水电涡轮机.pdf

上传人:r5 文档编号:1112820 上传时间:2018-03-31 格式:PDF 页数:21 大小:807.77KB
返回 下载 相关 举报
摘要
申请专利号:

CN200780026711.4

申请日:

2007.07.13

公开号:

CN101507088A

公开日:

2009.08.12

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

H02K7/18

主分类号:

H02K7/18

申请人:

欧鹏海德洛集团有限公司

发明人:

埃德·斯普纳

地址:

爱尔兰都柏林

优先权:

2006.7.14 EP 06014667.7

专利代理机构:

北京康信知识产权代理有限责任公司

代理人:

章社杲;吴贵明

PDF下载: PDF下载
内容摘要

本发明提供了一种水电涡轮机,其包括定子以及同心地装在定子中的转子,该涡轮机包括沿周向设置在定子的轮缘上的一组磁体,并且其中,定子的构造是无槽的,并且由不同于传统的齿状叠片的绕丝形成。该涡轮机还包括安装在定子上并同心地位于绕丝内的呈环形阵列的单个线圈,每个线圈都设有一个专用的整流器,以将线圈中感生出的交流电流转换成直流电,优选地,以便传输到遥远的地方。

权利要求书

1.  一种水电涡轮机,包括:转子;一组磁体,围绕所述转子的外轮缘设置并且形成径向磁场;无槽定子,同心地环绕所述转子,并且包括限定出所述磁体的磁通量回路的铁磁绕丝;以及所述定子上的多个线圈。

