短波长光源和激光图像形成装置.pdf

上传人:111****11 文档编号:1034761 上传时间:2018-03-27 格式:PDF 页数:52 大小:2.02MB
返回 下载 相关 举报
摘要
申请专利号:

CN200780031039.8

申请日:

2007.10.24

公开号:

CN101506730A

公开日:

2009.08.12

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

G02F1/37

主分类号:

G02F1/37

申请人:

松下电器产业株式会社

发明人:

森川显洋; 水内公典; 古屋博之; 山本和久

地址:

日本大阪府

优先权:

2006.10.27 JP 292477/2006; 2006.10.27 JP 292478/2006

专利代理机构:

中科专利商标代理有限责任公司

代理人:

汪惠民

PDF下载: PDF下载
内容摘要

本发明提供一种短波长光源,包括具有基波入射的入射面和高谐波射出的出射面、将上述基波转换为上述高谐波的波长转换元件,和保持上述波长转换元件的保持部。上述波长转换元件,在作为上述波长转换元件的上述出射面一侧的部分区域的指定区域,上述波长转换元件进行波长转换时因上述高谐波的吸收引起的发热而导致的上述基波和上述高谐波之间的相位匹配条件的变动得以抑制。

权利要求书

1.  一种短波长光源,其特征在于包括:
波长转换元件,具有基波入射的入射面和高谐波射出的出射面,将所述基波转换为所述高谐波;和
保持部,保持所述波长转换元件,其中,
所述波长转换元件,在作为所述波长转换元件的所述出射面一侧的部分区域的指定区域,具有使相位匹配条件的变动得以抑制的结构,其中,所述相位匹配条件的变动是指当所述波长转换元件进行波长转换时因所述高谐波的吸收引起的发热而导致的所述基波和所述高谐波之间的相位匹配条件的变动。

2.
  根据权利要求1所述的短波长光源,其特征在于:所述指定区域和所述保持部之间的热阻,低于所述指定区域以外的其它区域和所述保持部之间的热阻。

3.
  根据权利要求1或2所述的短波长光源,其特征在于:所述保持部具有变更所述指定区域的温度的第1温度变更部件,其中,
所述第1温度变更部件,变更所述指定区域的温度,使所述指定区域的温度与所述指定区域以外的其它区域的温度基本相同。

4.
  根据权利要求1至3中任一项所述的短波长光源,其特征在于:
所述高谐波的光强度,沿着从所述波长转换元件的所述入射面朝向所述出射面的方向增加;
所述指定区域为从所述高谐波的光强度超过指定值的位置起到所述出射面之间的区域。

5.
  根据权利要求4所述的短波长光源,其特征在于:所述高谐波的波长为500至550nm,所述指定值为1.5W。

6.
  根据权利要求4所述的短波长光源,其特征在于:所述高谐波的波长为400至450nm,所述指定值为0.2W。

7.
  根据权利要求4所述的短波长光源,其特征在于:所述高谐波的波长为340至400nm,所述指定值为0.05W。

8.
  根据权利要求1至7中任一项所述的短波长光源,其特征在于:所述指定区域的长度在所述波长转换元件长度的二分之一以下。

9.
  根据权利要求3所述的短波长光源,其特征在于:
所述保持部还具有变更所述指定区域以外的其它区域的温度的第2温度变更部件;
所述指定区域和所述第1温度变更部件之间的热阻θ1与所述指定区域以外的其它区域和所述第2温度变更部件之间的热阻θ2,满足以下关系,
θ1<θ2。

10.
  根据权利要求1至9中任一项所述的短波长光源,其特征在于:所述波长转换元件内部的基波的波束路径和所述指定区域的靠所述保持部一侧的表面之间的距离,短于所述基波的波束路径和所述指定区域以外的其它区域的靠所述保持部一侧的表面之间的距离。

11.
  根据权利要求10所述的短波长光源,其特征在于:所述基波的波束通过所述指定区域的靠所述保持部一侧的表面附近。

12.
  根据权利要求10所述的短波长光源,其特征在于:所述基波的波束被所述指定区域或所述指定区域附近的区域的靠所述保持部一侧的表面反射。

13.
  根据权利要求1至12中任一项所述的短波长光源,其特征在于:所述指定区域的厚度薄于所述指定区域以外的其它区域的厚度。

14.
  根据权利要求9所述的短波长光源,其特征在于:
所述第1温度变更部件,是使所述高谐波的吸收引起的来自所述指定区域的发热从自身的表面散热的第1散热部件;
所述第2温度变更部件,是使所述高谐波的吸收引起的来自所述指定区域以外的其它区域的发热从自身的表面散热的第2散热部件;
所述第1散热部件的表面积大于所述第2散热部件的表面积。

15.
  根据权利要求1至14中任一项所述的短波长光源,其特征在于还包括:加热所述指定区域以外的其它区域的加热部,其中,
所述加热部,加热所述指定区域以外的其它区域,使所述指定区域以外的其它区域的温度与所述指定区域的温度基本相同。

16.
  根据权利要求1至15中任一项所述的短波长光源,其特征在于:所述指定区域的极化反转周期,短于所述指定区域以外的其它区域的极化反转周期。

17.
  根据权利要求1至16中任一项所述的短波长光源,其特征在于:所述指定区域的极化反转周期,沿着从所述波长转换元件的所述入射面朝向所述出射面的方向逐渐缩短。

18.
  根据权利要求17所述的短波长光源,其特征在于:所述指定区域的极化反转周期,根据所述指定区域的温度分布而设定。

19.
  根据权利要求1至18中任一项所述的短波长光源,其特征在于还包括:将从基波光源射出的基波射入所述波长转换元件,并将所述基波聚光在所述波长转换元件内部的光学系统,其中,
所述指定区域,位于基于所述光学系统的所述基波的聚光点附近,且位于所述聚光点靠所述出射面的一侧。

20.
  根据权利要求19所述的短波长光源,其特征在于:所述指定区域的极化反转周期,被设定成沿着从所述指定区域的中心朝向所述波长转换元件的所述入射面和所述出射面的各方向逐渐缩短。

21.
  根据权利要求19或20所述的短波长光源,其特征在于:
所述基波的波束强度分布近似于高斯分布;
所述波长转换元件的长度L、所述聚光点的半径ω0、所述基波的波长λ和所述波长转换元件对所述基波的折射率n,当实质上满足以下关系时,
L×λ/(2π×n×ω02)=2.84
所述指定区域,位于从所述入射面起朝所述出射面相距L/2至2L/3的位置。

22.
  根据权利要求1至21中任一项所述的短波长光源,其特征在于:所述波长转换元件为添加Mg、In、Zn、Sc中的至少其中之一的LiTa(1-x)NbxO3,其中,0≤x≤1。

