如图1所示,在斜盘式压缩机中旋转斜盘2倾斜地与旋转轴1牢固连接,换
句话说,旋转斜盘倾斜地与旋转轴连接的这种方式使得倾斜角可以调节。依靠旋
转轴旋转带动旋转斜盘旋转使压缩机内的部分空间体积增加或减少来实现压缩和
膨胀。这旋转斜盘2在防磨装置3的防护部件上滑动。在旋转斜盘2和防磨装置3
之间的气密封使冷介质在固定的空间进行压缩和膨胀。4是球。
值得指出:旋转斜盘的滑动条件是在启动压缩机时,冷介质先于润滑油到达
旋转斜盘和防磨装置之间的滑动部位;于是冷介质所起的作用是冲走滑动部件上
的润滑油,导致在无润滑油的干涩情况下滑动。这使旋转斜盘所要求的滑动条件
变得异常严苛。
在上述条件下所用的旋转斜盘所要求的滑动性能是抗咬合性、耐磨性等等。
因此有人建议在铝基材料中加入硬质材料以提高其耐磨性,改进旋转斜盘材质使
铁基旋转斜盘经受旨在提高其硬度和耐磨性的热处理。另外,也有人提出下面的
表面处理方法。
本申请人提出的日本待审专利公开号昭51-36611建议在铁基旋转斜盘的防
磨装置上结合烧结的铜材料。即对铁基旋转斜盘进行硬化处理。但是如果相对的
部件材料即防磨装置是铁基材料的话,那么在同一材料间发生的滑动有可能产生
咬合问题。如果与铁基旋转斜盘相对的相应材料(防磨装置)使用烧结的铜合金,
就能避免产生上述问题。
另外,也有人建议在铁基旋转斜盘上镀一层锡以避免在同一材料间滑动并因
此提高其抗咬合性能,由于在铁基旋转斜盘所镀的锡是软的,这就产生了耐磨性
不足的问题。
在青铜基材料中人们注意到了铅的适应性和润滑性。因此,用火焰喷涂掺铅
的青铜合金可改善滑动性能(参见欧洲公开号EP0713972A1)。不过,由于目前很
盛行使用无铅材料,因此急需开发一种能替代掺铅青铜的滑动材料。
前面提到的用表面处理方法获得的斜盘式压缩机的旋转斜盘的性能并不好
于含铅青铜旋转斜盘。从这一观点出发,本发明人将精力集中于火焰喷涂铝基材
料,特别是Al-Si合金。在Al-Si合金中Si是以初晶硅或共晶硅存在的,这就很容
易提高耐磨性。但是本发明人发现铝基材料中的任何成分都很难显著提高抗咬合
性。
因此本发明的目的是提供一种能解决现有技术中存在问题的斜盘式压缩机的
旋转斜盘。
直到本发明人之前并没有人注意用火焰同时喷涂共晶或过共晶Al-Si合金和
诸如石墨或MoS2类的摩擦材料。火焰喷涂铝合金需要700℃或更高的喷涂温度,
同时石墨与氧的活性反应则在500℃或更高的温度下发生。因此即使当喷涂火焰
中有少量氧存在时,石墨也不能掺入到火焰喷涂层中。因此本发明人意识到要将
由于火焰喷涂气体中氧的存在而使石墨燃烧和MoS2氧化分解的损失考虑进去。本
发明人出人意外地发现摩擦材料能分散在铝基材料中。
根据本发明的目的,提供了一种斜盘式压缩机的旋转斜盘,其特征在于沉积
于基体上的火焰喷涂层由下列组分组成:(a)含有12~60%(重量)的硅和分散在
基体中的硅颗粒的铝合金,(b)至少有一种石墨碳、无定形碳、结晶度在石墨碳和
无定形碳之间的碳及MoS2的分散相。
下面详细阐述本发明。百分比除特别说明外均为重量百分比。
本发明人集中进行了大量的实验并发现火焰喷涂的共晶或过共晶铝合金能改
善其与基底的粘着性;并且硅颗粒细小。
在本发明的火焰喷涂铝硅合金中,大量细颗粒硅分散在铝基体中。因此,大
量分散在铝基体中的细颗硅粒使合金的硬度增加并使其具有耐磨性。另外分散的
大量细颗粒硅抑制了铝基体与防磨装置粘着并因此也抑制了由于这种粘着而导致
的咬合。
本申请人提出的EP0713972A1以Cu-Pb合金为例详细解释了火焰喷涂铜合
金。熔融颗粒的快速凝固同样适合于铝合金,火焰喷涂Al-Si合金的一个特点是外
加元素(Si)的熔点远高于基体元素(Al)。结果是大量细小的颗粒状硅分散在铝基体