2.
  根据权利要求1所述的涡轮机,其中,所述线圈径向地设置在所述绕丝内。

3.
  根据前述权利要求中任一项所述的涡轮机,其中,各个线圈机械地附着在所述定子上,而不是与所述定子互相缠绕。

4.
  根据前述权利要求中任一项所述的涡轮机,其中,所述线圈没有互相缠绕。

5.
  根据前述权利要求中任一项所述的涡轮机,其中,所述线圈并排地设置,以限定出同心地环绕该组磁体的环形阵列。

6.
  根据前述权利要求中任一项所述的涡轮机,其中,所述线圈中感生出的电动势不是都具有相同的相。

7.
  根据前述权利要求中任一项所述的涡轮机,其中,每个线圈都粘附在所述定子上。

8.
  根据前述权利要求中任一项所述的涡轮机,其中,每个线圈都沿着基本呈长圆形的路径缠绕。

9.
  根据前述权利要求中任一项所述的涡轮机,其中,每个线圈都设有一个专用的整流器。

10.
  根据权利要求9所述的涡轮机,其中,所述整流器都安装在所述定子上。

11.
  根据前述权利要求中任一项所述的涡轮机,其中,每个整流器都靠近相应的线圈安装。

12.
  根据前述权利要求中任一项所述的涡轮机,其中,每个线圈都被不漏液体的涂层或覆盖物包住。

13.
  根据权利要求9至12中任一项所述的涡轮机,其中,每个线圈及相应的整流器一起被不漏液体的涂层或覆盖物包住。

14.
  根据权利要求12或13所述的涡轮机,其中,所述涂层或覆盖物是电绝缘的。

15.
  根据权利要求9至14中任一项所述的涡轮机,其中,每个整流器都包括一个二极管桥或半桥。

16.
  根据权利要求9至15中任一项所述的涡轮机,其中,所述整流器连接至共用直流电输出。

17.
  根据权利要求9至16中任一项所述的涡轮机,其中,所述整流器连接在一起以形成多个组,每组中的整流器并联连接,所述多个组串联连接到一起。

18.
  根据前述权利要求中任一项所述的涡轮机,其中,所述定子绕组由非绝缘铁线形成。

说明书

水电涡轮机
技术领域
本发明涉及一种用于发电的水电涡轮机,更具体地,涉及一种适于用洋流和/或潮汐流来发电的中心开口式水电涡轮机。
背景技术
通过设置在转子的外缘和定子的内缘的轮缘结构的发电机,可以最便利地安排中心开口式水电涡轮机的功率输出。在这种情况下,发电机是高磁极数的同步机。磁场系统可以使用供有电流的电线圈或一组永磁体来提供驱动磁通量穿过磁路所需的永磁原动力。这种布置在容纳转子的定子的中心处提供了大直径的开口空间。轮缘发电机以与涡轮机相同的转速运行,并且不需要传动装置。
具有永磁场激励功能的直接驱动(即,无传动装置)发电机(DDPMGs)为可再生能源系统提供了最简单且可能是最可靠和最节省成本的功率输出(power take-off)装置。
大多数DDPMG设计采用转子上的一组磁体所产生的磁路在隔开转子与定子的狭窄间隙内形成径向磁场。通常,定子具有必要的传统构造,并且包括基于在圆柱形叠片铁定子的孔中的狭槽内互相缠绕的绝缘线圈的电路,并且类似于感应式电机或同步机的定子。通过将转子设置在定子内,使得磁路与电路相耦合。磁路通常包括由铁或钢制成的铁磁部件,以提供一条低磁阻的路径供磁通量通过。这种部件通常设置在转子及定子内。
磁场系统所建立的磁场穿过隔开转子与定子的间隙。转子关于定子的相对运动,且因此磁场关于电路的定子线圈的相对运动,使得线圈中感生出电动势(EMF)。然而,关于定子内的任何其它电路的磁链也经历了变化的磁链,因此感生出电动势。转子的和因此为了避免不希望的电流流入到定子的磁铁或磁钢中(这会导致功率损耗),通常用由电绝缘材料隔开的磁铁或磁钢的薄片来构造定子的磁芯部,线圈缠绕在该磁芯上。这些薄片被称作叠片,并通过冲压工艺剪切成形。绝缘材料通常通过由此冲压出叠片的薄片的一侧或两侧上的薄涂层来提供。在冲压工艺过程中,通常通过形成狭槽而使得电枢线圈附着在叠片磁芯上。线圈必须被插入并固定到狭槽中,并且该工艺强调绕组的绝缘,并且通常意味着需要比仅是电绝缘所需的更厚的绝缘材料。