23.
  一种激光图像形成装置,其特征在于包括:
如权利要求1至22中任一项所述的短波长光源;和
调制从所述短波长光源射出的光的空间光调制元件。

说明书

短波长光源和激光图像形成装置
技术领域
本发明涉及一种短波长光源和使用了该短波长光源的激光图像形成装置。
背景技术
如果利用强制性地使强电介质(ferroelectric substance)的极化反转的极化反转现象,可以在强电介质的内部形成周期性的极化反转区域(极化反转结构)。这样形成的极化反转区域被应用在利用表面弹性波(Surface Acoustic Wave)的光频调制器(opticalfrequency modulator)、利用非线性极化的极化反转的光波长转换元件(opticalwavelength conversion element)、利用棱镜(prism)形状或透镜(lens)形状的反转结构的光偏振器(optical polariscope)等中。特别是,通过周期性地反转非线性光学物质的非线性极化,可以制作转换效率高的光波长转换元件。若利用其转换半导体激光器等的光,则可以实现能应用于印刷、光信息处理、光应用测量控制等领域中的小型的短波长光源。或者,若转换瓦特(watt)级的高输出激光器(光纤激光器、或固体激光器等)的光,则可实现瓦特级的短波长可见光(绿色、蓝色)或高输出的紫外激光,从而能够提供可应用于高亮度显示器、加工、曝光等中的高输出短波长光源。
作为通过基波的单程转换(single pass conversion)来实现瓦特级的高输出CW可见光产生的有前途的手段,有利用周期极化反转LiNbO3(Periodically Poled LiNbO3:以下简称为“PPLN”)的第二谐波产生(Second Harmonic Generation)。由于LiNbO3(以下简称为“LN”)具有较大的非线性光学常数,因此,可以通过单程产生CW的瓦特级的短波长的光。然而,对于LN却存在因光损伤(optical damage)、绿色光引起的红外吸收(Green Induced Infrared Absorption:以下简称“GRIIRA”)等的影响而使输出不稳定、需要高温运作这样的问题。
为解决上述问题,有利用周期极化反转MgO:LiNbO3(Periodically Poled MgO:LiNbO3:以下简称为“PPMgLN”)的基于单程结构的可见短波长光产生。由于MgO:LiNbO3(以下简称为“MgLN”)与LN相比具有较高的非线性光学常数、优异的耐光损伤性、在短波长域的透射特性,因此,作为可以由单程结构实现室温下CW的瓦特级输出的高非线性材料很有前途。
可是,为了抑制由波长转换元件内的因激光入射引起的元件温度分布(temperaturedistribution)而导致的转换效率的下降,需设置如日本专利公开公报特开平11-125800号所示的线状加热的加热手段,或如日本专利公开公报特开2003-140211号中,采用基于光轴方向的温度分布移动元件进行配置,以使晶体的温度差在0.1℃以内的结构,或如日本专利公开公报特开2004-53781号中,采用使冷却元件的入射面和出射面附近的冷却手段和调整元件中间部分的温度的调整手段各不相同来降低传播方向的温度分布的手段。在日本专利公开公报特开平5-204011号中例举了,在元件的两侧面配置4个珀尔贴(Peltier)元件,来抑制元件的宽度方向的温度分布从而维持转换效率的方法。
然而,作为可以实现室温下CW的瓦特级输出的材料而予以期待的MgLN,在高输出时,会发生不同于因光损伤、GRIIRA或激光入射引起的元件温度分布产生的其它现象,从而产生高谐波输出不稳定,或晶体破损的新问题。我们究其主要原因,结果发现,由基波和高谐波的相互作用产生的紫外线所诱发的高谐波光吸收是引起晶体内部发热,高谐波输出不稳定的原因所在。尤其是判明了,在高输出的高谐波产生时,基波和高谐波的和频(sum frequency)产生的光源中,因高谐波的吸收引起的发热很显著。以往,对这样的高谐波光吸收以及和频引起的发热未有认识。
此外,如日本专利公开公报特开2000-321610号所示,为了扩大波长转换元件的相位匹配(phase matching)的允许度,提出一种改变极化反转的周期的波长转换元件。
发明内容
本发明的目的在于提供一种可以通过抑制因高谐波吸收产生的热而导致的元件内的温度分布,维持转换效率来谋求高谐波输出的稳定化的短波长光源。
本发明所提供的一种短波长光源,包括,具有基波入射的入射面和高谐波射出的出射面,将上述基波转换为上述高谐波的波长转换元件,和保持上述波长转换元件的保持部,上述波长转换元件,在作为上述波长转换元件的上述出射面一侧的部分区域的指定区域,具有使相位匹配条件的变动得以抑制的结构,其中,所述相位匹配条件的变动是当上述波长转换元件进行波长转换时因上述高谐波的吸收引起的发热而导致的上述基波和上述高谐波之间的相位匹配条件。
在上述短波长光源中,由于即使在波长转换元件的指定区域中因高谐波的吸收产生发热时,该发热所引起的基波和谐波之间的相位匹配条件的变动也得以抑制,故可谋求高谐波输出的稳定化。
根据本发明,可提供一种能通过抑制高谐波吸收引起的发热而导致的元件内的温度分布来维持转换效率,从而使高谐波输出稳定的短波长光源。
附图说明
图1(A)是表示本发明的实施例1的短波长光源的概略结构的剖视图,图1(B)是从波长转换元件的入射面起的距离和SHG输出的关系的示意图。
图2是表示本发明的实施例1的短波长光源的其它概略结构的剖视图。
图3是基波的输入功率和SHG的输出功率的关系的示意图。
图4是表示本发明的实施例2的短波长光源的概略结构的剖视图。
图5是表示本发明的实施例3的短波长光源的概略结构的剖视图。
图6(A)和(B)是表示本发明的实施例4的短波长光源的概略结构的剖视图。
图7是表示本发明的实施例5的短波长光源的概略结构的剖视图。
图8(A)和(B)是表示本发明的实施例6的短波长光源的概略结构的剖视图。
图9是SHG波长和转换效率恶化的SHG输出的关系的示意图。
图10是以往的短波长光源的SHG输出特性的示意图。
图11是SHG的转换效率恶化时的元件温度分布的示意图。
图12是表示以往的短波长光源的概略结构的剖视图。
图13(A)是表示本发明的实施例7的短波长光源的概略结构的剖视图,图13(B)是从波长转换元件的入射面起的距离和SHG输出的关系的示意图。
图14是表示本发明的实施例7的短波长光源的其它概略结构的剖视图。
图15是表示本发明的实施例7的短波长光源的又一其它概略结构的剖视图。
图16是表示本发明的实施例8的短波长光源的概略结构的剖视图。
图17是表示本发明的实施例8的短波长光源的其它概略结构的剖视图。
图18是表示本发明的实施例8的短波长光源的又一其它概略结构的剖视图。
图19是表示以往的短波长光源的其它概略结构的剖视图。
图20是表示本发明的实施例9的短波长光源的概略结构的剖视图。
图21是表示本发明的实施例9的短波长光源的其它概略结构的剖视图。
图22是表示本发明的实施例10的短波长光源的概略结构的剖视图。
图23是表示本发明的实施例10的短波长光源的其它概略结构的剖视图。
图24(A)是表示波长转换元件内的波束路径的示意图,图24(B)是波长转换元件内的发热量分布的示意图。
具体实施方式
下面,参照附图对本发明的实施例进行说明。对相同的要素标注相同的符号,有时省略说明。此外,附图中为了便于理解,主要而概略地对各构成要素进行了示意,而对形状等并未做准确的表示。
(实施例1)
首先,对作为本实施例的背景的波长转换元件的输出不稳定性进行说明。图12表示以往的短波长光源的概略结构。图12的波长转换元件1201,是具有周期状的极化反转结构的体型(bulk type)的波长转换元件,在将基波1204转换为第二谐波(SecondHarmonic)(以下称为“SHG”)1205时,SHG1205的输出与基波1204的2次方成比例地增大。然而,当超过一定的SHG输出,会观察到SHG1205的输出从2次方特性(squared characteristic)显著下降的现象。图10表示SHG1205的输出相对于基波1204的输入功率的变化。如图10所示,从SHG1205的输出功率超过1.5W的附近开始,2次方特性就不再成立。