中,这样获得的效果是Si增加了合金的硬度和耐磨性。
本发明中的粒状硅颗粒与传统冶炼或轧制合金的初始硅形状不一样。它们具
有方向性和延伸性。另一方面,本发明的粒状硅颗粒呈球状、团状、多边形、有
凹形或不规则的孤岛状,它们不是以前面的传统形状分类的,而是在各方向上的
尺寸几乎一样。更具体地说,平均最长直径与最短直径的比为3∶1或更小。另外,
本发明中没有发现传统冶炼合金中常见的初晶Si和共晶Si之间的明显差别。
根据本发明如果铝合金中Si含量少于12%,那么耐磨性的增加效果微弱。
另一方面,如果Si含量超过60%,这种火焰喷涂用的合金粉末很难生产。因此Si
含量优选15~50%。如果Si颗粒尺寸超过50μm,容易产生Si颗粒的脱落。Si
颗粒尺寸优选1~40μm。
在本发明中,可将改善耐磨性和抗咬合性的Al-Si-Sn合金用作火焰喷涂层的
基体。根据本发明,Sn是均匀地分散到铝基体中并产生润滑性和适应性。Sn优先
粘结到防磨装置上并阻止同种材料即旋转斜盘中的Al和粘着到防磨装置Al中的
Al之间的滑动,结果提高了抗咬合性。当Sn的含量低于0.1%时,不能有效提高
润滑等性能。另一方面,当Sn的含量超过30%时,合金强度降低。Sn的含量优
选5~25%。Sn相在涂层中的形态呈拉长片状,鉴于润滑性这种形态是优选的。
本发明铝合金可含下面的理想元素。
Cu:Cu是过饱和固溶于铝基体中的,以此提高强度。这样Cu能抑制铝的粘
附磨损和由于Si颗粒脱落产生的磨损。另外,部分Cu和Sn形成Sn-Cu金属间化
合物并使耐磨性增加。但是,当Cu含量超过8.0%时,合金过硬而不能提供理想
的滑动材料,因此Cu含量优选在0.5~5%。
Mg:Mg与部分Si结合形成Mg-Si金属间化合物。Mg由此而提高耐磨性。
但是,当Mg含量超过3.0%时,会形成粗的Mg相而削弱滑动性能。
Mn:Mn是过饱和固溶于铝基体中的,以此提高强度。Mn的作用和Cu一
样。但是,当Mn含量超过3.0%时,合金过硬而不能提供理想的滑动材料。因此,
Mn含量优选在0.1~1%。
Fe:Fe是过饱和固溶于铝基体中的,以此提高强度。Fe的作用和Cu一样。
但是,当Fe含量超过1.5%时,合金过硬而不能提供理想的滑动材料。因此,Fe
含量优选在0.1~1%。
Ni:Ni是过饱和固溶于铝基体中的,以此提高强度。Ni的作用和Cu一样。
但是,当Ni含量超过8%时,合金过硬而不能提供理想的滑动材料。因此,Ni
含量优选在1.5%或更少。
根据日本工业标准技术术语词典的第4版,第1946页的定义,火焰喷涂(喷
涂)是指“通过热源使材料转变成熔融或半熔融状态并将其喷射到基底上形成
膜”。“材料”是铝合金或其原始材料如Al和Si的粉末。但是对上述定义在一
定程度上稍加修改,可将碳质材料和/或MoS2与上述材料(但基本上未熔化)一
起吹入。半熔融状态是指诸如铝基材料的一种状态,即高硅铝硅合金即含有高熔
点物质的材料中固—液共存的一种状态。正如下文解释的,半熔融状态是指部分
粉末没有熔化。本发明所使用的各种火焰喷涂方法列于Tribologist,第41卷,第11
期,第20页的图2上。在这些方法中,可优先使用高速含氧燃料的火焰喷涂方法
(HVOF,高速氧燃料)。可按这种方法获得Si和Sn相的形貌特征,这是因为它
们具有Tribologist第20页右栏第4行到第13行描述的特征。
火焰喷涂的铝冷却和凝固非常快使大量的硅固溶在铝中而使铝硬化。这样所
保持的硅颗粒具有很高的强度特征并能抑制硅颗粒的脱落和由于硅颗粒的脱落所
引起的磨损。
合金的雾化粉末如Al-Si合金、Al-Si-Sn合金等可以用作火焰喷涂的粉末。这
些雾化粉末可以完全熔化在基体上并凝固,也可向基体提供部分未熔的粉末,以