在需要少量机器的情况下,制造用于冲压叠片的冲模的费用可能是最终的机器成本的一个重要组成部分,而且用来制造该特定冲模的时间可能使施工延迟。此外,浪费了从冲压出的叠片的中心部分去除的材料,这代表相当高的成本。
在水力发电应用中,期望使用大直径的机器,这可以使得效率提高,并减少电磁活性材料的使用。但是,对于大直径的机器,需要将叠片构造成一组弧形部件,因为不可能获得尺寸足以制造出一个完整的环的磁钢片。该弧形必须装在支撑结构中。这给机器增加了很大的成本。
该叠片、开槽的定子布置导致朝向转子伸出的齿的形成,因此导致转子被朝向一个优选的角度位置吸引,这是一种公知的“接头”效应,这种效应则要求相当大的驱动扭矩来起动转子。此外,转子与定子之间的大径向吸引力要求巨大坚硬的支撑结构。
发明内容
因此出于减轻上述问题的目的而研发出本发明。
因此本发明提供了一种水电涡轮机,包括:转子;一组磁体,围绕转子的外轮缘设置并形成径向磁场;无槽定子,同心地环绕转子,并且包括限定出磁体的磁通量回路的铁磁绕丝;以及定子上的多个线圈。
优选地,线圈径向地设置在绕丝内。
优选地,各个线圈机械地附着在定子上,而不是与定子互相缠绕。
优选地,线圈没有互相缠绕。
优选地,线圈并排地布置,以限定出同心地环绕该组磁体的环形阵列。
优选地,线圈中感生出的电动势不是都具有相同的相。
优选地,每个线圈都粘附在定子上。
优选地,每个线圈都沿着基本呈长圆形(obround)的路径缠绕。
优选地,每个线圈都设有一个专用的整流器。
优选地,整流器都安装在定子上。
优选地,每个整流器都靠近相应的线圈安装。
优选地,每个线圈都被不漏液体的涂层或覆盖物包住。
优选地,每个线圈和相应的整流器一起被不漏液体的涂层或覆盖物包住。
优选地,涂层或覆盖物是电绝缘的。
优选地,每个整流器都包括一个二极管桥或半桥。
优选地,整流器连接至共用直流电输出。
优选地,整流器连接在一起以形成多个组,每组中的整流器都并联连接,这多个组串联连接到一起。
优选地,定子绕组由非绝缘铁线形成。
如本文中所使用的,术语“无槽”是指发电机定子的结构,并且具体地是指没有通常形成在圆柱形叠片铁芯的孔的内缘周围的狭槽,并且绝缘铜线圈通常穿过这些狭槽而缠绕。
附图说明
现在将参照附图描述本发明,附图中:
图1示出了根据本发明一个优选实施例的水电涡轮机的透视图;
图2示出了构成本发明的水电涡轮机的一部分的转子的透视图;
图3示出了构成本发明的水电涡轮机的另一部分的定子的透视图;
图4示出了图2的转子的剖面图;
图5示出了构成本发明的水电涡轮机的一部分的线圈的透视图;
图6示出了构成本发明的水电涡轮机的一部分的一组线圈的电路图;以及
图7示出了包括多个本发明的水电涡轮机的潮汐站的示意图。
具体实施方式
现在参照附图,示出了一种总体上用10表示的、用于主要用潮汐流和/或洋流来发电的水电涡轮机,尽管涡轮机10可能具有其它用途,例如用在水电坝(未示出)中等等。如从下面的描述中将变得显而易见的,涡轮机10体现出许多优于现有技术等同物的明显益处,具体地为改进的可靠性、更低的成本以及更轻重量的构造。
具体地,参照图2,涡轮机10包括转子20,其被容纳在定子30中以在其中旋转。转子20具有开口中心的设计,并且包括限定出所述开口中心的内轮缘23。转子20还包括一组介于内轮缘23与外轮缘22之间大致径向地延伸的叶片21。转子20还包括一组围绕外轮缘22设置的磁体41,优选地为永磁体。这些磁体41沿周向方向交替地极化成北极或南极。该组磁体41优选地安装在铁磁材料的环孔(未示出)上。
现在参照图3和图4,可以看出定子30(在横截面图中)限定出文氏管(venturi),在该文氏管的喉部设有环形通道32,使用时,转子20位于该环形通道内。定子30的文氏管横截面导致流过定子30的水加速,以增大转子20的转速。然而,该文氏管横截面对于本发明的实施并不是必须的。为了便于转子20的平稳运转,转子20与定子30之间可以设有任何适当形式的轴承。如同转子20一样,定子30可以由任何适当的材料构成,而在所示优选实施例中,其基本由玻璃钢(GRP)构成。