研究该下降的原因可知,波长转换元件1201将基波1204转换为SHG1205时,会产生作为基波1204和SHG1205的和频(Sum Frequency)的THG(Third HarmonicGeneration)(波长为基波1204的波长的1/3),由于该THG产生的影响,发生波长转换元件1201的SHG光的吸收,因该吸收引起的发热而使波长转换元件1201的相位匹配条件发生混乱。图11表示此时的波长转换元件1201沿着光传播方向的温度分布。利用图12的珀尔贴元件(Peltier element)1208,虽然可控制波长转换元件1201的温度使其保持在一定,但却无法避免图11的温度分布。因此,显而易见,在THG的强度超过一定值的区域,因SHG1205的吸收而产生的发热较为显著,相位匹配条件不再成立,波长转换元件1201的转换效率下降。
此外,图9表示SHG1205的波长和转换效率开始下降的SHG输出的关系。如图9所示,可知转换效率开始下降的SHG输出相对于SHG1205具有非常强的波长依存性。
本实施例基于上述的现象进行了设计,对因SHG的吸收产生的发热,通过利用散热结构的设计、温度控制的改良、或对未发热部分的加热来降低波长转换元件的温度分布,从而可维持波长转换元件的转换效率。
图1(A)是表示本发明的实施例1的短波长光源的概略结构的剖视图。本实施例的短波长光源,在波长转换元件101的传播方向上设有多个珀尔贴元件110、111。本实施例的短波长光源,如图1(A)所示,包括波长转换元件101、第1保持部(holder)112、第2保持部113和控制部114。第1保持部112,具有夹在两层散热剂108之间的铜板109,和通过控制铜板109的温度,对配置在铜板109上部的波长转换元件101的一部分进行温度控制的珀尔贴元件110,第2保持部113,具有夹在两层散热剂108之间的铜板109,和通过控制铜板109的温度,对配置在铜板109上部的波长转换元件101的剩余部分进行温度控制的珀尔贴元件111。第1保持部112的珀尔贴元件110和第2保持部113的珀尔贴元件111分别与控制部114连接,由控制部114控制温度。
在本实施例的短波长光源中,波长转换元件101中形成有多个周期状的极化反转区域102。构成波长转换元件101的基板厚度为1mm。极化反转区域102沿着基板晶体的Y轴形成。极化反转区域102,从基板的+Z面朝向-Z面侧而形成。极化反转区域102通过电场施加法制作而成。极化反转区域102的极化反转周期103为6.97μm(Λ),可将波长1064nm的光(Nd:YAG激光)波长转换为波长532nm的绿色光。作为用于控制波长转换元件101的温度的温控元件,采用了珀尔贴元件110、111。在本实施例中,第1保持部112的珀尔贴元件110和第2保持部113的珀尔贴元件111,如图1(A)所示,分别排列配置在光的传播方向上,可由控制部114以分别独立地温度进行控制。
利用图12首先对以往结构的SHG光的高输出特性进行说明。在图12所示的短波长光源中,波长转换元件1201由保持部1209保持,通过保持部1209的一个珀尔贴元件1208进行波长转换元件1201的温度控制。为了释放波长转换元件1201的发热,在波长转换元件1201的表面通过散热剂1206贴有铜板1207。此外,波长转换元件1201和铜板1207,通过珀尔贴元件1208温度被控制在一定的温度。将波长转换元件1201的元件长度设为10mm,通过聚光透镜聚光后的波长1064nm的低功率基波(7W以下)1204入射后,以3%/W的转换效率被转换波长,得到波长为532nm的SHG1205。通过形成均匀的极化反转区域1202,可实现高效率的波长转换。如果使作为基波1204的波长1064nm的红外输入功率上升,则在基波输入为7W以下时,高谐波输出按照2次方特性增大。然而,图12所示的以往的短波长光源,如图10所述,高谐波输出达到1.5W以上则脱离2次方特性,从而输出变得不稳定。
在本发明的实验过程中,发现图10所示的2次方特性的恶化,从SHG强度超过指定值的区域开始突然显著地出现。作为其主要原因例举了,由于因THG诱发的SHG吸收而导致折射率增加,实效的极化反转结构的周期增大,故相位匹配处于不匹配状态,转换效率下降。折射率变化约为10-6至10-5,因SHG吸收引起的发热而产生。由于SHG强度的变化引起的吸收系数的变化并不太大,变化效率恶化的SHG的功率基本为一定值。此外还可知,转换效率恶化的SHG的功率,具有较强的波长依存性,如图9所示,随波长而有较大的差异。可认为这是由于SHG的吸收系数依存于SHG的波长。因此,只要波长确定,便可唯一地求出SHG转换效率恶化的SHG的功率。
因此,可以基于上述的条件,进行短波长光源的设计。例如,设SHG的波长为λshg,对于该λshg输出恶化的SHG的功率为P(恶化)。在短波长光源中,要使SHG输出按一定的值Pshg输出时,在Pshg>P(恶化)的条件下,需要对散热结构或温度控制方法进行最优设计,以降低波长转换元件的发热引起的温度分布。
例如,波长转换元件中,将波长1064nm的基波转换为波长532nm的SHG时,若设基波的输入为10W、基波的聚光直径为φ33μm、基波的波束质量(beam quality)为基本理想状态的高斯分布(Gaussian distribution),则波长转换元件的长度为10mm时,在从元件的入射面向出射面前进约7mm之处,SHG的强度超过1.5W。另外,SHG波长为532nm时的P(恶化)值,图9中约为1.5W。因此,作为波长转换元件的温度控制,通过在出射面附近的3mm处设置珀尔贴元件,利用该珀尔贴元件来控制温度,可以大幅度地增大波长转换元件的转换效率。
基于上述的提案,利用图1(A)所示的本实施例的短波长光源进行了同样的实验。形成的极化反转区域102,可得到与图12所示的短波长光源同等的极化反转特性(均匀性、形成区域),高谐波输出在1.5W以下时的转换效率同样为3%/W。若利用图1(A)所示的短波长光源,即使高谐波输出达到1.5W以上,也不会发生2次方特性的恶化、输出的不稳定和转换效率的下降,从而可以获得稳定的输出、高质量的束轮廓(beam profile)。其结果如图3所示。在绿色输出1.5W的高输出时,虽因基波和高谐波的吸收而产生元件的温度分布,但通过个别控制两个珀尔贴元件110、111,可以避免光传播方向上的温度分布,使元件温度保持一定。在绿色输出2.5W时,虽然在以往光源中会发生转换效率的急剧下降,但通过适当地进行两个珀尔贴元件110、111的温度控制,可以抑制转换效率的下降和输出下降,获得稳定的输出。
图1(B)表示从图1(A)的波长转换元件101的入射面106起的距离和SHG输出的关系。如图1(B)所示,在本实施例的短波长光源中,虽然在从入射面106向出射面前进约7mm之处,输出超过了恶化的SHG输出(指定值),但如上所述,通过适当地进行对两个珀尔贴元件110、111的温度控制,可以抑制转换效率的下降和输出下降,获得稳定的输出。
在本实施例的短波长光源中,为避免在传播方向上产生的温度分布,是在温度上升显著出现的出射面附近配置一个珀尔贴元件111来进行温度控制,但也可以在出射面附近配置两个以上的珀尔贴元件。图2是表示本发明的实施例1的短波长光源的其它概略结构的剖视图。图2的短波长光源,在波长转换元件201的传播方向上配置有多个珀尔贴元件210、211、212。图2的短波长光源包括波长转换元件201、第1保持部213、第2保持部214、第3保持部215和控制部216。第1保持部213具有夹在两层散热剂208之间的铜板209,和通过控制铜板209的温度对配置在铜板209上部的波长转换元件201的一部分进行温度控制的珀尔贴元件210,第2保持部214具有夹在两层散热剂208之间的铜板209,和通过控制铜板209的温度对配置在铜板209上部的波长转换元件201的另一部分进行温度控制的珀尔贴元件211,第3保持部215具有夹在两层散热剂208之间的铜板209,和通过控制铜板209的温度对配置在铜板209上部的波长转换元件101的剩余部分进行温度控制的珀尔贴元件212。第1保持部213的珀尔贴元件210、第2保持部214的珀尔贴元件211和第3保持部215的珀尔贴元件212分别与控制部216连接,由控制部216控制温度。
图2的短波长光源中,在发热集中的波长转换元件201的出射面附近,配合传播方向的温度分布配置多个珀尔贴元件211、212,以使元件温度一定。珀尔贴元件211、212的配置方法,只要能够抑制温度分布,并不限于上述的配置方法。
在本实施例的短波长光源中,用珀尔贴元件个别控制出射侧附近的长度,在全长的1/2以下较为理想。在体型的波长转换元件的情况下,变化效率最大的基波的聚光特性是,聚光点位于晶体的中央,基波的波束直径在晶体的两端达到最大。此时,元件内的SHG的强度,相对于元件中央部的功率,在出射部约为其3倍。可知,对于转换效率恶化的P(恶化),若最大输出在3倍以上,则会发生光吸收引起的晶体破坏。因此,由于即使出射面附近的个别控制的长度在元件长度的一半以上,也不会获得输出光的增大,故较为理想的是,其长度在元件长度的一半以下。