便保持原粉末的未熔结构。
火焰喷涂的条件优选:氧气压力为0.9~1.2MPa;燃料压力为0.6~0.9MPa;
火焰喷涂距离为50~250mm;火焰喷涂层的厚度优选为10~500μm,更优选10~
300μm。
火焰喷涂的合金层的硬度在Hv100~400之间。由于传统的含12%Si合金的
硬度为Hv50~150,因此本发明的火焰喷涂层可以说是很硬的。
接下来叙述火焰喷涂层的分散相即在铝基合金基体中的分散相。
分散相的材料是与铝合金粉末或铝合金的原始材料粉末一同进行火焰喷涂
的,摩擦材料在高速含氧燃料的火焰喷涂或其他方法喷涂火焰下既不氧化也不分
解并且不与火焰喷涂层发生反应。
碳质材料是无定形碳、石墨或结晶度介于这两者之间的碳、或等等。石墨是
天然或合成的石墨。石墨的强解理性可以改善滑动性能。具有石墨结构的碳质材
料由于石墨的解理而展示出的滑动效果。同时,如果两维结构的碳质材料留下的
痕迹越少,那么抗磨性的效果越显著,结果同样也改善了滑动性。由于碳质材料
在火焰喷涂过程中不熔化,因此基本上保持了原料在火焰喷涂层中其形状仍然保
持其原始粉末材料的形状。
众所周知,MoS2是摩擦材料中的另一分散相。在剧烈滑动条件下MoS2只能
稍微改善火焰喷涂层的滑动性能,在适度的滑动条件下,其对滑动性能的改善没
有石墨那么显著。
上面提到的摩擦材料占火焰喷涂层的重量优选2~40%,更优选5~25%。
火焰喷涂前摩擦材料的平均粒径优选10~50μm,更优选20~40μm。
除了上述所提到铝合金、碳质材料和/或MoS2外,象FeB,Fe3P,Al2O3,SiO2,
SiC和Si3N4这样的硬质材料可以加入到火焰喷涂层中以增强耐磨性。这些硬质材
料在火焰喷涂过程中并没有熔化而分散在火焰喷涂合金中。这些硬质材料的加入
量占整个火焰喷涂层的重量优选限制在20%或更少。
各种金属基底如铁、铜、铝等等都可以作为火焰喷涂的基底,以在其上形成
火焰喷涂层。通过喷沙等方法对基底表面进行粗糙处理,表面粗糙度Rz优选为
10~60μm,以使喷膜的粘结强度增加。更具体地说,通过剪切破坏试验测得喷膜
的粘结强度显示:在喷沙钢表面火焰喷涂镍膜的粘结强度为30~50Mpa;而本发
明喷膜的粘结强度为30~60Mpa。该结果几乎与到目前为止报道的粘结强度最好
的火焰喷涂Ni膜的相同。
为了调节硬度,对火焰喷涂层进行热处理。
在采用火焰喷涂层而没有外层的情况下,最终火焰喷涂层的粗糙度Rz优选
3.2μm或更小。
在采用外层时,可使用各种具有极好适应性的软质涂层,如软质金属即Sn、
Pb-Sn,固体润滑剂即MoS2、石墨、MoS2+石墨和固体润滑剂与树脂的混合物。
火焰喷涂层与软质涂层结合使用能明显提高抗咬合性,这一性能远高于青铜基材
料的抗咬合性。
如上所述,火焰喷涂层中的MoS2在无制冰机油的苛刻条件下只能稍微改善
火焰喷涂层的滑动性能。相反,MoS2外层则具有明显的效果。
斜盘式压缩机本身是众所周知的,如授让给本申请人之一的美国专利US
5228379。
与旋转斜盘滑动接触的防磨装置本身是众所周知的。由本申请人提出的日本
未审专利公开号51-36611给出了其实例。主要成分是铁的任何材料都能司用作
铁基材料。但优选使用轴承钢。另外,对防磨装置的生产方法没有限制,如轧制、
锻造、粉末冶金、表面硬化技术都能使用。
本发明将以实施例加以陈述。
实施例
实施例1
制备70%平均粒度为75μm的铝合金粉末与30%平均粒度为30μm的石墨粉
的混合物。铝合金粉末的成分为40%的含硅铝合金(A2024)。注意,硅含量是指铝
合金中成分,石墨含量是指喷涂用的原料即铝合金粉末和石墨粉末。经过火焰喷
涂后,滑动层的表面成分为85%的铝合金(A2024)和15%的石墨,铝合金中含40