在通道32内、固定在定子30上的是呈环形阵列的单个线圈42,图5中示出了其中之一的实例。下文中将更详细地描述该组线圈42的构造和运作。从此径向向外地、同心地缠绕在该组线圈42周围的是铁磁绕组50,该铁磁绕组优选地由铁丝构成。绕组50除了优选地为定子30提供结构强度之外,还在使用时为磁体41产生的磁场提供定子30上的磁通量回路。这还便于使用轻质材料来制造定子30。
使用时,转子20安装在定子30的通道32内,因此,线圈42同心地环绕磁体41,并且其间具有较窄的间隙。在传统的电动机/发电机中,该间隙公知为空气隙,但在运行时,涡轮机10浸没在水中,因此,该间隙被水而不是空气填充。磁体41产生穿过外轮缘22与定子30之间的间隙的沿径向延伸的磁场,而绕组50形成磁通量回路。当水流过涡轮机10时导致转子20旋转,该径向延伸的磁场(优选地,其在相邻磁体41的南北极之间交替)将穿过线圈42,从而在每个线圈42中感生交替的电动势。如下文将详细描述的,正是这些感生的交流电动势提供了涡轮机10的电功率输出。
如上所述,定子30用绕丝50来代替传统的开槽及叠片定子布置,以便为磁体41产生的磁场提供磁通量回路。已经发现这种布置具有许多有益效果,当用在水力发电应用中时,它是尤其有利的。没有开槽及叠片铁芯,或者更具体地包括完整的环形绕组50,消除了转子20的“接头(cogging)”。“接头”是具有传统的开槽定子布置的电动机/发电机中出现的现象,因此,转子磁体试图与定子齿成一条直线,从而导致将转子朝向一个优选位置吸引。因此,该现象导致这种传统电动机/发电机的起动扭矩增加。通过包括无槽绕组50而消除了该“接头”,转子20具有较低的起动扭矩,因此能够在较低的流速下起动,如将在潮汐应用中所发现的,潮汐不会在转子20上产生大的转矩。此外,涡轮机10能够在整个潮汐周期中提取能量。
此外,省去开槽及叠片定子布置极大地降低了定子30的成本和复杂性,而使用线圈绕组50是相对低廉且易于制造的。另一优点起因于从该组线圈42径向向外地设置绕组50。该结构形成了更大的供来自磁体41的磁通量穿过的间隙,因此减小了穿过该间隙的磁通量密度。然而,起初这表现为一个缺点,其确实导致定子30与转子20之间的吸引力减小。这降低了转子20和定子30为抵抗所述吸引力并因此抵抗变形所需的硬度。因此,转子20和定子30能够被制造成相对轻型的构件,故极大地降低了同一产品的成本,同时简化了同一产品的运输和调动。在给定涡轮机10的总尺寸时,这可以是一个相当大的益处,涡轮机的直径可以是接近10米或更长。使用铁芯绕组50还消除了制造同一产品过程中的浪费,这在制造开槽叠片绕组时是一个重要因素,尤其是对于诸如涡轮机10的大规模机器。
无论用在发电机/电动机中的电枢的类型,其中感生有电动势、并且通常由铜线形成的线圈通常以复杂的重叠方式缠绕,从而形成围绕转子的网。通常将这些线圈构造成提供三相交流电输出。在无槽电枢的情况下,通常设置某种形式的其上缠绕有上述线圈的框架或织机(loom)。然而,本发明为涡轮机10的电路提供了完全不同且显著改进的构造。具体参照图3和图4,可以看出,电路由以环形阵列并排布置在通道24内的多个线圈42构成。线圈42的数量可以根据涡轮机10的需要而变化。此外,每个线圈42均设有自己的整流器71,该整流器优选地为单相桥式整流器71(仅在图6的电路图中示出),以使每个线圈42中感应的交流电立即被整流为直流电,而每个组合式线圈42和整流器71的输出则连接至涡轮机10的共用直流电输出。上述特征已被证明是非常有利的,尤其是对于水力发电应用,其原因在下文中说明。在另一可替换电路(未示出)中,对于每个线圈42可以使用半桥式整流器(未示出)。对于这种布置,每个整流器将包括一对二极管,其中一个二极管连接在相应线圈的一个接线端(terminal)与正向直流电输出端之间,而另一个二极管连接在该线圈的同一接线端与反向直流电输出端之间,而线圈的另一接线端连接至所有其它线圈都连接于此的公共点。
