有关部件一起示于图22。该系统320的内外层译码器322与324以类似于上述的外层译码器302与304的方式操作,但是不使用内层译码器302的数据片预测输出,而是把增强型MLSE模块326配置成通过操作8态2/3比率码格网编排(内层译码器322使用的同一格网编排,包括预编码器),对接收的信号执行该一般的Vitervi算法。
增强型MLSE模块326把(i)经延迟模块328延迟的噪声8电平接收信号(若下一输入是非RVSB码元)或(ii)外层译码器324位对判决(软或硬)的输出(若下一输入为RVSB码元)选作其下一个输入,它运用RVSB映射中码元信息按该码元作这一选择。
增强型MLSE模块326把8个码元中的一个输出作为其数据片预测,并把该数据片预测(码元判决)作为反馈供给均衡器或相位跟踪器330。
增强型MLSE模块326比内层译码器322按照更正确的路径通过8态格网编排,因为在有RVSB码元时,它从外层译码器324得到更可靠的输入。
增强型MLSE模块326的输出可以是硬数据片判决或软电平。而且,可用来自内层译码器322或外层译码器324的任何码元可靠性指示改变均衡器LMS算法的步幅(见ATSC数字电视标准A/54使用指南)。
数据区第一RVSB段的指定部分可以包含供选用的预定编码培训序列,该序列事先为发射机与接收机已知。在外层译码器324输出译码的培训序列时,把增强型MLSE模块326的输入切换到该译码培训序列的存贮形式。
上面讨论了本发明的一些修正,本领域中实施本发明的人员可作其它修正。例如,虽然以上把普通ATSC接收机12和稳健VSB接收机14示成独立的接收机,但是可将这二者的功能组合在能对两类数据(ATSC数据与稳健VSB数据)译码的单台接收机的两条数据通路中。
因此,本发明的描述仅为示例,旨在向本领域的技术人员传授实施本发明的最佳方式。可对细节作出重大变化而不背离本发明的精神,且不超出落在所附利要求书范围内的所有修正的专门应用。