%Si。
同时购得的纯铝轧制板用钢砂(粒度为0.7mm)进行喷丸处理使其表面粗糙度
Rz达到45μm。
用高速含氧燃料式火焰喷涂机(DJ,产自Sulzer Meteco股份有限公司)在下面
条件下进行火焰喷涂。
氧气压力:1.0Mpa
燃料压力:0.7Mpa
火焰喷涂距离:180mm
火焰喷涂层厚度:200μm
火焰喷涂层的硬度为Hv0.3=166和粒状硅颗粒的平均粒度为5μm。显微结构
图示于图2中。火焰喷涂前的石墨放大图示于图3中。硅颗粒如图2所示是粒状
的。从图2和图3可以明显看到大部分石墨粉穿过喷涂火焰撞击到了基底上,并
被周围固化有石墨粉的铝合金基体固定。石墨粉撞击基底而压扁。观察C-Kα衍射
图和显微形貌可以看出碳存在于铝的晶界上。该晶界与显微结构图中探测的石墨
的高概率位置是一致的。
火焰喷涂层表面的最终粗糙度Rz达到1.2μm。在下面条件下用钢板(淬火态
SUJ2作为相对材料)进行磨耗试验。将提供火焰喷涂层材料锻造成斜盘式压缩机
的旋转斜盘并安装在现有机器上。然后在液压下进行评估,试验结果示于表1,
比较实施例1和2及参考实施例1的结果也示于表1。在表1所示的循环次数下
没有发生咬合。
比较实施例1
用与实施例1相同的组分制备火焰喷涂层。只是不含石墨,试验条件同实施
例1。结果火焰喷涂层的硬度为Hv0.3=183和粒状硅颗粒的平均粒度为6μm。
比较实施例2
用与实施例1相同的组分制备火焰喷涂层,只是用14%的MoS2代替石墨,
试验条件同实施例1。
参考实施例1
在比较实施例1所制得的火焰喷涂层上涂一层5μm厚外层(涂覆的MoS2是
用聚酰亚胺粘结的)。
在下面条件下进行液压试验。
试验机:斜盘式压缩机
旋转数:6500rpm
试验时间:5分钟(一个循环)
试验温度:-10℃
在液压试验中,冷介质使滑动部件在比实际冷介质更苛刻的条件滑动以此评估滑
动部件的损失。
表1
循环数
实施例1
20
比较实施例1
1
比较实施例2
3
参考实施例1
25
如表1所示,石墨分散到火焰喷涂铝合金中的实施例1的循环次数是比较实
施例1的20倍。MoS2分散到火焰喷涂铝合金中的比较实施例2的循环次数并没
有比实施例1的高出很多。正如这些结果所示,摩擦材料中的单个材料对滑动性
能的影响不同。
在表1所给出的实施例中参考实施例1(涂覆外层MoS2)的滑动性能是最好
的。这表明层中(比较实施例2)存在的MoS2和外层中(参考实施例1)存在的
MoS2之间的滑动性能有差异,其差值高达10倍。
实施例2
使按实施例1制备的试样连续进行加载试验,以评估其抗咬合性。其试验结
果和实施例3及比较实施例3的结果同示于表2中。
实施例3
用实施例1的方法制备火焰喷涂层。只是用14%的MoS2替代石墨,另外再
向铝合金中加入10%的Sn。使制得的火焰喷涂层连续经受加载试验。
比较实施例3
用实施例1的方法制备火焰喷涂层。只是不用石墨而是向铝合金中再加入
20%的Mo。使制得的火焰喷涂层连续经受加载试验。
连续加载试验是在下面条件下进行的。
试验机器:高压气体介质试验机
载荷:连续加载速度为20kgf/每30分钟
旋转速度:7200rpm
润滑:油/冷却介质循环
表2
咬合载荷
(kgf/mm2)
实施例2
100
实施例3
80
比较实施例3
40
比较实施例3的抗咬合性比较差,通过加入大量的Mo并没有明显提高耐磨
性和抗咬合性。加入了石墨的实施例2和加入了MoS2的实施例3的抗咬合性是比
较实施例3的两倍或两倍以上。
如上所述,根据本发明可同时火焰喷涂碳质材料如石墨或MoS2和高硅铝合
金。本发明的旋转斜盘的火焰喷涂层中不含铅,而其性能要比在常规旋转斜盘上
火焰喷涂青铜的优越。