为了简化结构并提供每个线圈42中、被转子20的磁场垂直切割的必需铜线长度,线圈42优选地由缠绕在长圆形或“跑道”路径周围的绝缘铜线或矩形带构成。线圈42优选地具有大体成细长的矩形形状的电绝缘芯或模型(未示出),铜线或铜带缠绕在其上及其周围,以提供“跑道”形状。可以选择每个线圈42的匝数,以使产生的电压小于商业上可获得的(并且优选地低成本的)整流器71的额定值,即使由于涡轮机提供的负荷(未示出)断开而使转子20加速到其最大值。由于认识到绕组50具有大大低于传统叠片开槽电枢的电抗,也促进了仅基于二极管的整流器71的使用,使得能够在没有导致线圈42的阻抗出现不能接受的压降的情况下,使用该基于二极管的整流器71。这种关于每个线圈42的专用整流器71布置(设置在线圈42旁边或者靠近该线圈设置),使得交流电-直流电-交流电转化系统的第一交流电到直流电转化阶段能够在涡轮机10处实现,于是,电能以直流电传输到适当位置,以便最后转换回到在固定电压和频率下用于电网线路(grid connection)的三相交流电。
由于线圈42没有被设置成相互缠绕在定子30周围的复杂网,因此极大地降低了制造定子30的电路的成本和复杂性。具体地,每个线圈42都被设置成一个物理上独立的单元,这因此使得每个线圈42能够在厂区外且因此能够精确但仍价格低廉地制造。在制造过程中,线圈42还可以涂敷有优选地为树脂形式的电绝缘材料(未示出),可以将线圈42浸泡在其中,或者将线圈涂敷或覆盖有电绝缘材料。该涂层或外壳优选地使得线圈42与大地或地面电绝缘。
另外有利地,在该绝缘工艺中,每个线圈42的专用整流器71可以串联地电连接至线圈42,并设置在同一线圈旁边,以同时涂敷树脂,并因此从物理上有效地与线圈42整合成一个单独的单元,因而,被涂敷的线圈42和整流器71类似一个具有从同一者上伸出的简单两线式输出(未示出)的较薄矩形板材。类似地,用于制造单个线圈42和整流器71单元的工艺可以用来制造一组线圈及与其相关的整流器71,以形成短弧形式的模块。此外,这种模块可以与整个涡轮机10分开制造,并且优选地在洁净的环境下,而且如果需要,可以使用真空压力注入设备,如果将其用来制造整个涡轮机10的全部环形阵列的线圈42,该设备将是不切实际地大且昂贵。
与其中线圈相连接以产生传送到单独的三相整流器电路的三相输出的传统布置相比,这种布置具有很多益处,即:
消除了线圈之间惯有的互连;
整流器71使任何出现故障的线圈42隔离,允许剩下的没出故障的线圈42运作;
与用于单独的一个全功率三相整流器的更高定价的组件相比,由于使用了大批量生产的低成本的单相整流器71而使得其成本低于传统布置;
可以以这样的方式整合位于每个线圈42旁边的单相桥式整流器71,即,使其共享用于线圈42的冷却装置,从而不必提供单独的整流器冷却。
每个线圈42都可以与平行的两个或多个导体相缠绕,以减小所需的导体的尺寸,从而使导体内的涡电流以及由此产生的损耗能够维持在可接受的水平。在这种情况下,可以为线圈42的每个导体提供一个单独的整流桥。在一个导体或其整流器出现故障的情况下,线圈42的其它导体可以继续运作。
因而,将该组线圈42安装到定子30上仅是一项将涂敷有树脂的线圈42并排齐平地粘附到槽32内的任务,从而形成所示的环形阵列。这从根本上不同于开槽定子上的线圈绕组的传统构造,传统构造需要使用复杂的绕组式样。因此,应当理解的是,不同于传统的绕组布置,单个线圈42没有与定子30互相缠绕,或者更具体地,绕组50提供了磁通量回路,并且这些线圈也没有彼此互相缠绕。这种布置极大地降低了制造成品定子30的复杂性,因此减少了制造同一产品的时间和成本。