(实施例2)
下面就本发明的实施例2进行说明。本实施例中,对波长转换元件的出射面附近的SHG输出和SHG功率密度最大处的散热特性为良好的短波长光源进行说明。
图4是表示本发明的实施例2的短波长光源的概略结构的剖视图。本实施例的短波长光源,在波长转换元件401的传播方向上配置有多个珀尔贴元件411、412。本实施例的短波长光源,如图4所示,包括波长转换元件401、第1保持部413、第2保持部414和控制部415。第1保持部413具有夹在两层散热剂408之间的铜板410,和通过控制铜板410的温度对配置在铜板410上部的波长转换元件401的一部分进行温度控制的珀尔贴元件411,第2保持部414具有夹在两层散热剂409之间的铜板410,和通过控制铜板410的温度对配置在铜板410上部的波长转换元件401的剩余部分进行温度控制的珀尔贴元件412。第1保持部413的珀尔贴元件411和第2保持部414的珀尔贴元件412分别与控制部415连接,由控制部415控制温度。
本实施例的波长转换元件401,采用在Z板掺Mg的LiNbO3基板(Z-cut Mg-dopedLiNbO3 substrate)上形成多个周期状的极化反转区域402的元件。波长转换元件401的器件特性及器件结构,与上述实施例1相同,故省略说明。基波404使用波长为1064nm的光(Nd:YAG激光),可通过波长转换元件401而被波长转换为波长为532nm的绿色光(SHG)405。为了使波长转换元件401的固定,从入射面406到元件中间部使用导热率低的散热剂408,从元件中间部到出射面407的部分使用导热率高的散热剂409。
利用图4的本实施例的短波长光源,进行了SHG405的高输出特性的实验。若利用图4所示的短波长光源,则即使高谐波输出在1.5W以上,也不会发生2次方特性的恶化、输出的不稳定化和转换效率的下降,从而可以获得稳定的输出,高质量的射束轮廓。在绿色输出2W的高输出时,虽因基波404和高谐波(SHG)405的吸收而产生元件的温度分布,出射面附近高温化,但本实施例中可以通过在出射面附近使用导热率高的散热剂409,对传播方向上的温度分布进行补偿,使元件的温度在传播方向上保持一定。在绿色输出2.5W时,虽然在以往的光源中会发生转换效率的急剧下降,但通过配置导热率高的散热剂409进行散热,成功地抑制了转换效率的下降和输出下降。
(实施例3)
下面就本发明的实施例3进行说明。在上述的实施例2中,为了使从入射面附近到出射面附近产生的传播方向的温度分布保持一定,改变用来固定波长转换元件的散热剂的材料,但散热的方法并不限于此。在本实施例中,为了抑制波长转换元件的出射面附近的温度上升,减薄出射面附近的元件厚度,使散热状态保持良好。
图5是表示本发明的实施例3的短波长光源的概略结构的剖视图。本实施例的短波长光源,在波长转换元件501的传播方向上配置有多个珀尔贴元件511、512。本实施例的短波长光源,如图5所示,包括波长转换元件501、第1保持部513、第2保持部514和控制部515。第1保持部513具有夹在两层散热剂508之间的铜板510,和通过控制铜板510的温度对配置在铜板510上部的波长转换元件501的一部分进行温度控制的珀尔贴元件511,第2保持部514具有夹在两层散热剂509之间的铜板510,和通过控制铜板510的温度对配置在铜板510上部的波长转换元件501的剩余部分进行温度控制的珀尔贴元件512。第1保持部513的珀尔贴元件511和第2保持部514的珀尔贴元件512分别与控制部515连接,由控制部515控制温度。
本实施例的波长转换元件501,如图5所示,采用出射面507附近的元件厚度较薄的结构。这样,可使出射面507附近的散热状态保持良好,可以抑制波长转换元件501的出射面507附近的温度上升。
(实施例4)
下面就本发明的实施例4进行说明。在本实施例中,为了抑制波长转换元件的出射面附近的温度上升,使通过出射面附近的基波的路径靠近保持部,从而使散热状态保持良好。
图6(A)和(B)是表示本发明的实施例4的短波长光源的概略结构的剖视图。本实施例的短波长光源,在波长转换元件601的传播方向上配置有多个珀尔贴元件611、612。本实施例的短波长光源,如图6(A)和(B)所示,包括波长转换元件601、第1保持部613、第2保持部614和控制部615。第1保持部613具有夹在两层散热剂608之间的铜板610,和通过控制铜板610的温度对配置在铜板610上部的波长转换元件601的一部分进行温度控制的珀尔贴元件611,第2保持部614具有夹在两层散热剂609之间的铜板610,和通过控制铜板610的温度对配置在铜板610上部的波长转换元件601的剩余部分进行温度控制的珀尔贴元件612。第1保持部613的珀尔贴元件611和第2保持部614的珀尔贴元件612分别与控制部615连接,由控制部615控制温度。
图6(A)中,通过让基波604在SHG光的输出为1.5W以上且功率密度为最高的位置的基板表面处发生反射,可以使因吸收所发生的绿色光(SHG)605而产生的热散热,故可有效地抑制热分布。
图6(B)中,通过使基波604的入射位置,在SHG输出达到1.5W以上的高输出的出射面607附近,位于基板表面附近,可获得同样的散热效果,对抑制高输出时的转换效率和输出的下降较为有效。
(实施例5)
下面就本发明的实施例5进行说明。本实施例中,为了抑制波长转换元件的出射面附近的温度上升,扩大出射面附近的散热器(heat sink)的表面积,使散热状态处于良好状态。
图7是表示本发明的实施例5的短波长光源的概略结构的剖视图。本实施例的短波长光源,在波长转换元件701的传播方向上配置有多个珀尔贴元件711、712。本实施例的短波长光源,如图7所示,包括波长转换元件701、第1保持部715、第2保持部716和控制部717。第1保持部715具有夹在两层散热剂708之间的铜板710,通过控制铜板710的温度对配置在铜板710上部的波长转换元件701的一部分进行温度控制的珀尔贴元件711,和装有多个散热片(radiator fin)增大了表面积的散热器713,第2保持部716具有夹在两层散热剂709之间的铜板710,通过控制铜板710的温度对配置在铜板710上部的波长转换元件701的剩余部分进行温度控制的珀尔贴元件712,和装有多个散热片增大了表面积的散热器714。第1保持部715的珀尔贴元件711和第2保持部716的珀尔贴元件712分别与控制部717连接,由控制部717控制温度。
本实施例的短波长光源中,如图7所示,配置有用于散热的散热器713、714,从不发热的入射端一侧到元件中间部使用表面积较小的散热器713,在发热的出射面附近增大散热器714的表面积。由此,通过消解出射面附近的热的偏倚,使元件温度保持一定,可抑制转换效率的下降和输出下降。
(实施例6)
下面就本发明的实施例6进行说明。本实施例中,对通过加热不发生SHG功率恶化的部分,使其与波长转换元件的出射面附近SHG输出和SHG功率密度达到最大处的温度相符,从而抑制元件温度分布的短波长光源进行说明。
图8(A)是表示本发明的实施例6的短波长光源的概略结构的剖视图。本实施例的短波长光源,在波长转换元件801的不发生SHG功率恶化的部分配置加热器809。本实施例的短波长光源,如图8(A)所示,包括波长转换元件801,夹在两层散热剂之间的铜板808,通过加热铜板808对配置在铜板808上部的波长转换元件801的一部分进行加热的加热器809,和对加热器809的加热进行控制的加热器控制部813。
本实施例的波长转换元件801,采用在Z板掺Mg的LiNbO3基板上,形成多个周期状的极化反转区域802的元件。波长转换元件801的器件特性及器件结构,与上述实施例1相同,故省略说明。基波804使用波长为1064nm的光(Nd:YAG激光),可通过波长转换元件801而被波长转换为波长为532nm的绿色光(SHG)805。为了降低高输出时产生的以出射面附近为中心的温度分布,可在元件的出射面附近以外的位置,用加热器809进行加热。
利用图8(A)的本实施例的短波长光源,进行了SHG的高输出特性的实验。当设置在入射端面附近的加热器809不进行加热时,SHG输出1.5W以上时2次方特性发生恶化,出现了输出的不稳定和转换效率的下降。另一方面,若通过加热器809对元件进行加热,则可消解恶化的2次方特性,实现高转换效率,从而可获得高输出、且稳定的输出、高质量的射束轮廓。在绿色输出2.5W时,虽然在以往的光源中会发生急剧的转换效率下降,但通过加热器809的加热对元件入射端进行加热,可消解传播方向上产生的元件的温度分布,抑制转换效率的下降和输出下降,从而获得了稳定的输出特性。