因而,如下面将更详细地描述的,每个线圈42的输出连接至用于涡轮机10的共用直流输出。每个线圈42优选如此安装,以将其布置在与槽32上的安装有线圈42的点大致正切的平面上。每个线圈42的电绝缘涂层及相关的整流器71优选地还适于在其附近提供密封,使得涡轮机10能够浸没在水下。因此,在厂区外制造同一产品的过程中,同时电绝缘并密封每个线圈42,从而一旦将线圈42安装在定子30上以后无需另外进行密封。这再次简化了涡轮机10的装配,并降低了同一产品的成本。通过该分开的制造工艺,还使得能够制造出的组合式线圈42和整流器71单元的精度大大提高。具体地,该单元可在洁净的环境下制造,并且如果需要,可以使用真空压力注入设备。
接着参照图6,其示出了代表定子30的电路的电路图,如由多个线圈42及相关的整流器71所限定的。然而,应当理解的是,图6的电路图中所包含的线圈42的数量未必代表实际上可以设置在定子30上的线圈42的数量。此外,所示电路图仅旨在示出线圈42与整流器71之间的连接的优选构造,而且应当理解的是,可以采用任何其它适当的构造。可以看出,在所示的优选实施例中,该组线圈42及因此相应的整流器71被布置成四个串联的组,每个组包括彼此并联连接的七个线圈42。每组中线圈42的数量、以及所选出的组的数量由所期望的共用直流电输出处的电压和/或电流决定。因此,平行的线圈/整流器单元30的数量将决定总电流,而串联的组的数量将决定总电压。这种布置可以依据构成涡轮机10的一部分的线圈42的数量、以及每个线圈42中所产生的电压和/电流(这取决于多个因素,不仅是切割每个线圈42的磁通量密度)以及每个线圈42中的匝数而改变。所期望的用于涡轮机10的共用直流电输出处的电压和电流也可以依据所指应用而改变。例如,如果将涡轮机10设置在近海岸,则必须沿着五公里长的地下电缆来传输所产生的电能,为了沿这一长度的电缆驱动电流从而避免电缆中的不能接受的电能损耗,可能需要10,000伏特范围内的电压。
从图6中应该理解的是,使用大量的线圈42(在所示构造中相连)保证了线圈42的高度超静定性(redundancy)。因此,如果一特定线圈42或相关的整流器71出现故障,其对涡轮机10的发电能力的整体影响将是较小的,故在任何情形下都不会妨碍涡轮机10的继续运作。此外,使用大量的线圈42提供了平稳的直流电输出,由于来自线圈42的电动势不是都具有相同的相。
参照图7,涡轮机10可以被设置成包括多个涡轮机10的潮汐站的一部分,这些涡轮机的输出并联连接至共用电缆72,以将电能传回到岸边或任何其它所期望的位置。为了将电能传送到公用电网等,优选地设有高压直流电输入变换器73。如果传输距离较短,涡轮机10可被构造成产生低压直流电,例如1000V到1500V,并且最后,可以通过与用在电驱动应用中的那些类似的转换器(未示出)转换成用于电网线路的交流电。

水电涡轮机.pdf_第1页
第1页 / 共21页
水电涡轮机.pdf_第2页
第2页 / 共21页
水电涡轮机.pdf_第3页
第3页 / 共21页
点击查看更多>>
资源描述

《水电涡轮机.pdf》由会员分享,可在线阅读,更多相关《水电涡轮机.pdf(21页珍藏版)》请在专利查询网上搜索。

本发明提供了一种水电涡轮机,其包括定子以及同心地装在定子中的转子,该涡轮机包括沿周向设置在定子的轮缘上的一组磁体,并且其中,定子的构造是无槽的,并且由不同于传统的齿状叠片的绕丝形成。该涡轮机还包括安装在定子上并同心地位于绕丝内的呈环形阵列的单个线圈,每个线圈都设有一个专用的整流器,以将线圈中感生出的交流电流转换成直流电,优选地,以便传输到遥远的地方。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 发电、变电或配电


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1