另外,本实施例中,为了降低波长转换元件在光传播方向上产生的温度分布,在不发生SHG功率恶化的部分(不发生SHG吸收引起的温度上升的部分)设置加热器809进行加热,但加热方法并不限于此。例如,如图8(B)所示,可以向不发生SHG功率恶化的部分照射波长转换元件吸收的波长域的光(例如红外光)810来发热,从而消解波长转换元件整体的温度分布。温度分布的消解,可以通过调整照射光的强度来最优化。另外,红外光810的照射可以通过在波长转换元件801不发生SHG功率恶化的部分的上方配置红外线光源811,由红外线光源控制部812控制红外线光源811来实现。
P(恶化)的功率依存于SHG波长已由图9所示,在上述实施例1至6的短波长光源中,具体而言,SHG波长为500至550nm时,P(恶化)约为1.5W。此外,SHG波长为400至450nm时,P(恶化)约为0.2W。此外,SHG波长为340至400nm时,P(恶化)约为0.05W。
在上述实施例1至6的短波长光源中,作为波长转换元件采用的是形成有周期极化反转的Z板掺MgO的LiNbO3基板。除此之外,也可以是掺MgO的LiTaO3基板或化学计量组成(stoichiometric composition)同样的基板等。此外,除掺Mg的基板外,在掺In、Zn、Sc的基板中也会发生同样的现象,故可获得与上述实施例1至6同样的效果。
上述实施例1至6的短波长光源中,作为波长转换,在相位匹配波长为1200nm以下的基波的情况下特别有效。在上述实施例1至6中所说明的现象,由于是因发生的紫外线诱发的高谐波吸收热而引起的,因此在发生紫外光的波长区域显著地出现。即,本实施例,对产生作为基波和高谐波的和频的400nm以下的波长的1200nm以下的基波很有效。
可以确认,在基波功率为10W以上,或高谐波功率为3W以上时,紫外光发生引起的高谐波吸收很显著。因此,在这样的高功率的基波、高谐波发生时,上述实施例1至6的短波长光源很有效。
利用上述实施例1至6的短波长光源,可实现高亮度的激光图像形成装置。作为高亮度的激光图像形成装置,可以例举出,例如,用空间光调制元件调制高输出的激光,在屏幕上进行投射的背投型(rear projection type)的图像形成装置,或将高输出激光光源作为背光(back light)来利用的液晶电视。通过利用上述实施例1至6的短波长光源,可在高输出时实现稳定的输出特性,故可提供无影像恶化的高亮度且鲜明的影像。
另外,在上述实施例1至6中,是由于发热引起折射率上升,相位匹配条件发生偏移而使转换效率(输出)下降,但由于在因激光入射引起晶体内的折射率变化,相位匹配条件发生偏移而导致转换效率(输出)下降时,也可通过用温度控制方法来补偿相位匹配条件的偏移,从而抑制转换效率(输出)的下降,故可获得与上述实施例1至6同样的效果。
如上所述,本实施例1至6的短波长光源,包括将基波转换为第二谐波的由非线性光学材料构成的波长转换元件,和支撑波长转换元件的保持部(holder),波长转换元件包含基波入射的入射部,和射出第二谐波的出射部,通过采用波长转换元件的出射部附近至少一部分的指定区域具有较其它区域低的热阻的结构,使元件内的温度分布保持一定,其中,元件内的温度分布是因射入晶体内部的基波和波长转换后的高谐波相互作用产生的紫外光所引起的高谐波吸收热而产生的,从而具有维持从基波到高次谐波的变换效率,使光输出、束轮廓保持稳定,确保激光光源的可靠性的效果。
(实施例7)
下面就本发明的实施例7进行说明。首先,对本实施例的背景,即波长转换元件的输出不稳定性进行说明。图19表示以往的短波长光源的其它概略结构。图19的波长转换元件1001,是具有周期状的极化反转结构的体型的波长转换元件,在将基波1004转换为第二谐波(SHG)1005时,SHG1005的输出与基波1004的2次方成比例地增大。然而,当超过一定的SHG输出,则与图12所示的波长转换元件1201同样,会观察到SHG1005的输出从2次方特性显著下降的现象。
研究该下降的原因可知,与图12的波长转换元件1201的情况同样,波长转换元件1001将基波1004转换为SHG1005时,会产生基波1004和SHG1005的和频即THG,由于该THG产生的影响,发生波长转换元件1001的SHG光的吸收,因该吸收引起的发热而使波长转换元件1001的相位匹配条件发生混乱。因此,显而易见,在THG的强度超过一定值的区域,因SHG1005的吸收而产生的发热较为显著,相位匹配条件不再成立,波长转换元件1001的转换效率下降。
本实施例基于上述的现象进行了设计,提出了一种对SHG吸收引起的发热的主要原因进行补偿的极化反转的周期结构。图13(A)是表示本发明的实施例7的短波长光源的概略结构的剖视图。
在本实施例的短波长光源中,如图13(A)所示,基波2104从波长转换元件2101的入射面2106射入,通过周期状的极化反转区域2102,将基波2104转换为SHG2105,从出射面2107射出SHG2105。
图13(B)表示从图13(A)的波长转换元件2101的入射面2106起的距离和SHG输出的关系。如图13(B)所示,在波长转换元件2101的内部,SHG2105的强度逐渐增大,在出射面2107达到最大。本实施例的短波长光源,如图13(A)所示,在SHG2105的强度超过指定值的区域,即区域2中,采用短于区域1的极化反转周期2103的周期结构。具体而言,在SHG2105的强度为指定值以下的区域1,极化反转周期2103为周期Λ1,在SHG2105的强度超过指定值的区域2,极化反转周期2103为小于周期Λ1的Λ2。
即,本实施例的短波长光源,在使SHG输出为一定值的Pshg的情况下,在波长转换元件2101内部SHG2105的强度Pshg>P(恶化)的区域,将波长转换元件2101的极化反转周期结构设为与其它部分不同的较短的周期结构。
基于入射基波的功率、基波的波束直径、波束质量的值,波长转换元件2101内部的SHG2105的强度分布,如图13(B)所示,随着向出射面2107靠近而逐渐增加。基于该特性,波长转换元件2101的极化反转周期2103,在波长转换元件2101的内部SHG2105的强度超过P(恶化)的区域2中,必须被设计成短于区域1的周期的周期。即,若设未超过P(恶化)的区域1的周期为Λ1,超过P(恶化)的区域2的周期为Λ2,则设计为满足Λ1>Λ2的关系。
对在具有周期状的极化反转结构的掺MgO的LiNbO3的波长转换元件2101中,将波长为1064nm的基波2104转换为波长为532nm的SHG2105的情况进行说明。若设基波2104的输入为10W,基波2104的聚光直径为φ33μm,基波2104的波束质量为基本理想状态的高斯分布,当波长转换元件2101的长度为10mm时,在从元件的入射面2106前进约7mm之处,SHG2105的强度超过1.5W。因此,作为波长转换元件2101的最佳结构,通过在元件长度的出射面2107附近的3mm处,使极化反转周期2103稍微缩短一些,可以大幅度地增大波长转换元件2101的转换效率。具体而言,将区域1的极化反转周期Λ1设定为6.97μm,将区域2的极化反转周期Λ2设定为6.969μm。
在短波长光源的最大输出确定后,所需的最大输出超过P(恶化)值的情况下,本实施例的结构则变得很重要。在短波长光源中,可通过基波光源的功率、波束质量求取最大输出所需要的波长转换元件的长度、转换效率、基波功率。基于该条件,求取产生最大输出时的波长转换元件内部的SHG强度分布,决定波长转换元件的极化反转周期结构。在波长转换元件内部,SHG强度超过P(恶化)的区域中,通过使极化反转周期结构为周期短于其它部分的结构,以补偿吸收引起的温度变化的影响,从而谋求转换效率的改善。
在本实施例中,是将区域2的极化反转周期结构的周期设为一定值,但较为理想的是,使其随着向出射面靠近而减小。这是由于,如图13(B)所示,波长转换元件内部的SHG强度随着向出射面靠近而逐渐增大,故元件内部的温度分布也随着向出射面靠近而上升。例如,如图14所示,若划分为3个区域改变周期,则与图13(A)所示的区域2中周期一定的波长转换元件相比,高输出时的输出下降进一步减少。
此外,如图15所示,区域2的极化反转周期结构的周期,随着向出射面靠近而逐渐减少的结构更为理想。由于波长转换元件内部的SHG的强度随着向出射面靠近而逐渐增大,元件内部的温度分布也随着向出射面靠近而上升,为了完全抑制这种影响,极化反转周期随着向出射面靠近而逐渐减小的结构较为理想。
在本实施例的短波长光源中,区域2的长度在全长的1/2以下较为理想。在体型的波长转换元件时,变化效率为最大的基波的聚光特性是,聚光点位于晶体的中央,基波的波束直径在晶体的两端达到最大。此时,元件内的SHG的强度,相对于元件中央部的功率,在出射部约为其3倍。可知,对于转换效率恶化的P(恶化),若最大输出在3倍以上,则会发生光吸收引起的晶体破坏。因此,由于即使区域2的长度在元件长度的一半以上,也不会使输出光增大,故较为理想的是,区域2的长度在元件长度的一半以下。
(实施例8)
下面就本发明的实施例8进行说明。图16是表示本发明的实施例8的短波长光源的概略结构的剖视图。
在本实施例的短波长光源中,如图16所示,基波2504从波长转换元件2501的入射面2506射入,通过周期状的极化反转区域2502,将基波2504转换为SHG2505,从出射面2507射出SHG2505。尤其是,在本实施例中,不同于上述实施例7所述那样基波2504只通过波长转换元件内一次的结构,而是形成通过由反射镜2508a、2508b折返基波2504,使其两次通过周期极化反转结构的结构。反射镜2508a、2508b的各自的反射方向,可由镜控制部2509来控制。
基波2504第一次通过波长转换元件2501时和第二次通过时的距离充分地分开,高输出时的吸收等引起的温度上升不会相互影响。图16中,在被反射镜2508a反射前的基波2504第一次通过的出射面2507附近,和被反射镜2508b反射后,基波2504第二次通过波长转换元件2501的出射面2507附近,SHG2505的强度都达到最大。本实施例的短波长光源,与上述的实施例7同样,在SHG2505的强度超过指定值的区域,即区域2中,采用短于区域1的极化反转周期的周期结构。
即,波长转换元件2501的极化反转周期2503,在波长转换元件2501的内部SHG2505的强度超过P(恶化)的区域2中,周期被设计为短于区域1中周期。即,若将在基波第一次通过时和第二次通过时都未超过P(恶化)的区域1的周期设为Λ1,超过P(恶化)的区域2的周期设为Λ2,则设计为满足Λ1>Λ2的值。
在本实施例的波长转换元件2501中,在将波长1064nm的基波2504转换为波长532nm的SHG2505时,若使基波2504的输入为10W、基波2504的聚光直径为φ33μm、基波2504的波束质量为基本理想状态的高斯分布,则在波长转换元件2501的长度为10mm时,基波第一次通过时从元件的入射面2506前进大约7mm之处,SHG2505的强度超过1.5W。因此,作为波长转换元件2501的最佳结构,通过在元件长度的出射面2507附近的3mm处,使极化反转周期稍微缩短一些,可以大幅度地增大波长转换元件2501的转换效率。基波2504第二次通过时,由于基波2504的输入功率因泵耗损(pumpdepletion)及包含反射镜2508a、2508b的光学系统的损耗而减小,所以SHG强度超过1.5W的区域向出射面2507侧移动。与基波2504第一次通过波长转换元件时同样,通过缩短元件的出射面2507附近的周期,也可大幅度增大第二次通过时的波长转换元件2501的转换效率。由此,可以抑制转换效率的恶化,用10W的基波输入,获得相对于图3的输出特性大约2倍的SHG输出。
虽然本实施例中,在基波第一次通过时和第二次通过时,区域2的极化反转周期结构的周期都为一定值,但较为理想的是,使其随着向出射面靠近而减小。这是由于,如图13(B)所示,波长转换元件内部的SHG强度随着向出射面靠近而逐渐增大,故元件内部的温度分布也随着向出射面靠近而上升。例如,如图17所示,若划分为3个区域改变周期,则与区域2中周期一定的波长转换元件相比,高输出时的输出下降进一步减少。
此外,如图18所示,区域2的极化反转周期结构的周期随着向出射面靠近而逐渐减少的结构更为理想的。由于波长转换元件内部的SHG的强度随着向出射面靠近而逐渐增大,元件内部的温度分布也随着向出射面靠近而上升,故为了完全抑制该影响,极化反转周期随着向出射面靠近而逐渐减小的结构较为理想。
在上述实施例7和8的短波长光源中,区域2的长度在全长的1/2以下较为理想。在体型的波长转换元件时,变化效率为最大的基波的聚光特性是,聚光点位于晶体的中央,基波的波束直径在晶体的两端达到最大。此时,元件内的SHG的强度,相对于元件中央部的功率,在出射部约为其3倍。可知,对于转换效率恶化的P(恶化),若最大输出在3倍以上,则会发生光吸收引起的晶体破坏。因此,由于即使区域2的长度在元件长度的一半以上,也不会使输出光增大,故较为理想的是,区域2的长度在元件长度的一半以下。
另外,图9示意了P(恶化)的功率依存于SHG波长,在上述实施例7和8的短波长光源中,具体而言,SHG波长为500至550nm时,P(恶化)约为1.5W。当射出该波长的SHG的情况下,在波长转换元件内部的SHG功率超过1.5W的区域内,通过将极化反转周期设定为短于其它部分,可以实现转换效率的增大。此外,SHG波长为400至450nm时,P(恶化)约为0.2W。此外,SHG波长为340至400nm时,P(恶化)约为0.05W。
在上述实施例7和8的短波长光源中,作为波长转换元件,采用的是形成有周期极化反转的Z板掺MgO的LiNbO3基板。除此之外,也可以是掺MgO的LiTaO3基板或化学计量组成同样的基板等。此外,除掺Mg的基板外,在掺In、Zn、Sc的基板中也会发生同样的现象,故可获得与上述实施例7和8同样的效果。
上述实施例7和8的短波长光源中,作为波长转换,在相位匹配波长为1200nm以下的基波的情况下特别有效。在上述实施例7和8中所说明的现象,由于是因发生的紫外线诱发的高谐波吸收热而引起的,因此在发生紫外光的波长区域显著地出现。即,本实施例,对产生作为基波和高谐波的和频的400nm以下的波长的1200nm以下的基波很有效。
可以确认,在基波功率为10W以上,或高谐波功率为3W以上时,紫外光发生引起的高谐波吸收很显著。因此,在这样的高功率的基波、高谐波发生时,上述实施例7和8的短波长光源很有效。
利用上述实施例7和8的短波长光源,可实现高亮度的激光图像形成装置。作为高亮度的激光图像形成装置,可以例举出,例如,用空间光调制元件调制高输出的激光、在屏幕上进行投射的背投型的图像形成装置,或将高输出激光光源作为背光来利用的液晶电视。通过利用上述实施例7和8的短波长光源,可在高输出时实现稳定的输出特性,故可提供无影像恶化的高亮度且鲜明的影像。
另外,在上述实施例7和8中,是由于发热引起折射率上升,相位匹配条件发生偏移而使转换效率(输出)下降,但由于在因激光入射引起晶体内的折射率变化,相位匹配条件发生偏移导致转换效率(输出)下降时,也可通过用极化反转周期来补偿相位匹配条件的偏移,从而抑制转换效率(输出)的下降,故可获得与上述实施例7和8同样的效果。
如上所述,本实施例7和8的短波长光源包括将基波转换为第二谐波的波长转换元件,波长转换元件由具有周期状的极化反转结构的体块非线性光学材料构成,波长转换元件包含基波入射的入射部,和高谐波射出的出射部,通过采用波长转换元件的出射部附近至少一部分区域的极化反转结构的周期变化的结构,利用因射入晶体内部的基波和波长转换后的高谐波相互作用产生的紫外光所引起的高谐波吸收热而产生的元件内的温度分布,来抑制从基波到高谐波转换效率的下降,从而具有使光输出、束轮廓保持稳定,确保高输出激光光源的可靠性的效果。
(实施例9)
下面就本发明的实施例9进行说明。首先,对本实施例的背景,即波长转换元件的转换效率下降和输出的不稳定性进行说明。一般而言,体型波长转换元件的波长转换的转换效率较低,以往,是以在固体激光器的谐振器内部插入波长转换元件的内部谐振器型为主流。与此相对,通过利用具有周期状的极化反转结构的Mg:LiNbO3、MgO:LiTaO3或KTiOPO4等的高非线性光学材料,可实现以单程(single pass)对基波进行波长转换的结构。为了提高单程的波长转换的效率,要求基波光源、聚光光学系统具有特有的特性。
基波光源需要的是,良好的波束质量和窄带域的波长频谱。波束质量用根据聚光特性测量的M2来表示,被求出接近高斯分布的特性。在与高斯分布一致的情况下,M2=1,而高效率转换需要M2<1.2的特性。虽然波束直径接近正圆,波长频谱依存于元件长度,但需要0.1nm以下的窄带域性(narrow band characteristic)。此外,作为聚光特性,在相互作用长度的中心具有聚光点,并满足用以下(1)式表示的聚光特性时,转换效率达到最大,
L×λ/(2π×n×ω02)=2.84         ……(1)。
其中,L为波长转换元件的长度,ω0为1/e2(e为自然对数的底)聚光点半径,λ为基波波长,n为对基波的折射率。
在上述的条件下,可实现高效率的波长转换,通过单程转换,2W的输出以超过30%的转换效率而获得。在这样的结构中,当在图12所示的具有周期状极化反转结构的体型波长转换元件1201中,将基波1204转换为第二谐波(SHG)1205时,SHG输出与基波的2次方成比例地增大。然而,当超过一定的SHG输出,则会观察到SHG的输出从2次方特性显著下降的现象。
研究该下降的原因可知,产生了基波1204和SHG1205的和频即THG,由于该THG产生的影响而发生SHG光的吸收,因该吸收导致的发热使相位匹配条件发生混乱。
进行更为详细的研究后,其结果,通过实验和分析发现,由于SHG光的吸收与THG的强度成比例地增大,因此在SHG光的波束路径(beam path)上的发热量,可用SHG和THG的功率密度的乘积来求取。其结果如图24(A)和(B)所示。显而易见,在SHG元件内部,因THG引起的吸收而产生的发热量的最大值,位于比元件中央部靠近出射端一侧的位置,发热集中在元件长为L时距入射部的L/2至2L/3的位置上。
基于上述的实验结果,在本实施例中,提出了一种减少因波长转换元件内部的发热引起的温度分布而发生的转换效率下降、输出下降及晶体损伤的结构。
本实施例提出了一种在体型的波长转换元件的单程转换中,在转换效率为最大的最佳聚光设计的光学系统中,缓和波长转换元件内部发生的热集中的结构,或利用热分布抑制转换效率下降的结构。与以往结构不同之处在于,未涉及在体型的波长转换元件的最佳结构下的现象,且未考虑由THG引起的SHG光的吸收而导致的发热现象。此外,根据实验可知,SHG转换效率恶化的SHG的功率,如图9所示,具有非常强的波长依存性。
本实施例基于上述的现象进行了设计,是为了对因SHG的吸收产生的发热,通过利用散热结构的设计、温度控制的改良、或对未发热部分的加热,来降低波长转换元件的温度分布,维持转换效率而提出的。
图20是本发明的实施例9的短波长光源的概略结构的示意图。本实施例的短波长光源,在波长转换元件3101的传播方向上配置有多个珀尔贴元件3110、3111。本实施例的短波长光源,如图20所示,包括波长转换元件3101、第1保持部3112、第2保持部3113和控制部3114。第1保持部3112具有夹在两层散热剂3108之间的铜板3109,和通过控制铜板3109的温度对配置在铜板3109上部的波长转换元件3101的一部分进行温度控制的珀尔贴元件3110,第2保持部3113具有夹在两层散热剂3108之间的铜板3109,和通过控制铜板3109的温度对配置在铜板3109上部的波长转换元件3101的剩余部分进行温度控制的珀尔贴元件3111。第1保持部3112的珀尔贴元件3110和第2保持部3113的珀尔贴元件3111分别与控制部3114连接,由控制部3114控制温度。
在本实施例的短波长光源中,波长转换元件3101中形成有多个周期状的极化反转区域3102。构成波长转换元件3101的基板厚度为1mm。极化反转区域3102沿着基板晶体的Y轴形成。极化反转区域3102,从基板的+Z面朝向-Z面侧而形成。极化反转区域3102通过电场施加法制作而成。极化反转周期3103为6.97μm(Λ),可将波长1064nm的光(Nd:YAG激光)波长转换为波长为532nm的绿色光。作为用于控制波长转换元件3101的温度的温控元件,采用珀尔贴元件3110、3111。在本实施例中,珀尔贴元件3110、珀尔贴元件3111排列配置在光的传播方向上,可以分别独立的温度进行控制。
在本实施例的波长转换元件3101中,将波长1064nm的基波3104转换为波长532nm的SHG3105时,若使基波3104的输入为10W、基波3104的聚光直径为φ33μm、基波3104的波束质量为基本理想状态的高斯分布,则波长转换元件3101的长度为10mm时,在离波长转换元件3101的入射面31065至6mm之处,因THG引起的吸收而产生的发热量达到最大值,以该部分为中心元件温度上升,出现温度分布。因此,作为波长转换元件3101的温度控制,在从元件的中心到出射面3107附近的部分,就在邻近处设置进行温度控制的珀尔贴元件,通过控制温度,可以抑制波长转换元件转换效率的下降。
本实施例中,作为波长转换元件采用了10mm的元件,但并不限于此。当元件长为L,基波的聚光点位置在L/2处时,因THG引起的SHG吸收,发热集中在离入射面L/2至2L/3的位置处。通过进行与本实施例同样的温度控制,以抑制以该位置为中心的温度分布,从而可以抑制转换效率的下降和输出下降。
本实施例中,为了避免在传播方向上产生温度分布,在温度上升显著出现的出射面附近配置一个珀尔贴元件来进行温度控制,但也可以在产生温度分布的部位配置两个以上珀尔贴元件。例如,如图21所示,在发热集中的离波长转换元件的入射侧5至6mm的位置和出射面附近位置,配合传播方向的温度分布配置多个珀尔贴元件以使元件温度一定。珀尔贴元件的配置方法,只要能够抑制温度分布,并不限于上述的配置方法。
(实施例10)
下面就本发明的实施例10进行说明。本实施例,是通过缩短因发热而导致相位匹配条件偏移的部分的极化反转周期,对相位匹配条件进行补偿,从而抑制转换效率的下降。图22是本发明的实施例10的短波长光源的概略结构的示意图。
在本实施例的短波长光源中,如图22所示,基波3404从波长转换元件3401的入射面3406入射,通过周期状的极化反转区域3402,将基波3404转换为SHG3405后,从出射面3407射出SHG3405。
本发明的短波长光源,如图24(B)所示,当波长转换元件3401的长度为10mm时,在距元件的入射面34065至6mm之处,因THG引起的SHG吸收而产生的发热量达到最大值,以该部分为中心元件温度上升,出现温度分布,因此,在发热峰值位置,即区域2中,采用短于区域1的极化反转周期的周期结构。即,本实施例中,在波长转换元件内部因SHG吸收引起的温度上升而导致折射率增加的区域内,将波长转换元件的极化反转周期结构设为与其它部分不同的较短的周期结构。
具体而言,若设不发热也没有折射率变化的区域(区域1、区域3)的周期为Λ1,因发热而使折射率增大的区域(区域2)的周期为Λ2,则将其设计成满足Λ1>Λ2的关系。在此,对在具有周期状的极化反转结构的掺MgO的LiNbO3的波长转换元件中,将波长1064nm的基波3404转换为波长532nm的SHG3405的情况进行说明。若使基波3404的输入为10W、基波3404的聚光直径为φ33μm、基波3404的波束质量为基本理想状态的高斯分布,则波长转换元件3401的长度为10mm时,在距元件的入射面34065至6mm之处,因THG引起的吸收而产生的发热量达到最大值,以该部分为中心元件温度上升,出现温度分布。因此,作为波长转换元件的最佳结构,通过在距元件的入射面34065至6mm之处,使极化反转周期稍许缩短一些,可以大幅度地增大波长转换元件的转换效率。具体而言,将区域1、3的周期设定为6.97μm,将区域2的极化反转周期设定为6.96μm。在波长转换元件内部,因THG引起的SHG吸收而发热,在折射率增大的区域内,通过使极化反转周期结构为周期短于其它部分的结构,来补偿吸收引起的温度变化的影响,从而改善转换效率。
本实施例中,作为波长转换元件采用了10mm的元件,但并不限于此。当元件长为L,基波的聚光点位置在L/2时,因THG引起的SHG吸收,发热集中在距入射面的L/2至2L/3的位置处。通过与本实施例同样地缩短极化反转周期,以补偿以该位置为中心的温度分布,从而可以抑制转换效率的下降和输出下降。
在本实施例中,是将区域2的极化反转周期结构的周期设为一定值,但较为理想的是,使其以发热的峰值位置为中心而增加。如图24(B)所示,元件长为10mm时,在距入射面5至6mm的位置,发热达到峰值,该部分的温度上升最高。因此,较为理想的结构是,例如,如图23所示,区域2的极化反转周期结构的周期,为完全补偿元件内部的温度分布而以发热峰值位置为中心逐渐增大。
在上述实施例9和10的短波长光源中,作为波长转换元件,采用的是形成有周期极化反转的Z板掺MgO的LiNbO3基板。除此之外,也可以是掺MgO的LiTaO3基板或化学计量组成同样的基板等。此外,除掺Mg的基板外,在掺In、Zn、Sc的基板中也会发生同样的现象,故可获得与上述实施例9和10同样的效果。
上述实施例9和10的短波长光源中,作为波长转换,在相位匹配波长为1200nm以下的基波的情况下特别有效。在上述实施例9和10中所说明的现象,由于是因发生的紫外线诱发的高谐波吸收热而引起的,因此在发生紫外光的波长区域显著地出现。即,本实施例,对产生作为基波和高谐波的和频的400nm以下的波长的1200nm以下的基波很有效。
可以确认,在基波功率为10W以上,或高谐波功率为3W以上时,紫外光发生所引起的高谐波吸收很显著。因此,在这样的高功率的基波、高谐波发生时,上述实施例9和10的短波长光源很有效。
利用上述实施例9和10的短波长光源,可实现高亮度的激光图像形成装置。作为高亮度的激光图像形成装置,可以例举出,例如,用空间光调制元件调制高输出的激光、在屏幕上进行投射的背投型的图像形成装置,或或将高输出激光光源作为背光来利用的液晶电视。通过利用上述实施例9和10的短波长光源,可在高输出时实现稳定的输出特性,故可提供无影像恶化的高亮度且鲜明的影像。
另外,在上述实施例9和10中,是由于发热引起折射率上升,相位匹配条件发生偏移而使转换效率(输出)下降,但由于在因激光入射引起晶体内的折射率变化,相位匹配条件发生偏移而导致转换效率(输出)下降时,也可通过用极化反转周期和温度控制方法来补偿相位匹配条件的偏移,从而抑制转换效率(输出)的下降,故可获得与上述实施例9和10同样的效果。
根据上述的各实施例,对本发明进行总结如下。即,本发明提供一种短波长光源,包括,具有基波入射的入射面和高谐波射出的出射面,将上述基波转换为上述高谐波的波长转换元件,和保持上述波长转换元件的保持部,上述波长转换元件,在作为上述波长转换元件的上述出射面一侧的部分区域的指定区域,上述波长转换元件进行波长转换时因上述高谐波的吸收引起的发热而导致的上述基波和上述高谐波之间的相位匹配条件的变动得以抑制。
在上述短波长光源中,由于即使在波长转换元件的指定区域中因高谐波的吸收产生发热时,因该发热引起的基波和谐波之间的相位匹配条件的变动也可得到抑制,故可以谋求高谐波输出的稳定化。
上述短波长光源中,较为理想的是,上述指定区域和上述保持部之间的热阻,低于上述指定区域以外的其它区域和上述保持部之间的热阻。
此时,由于可使来自指定区域的发热高效率地散热,故可以更为有效地抑制相位匹配条件的变动。
较为理想的是,上述保持部具有变更上述指定区域的温度的第1温度变更部件,上述第1温度变更部件变更上述指定区域的温度,以使上述指定区域的温度与上述指定区域以外的其它区域的温度基本上相同。
此时,由于可使波长转换元件的温度分布保持均匀,故可抑制指定区域中的相位匹配条件的变动。
较为理想的是,上述高谐波的光强度沿着从上述波长转换元件的上述入射面朝向上述出射面的方向增加,上述指定区域为从上述高谐波的光强度超过指定值的位置起到上述出射面之间的区域,并且较为理想的是,上述高谐波的波长为500至550nm,上述指定值为1.5W,上述高谐波的波长为400至450nm,上述指定值为0.2W,或者,上述高谐波的波长为340至400nm,上述指定值为0.05W。
此时,由于可以正确把握指定区域的位置,故可进一步有效地抑制指定区域中的相位匹配条件的变动。
较为理想的是,上述指定区域的长度在上述波长转换元件长度的二分之一以下。
此时,不会导致波长转换元件的破损,可以改善高谐波的输出,使之达到最大值。
较为理想的是,上述保持部还具有变更上述指定区域以外的其它区域的温度的第2温度变更部件,上述指定区域和上述第1温度变更部件之间的热阻θ1与上述指定区域以外的其它区域和上述第2温度变更部件之间的热阻θ2,满足θ1<θ2的关系。
此时,由于可使来自指定区域的发热高效率地散热,故可以更为有效地抑制相位匹配条件的变动。
较为理想的是,上述波长转换元件内部的基波的波束路径和上述指定区域的靠上述保持部一侧的表面之间的距离,短于上述基波的波束路径和上述指定区域以外的其它区域的靠上述保持部一侧的表面之间的距离,并且较为理想的是,上述基波的波束通过上述指定区域的靠上述保持部一侧的表面附近,或者,上述基波的波束被上述指定区域或上述指定区域附近的区域的靠上述保持部一侧的表面反射。
此时,由于可使来自指定区域的发热高效率地从保持部一侧散热,故可更为有效地抑制相位匹配条件的变动。
较为理想的是,上述指定区域的厚度薄于上述指定区域以外的其它区域的厚度。
此时,由于可以缓和指定区域的温度上升,故可更为有效地抑制相位匹配条件的变动。
较为理想的是,上述第1温度变更部件,是使上述高谐波的吸收引起的来自上述指定区域的发热从自身的表面散热的第1散热部件,上述第2温度变更部件,是使上述高谐波的吸收引起的来自上述指定区域以外的其它区域的发热从自身的表面散热的第2散热部件,上述第1散热部件的表面积大于上述第2散热部件的表面积。
此时,由于可使来自指定区域的发热高效率地散热,故可更为有效地抑制相位匹配条件的变动。
上述短波长光源较为理想的是,还包括加热上述指定区域以外的其它区域的加热部,上述加热部,加热上述指定区域以外的其它区域,以使上述指定区域以外的其它区域的温度与上述指定区域的温度基本相同。
此时,由于可使波长转换元件的温度分布保持均匀,故可抑制指定区域中的相位匹配条件的变动。
较为理想的是,上述指定区域的极化反转周期短于上述指定区域以外的其它区域的极化反转周期。
此时,即使在波长转换元件的指定区域中因高谐波的吸收而产生发热时,也由于将指定区域的极化反转周期设成短于指定区域以外的其它区域的极化反转周期,故可抑制因该发热引起的相位匹配条件的变动。
较为理想的是,上述指定区域的极化反转周期沿着从上述波长转换元件的上述入射面朝向上述出射面的方向逐渐缩短。
此时,由于极化反转周期配合高谐波的光强度的上升而缩短,故可更为有效地抑制相位匹配条件的变动。
较为理想的是,上述指定区域的极化反转周期根据上述指定区域的温度分布而设定。
此时,由于极化反转周期按照指定区域的温度分布而缩短,故可设定适合各温度的极化反转周期。因此,可以更为有效地抑制相位匹配条件的变动。
上述短波长光源较为理想的是,还包括将从基波光源射出的基波射入上述波长转换元件,并将上述基波聚光在上述波长转换元件内部的光学系统,上述指定区域,位于基于上述光学系统的上述基波的聚光点附近,且位于上述聚光点靠上述出射面的一侧。
此时,由于可以根据基波的聚光点位置正确地把握指定区域,故可进一步有效地抑制指定区域中的相位匹配条件的变动。
较为理想的是,上述指定区域的极化反转周期,被设定成沿着从上述指定区域的中心朝向上述波长转换元件的上述入射面和上述出射面的各方向逐渐缩短。
此时,由于极化反转周期配合高谐波的光强度的上升而缩短,故可更为有效地抑制相位匹配条件的变动。
较为理想的是,上述基波的波束强度分布近似于高斯分布,上述波长转换元件的长度L、上述聚光点的半径ω0、上述基波的波长λ和上述波长转换元件对上述基波的折射率n,当实质上满足以下关系时,
L×λ/(2π×n×ω02)=2.84
上述指定区域,位于从上述入射面出发向上述出射面前进L/2至2L/3的位置。
此时,可使从基波到高谐波的转换效率为最大,并可实现高谐波输出的稳定化。
较为理想的是,上述波长转换元件为添加了Mg、In、Zn、Sc中的至少其中之一的LiTa(1-x)NbxO3,其中0≤x≤1。
此时,即使在波长转换元件采用添加了Mg、In、Zn、Sc中的至少其中之一的LiTa(1-x)NbxO3(0≤x≤1)的情况下,也可抑制因高谐波的吸收引起的发热而导致的相位匹配条件的变动,实现高谐波输出的稳定化。
本发明还提供一种激光图像形成装置,包括上述的短波长光源和调制从上述短波长光源射出的光的空间光调制元件。
在上述激光图像形成装置中,由于可实现短波长光源射出的光的输出稳定化,空间光调制元件利用该光进行空间调制来形成图像,故可以改善所形成的图像的精度。
产业上的利用可能性
本发明所涉及的短波长光源和激光图像形成装置,可维持高输出时从基波到高谐波的转换效率,稳定地输出经过了波长转换的高输出的高谐波,作为输出短波长的光的短波长光源及使用该短波长光源的激光图像形成装置,很有实用价值。

短波长光源和激光图像形成装置.pdf_第1页
第1页 / 共52页
短波长光源和激光图像形成装置.pdf_第2页
第2页 / 共52页
短波长光源和激光图像形成装置.pdf_第3页
第3页 / 共52页
点击查看更多>>
资源描述

《短波长光源和激光图像形成装置.pdf》由会员分享,可在线阅读,更多相关《短波长光源和激光图像形成装置.pdf(52页珍藏版)》请在专利查询网上搜索。

本发明提供一种短波长光源,包括具有基波入射的入射面和高谐波射出的出射面、将上述基波转换为上述高谐波的波长转换元件,和保持上述波长转换元件的保持部。上述波长转换元件,在作为上述波长转换元件的上述出射面一侧的部分区域的指定区域,上述波长转换元件进行波长转换时因上述高谐波的吸收引起的发热而导致的上述基波和上述高谐波之间的相位匹配条件的变动得以抑制。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 光学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1