稀土-铁-硼型磁体用原料粉末和稀土-铁-硼型磁体的制造方法.pdf

上传人:1** 文档编号:1014728 上传时间:2018-03-25 格式:PDF 页数:10 大小:424.30KB
返回 下载 相关 举报
摘要
申请专利号:

CN99800997.0

申请日:

1999.05.18

公开号:

CN1272946A

公开日:

2000.11.08

当前法律状态:

授权

有效性:

有权

法律详情:

发明专利公报更正号牌文件类型代码=1608号牌文件序号=181卷=33号=11IPC(主分类)=H01F0001060000更正项目=合同备案生效受让人误=日立金属三环礠材(南通)有限公司正=日立金属三环磁材(南通)有限公司|||专利实施许可合同备案的生效IPC(主分类):H01F 1/06合同备案号:2017990000034让与人:日立金属株式会社受让人:日立金属三环礠材(南通)有限公司发明名称:稀土-铁-硼型磁体用原料粉末和稀土-铁-硼型磁体的制造方法申请日:19990518申请公布日:20001108授权公告日:20031022许可种类:普通许可备案日期:20170209|||专利权人的姓名或者名称、地址的变更IPC(主分类):H01F 1/06变更事项:专利权人变更前:日立金属株式会社变更后:日立金属株式会社变更事项:地址变更前:日本东京变更后:日本东京都港区港南一丁目2番70号|||专利实施许可合同备案的生效IPC(主分类):H01F 1/06合同备案号:2014990000031让与人:日立金属株式会社受让人:宁波韵升股份有限公司发明名称:稀土-铁-硼型磁体用原料粉末和稀土-铁-硼型磁体的制造方法申请日:19990518申请公布日:20001108授权公告日:20031022许可种类:普通许可备案日期:20140114|||专利实施许可合同备案的生效IPC(主分类):H01F 1/06合同备案号:2013990000374让与人:日立金属株式会社受让人:北京京磁强磁材料有限公司发明名称:稀土-铁-硼型磁体用原料粉末和稀土-铁-硼型磁体的制造方法申请日:19990518申请公布日:20001108授权公告日:20031022许可种类:普通许可备案日期:20130703|||专利实施许可合同备案的生效IPC(主分类):H01F 1/06合同备案号:2013990000364让与人:日立金属株式会社受让人:北京中科三环高技术股份有限公司发明名称:稀土-铁-硼型磁体用原料粉末和稀土-铁-硼型磁体的制造方法申请日:19990518申请公布日:20001108授权公告日:20031022许可种类:普通许可备案日期:20130701|||专利实施许可合同备案的生效IPC(主分类):H01F 1/06合同备案号:2013990000365让与人:日立金属株式会社受让人:安泰科技股份有限公司发明名称:稀土-铁-硼型磁体用原料粉末和稀土-铁-硼型磁体的制造方法申请日:19990518申请公布日:20001108授权公告日:20031022许可种类:普通许可备案日期:20130701|||专利权的转移IPC(主分类):H01F 1/06变更事项:专利权人变更前权利人:株式会社新王磁材变更后权利人:日立金属株式会社变更事项:地址变更前权利人:日本大阪变更后权利人:日本东京登记生效日:20130529|||专利权人的姓名或者名称、地址的变更IPC(主分类):H01F 1/06变更事项:专利权人变更前:住友特殊金属株式会社变更后:株式会社新王磁材变更事项:地址变更前:日本大阪变更后:日本大阪|||授权|||公开

IPC分类号:

H01F1/06

主分类号:

H01F1/06

申请人:

住友特殊金属株式会社;

发明人:

金子裕治; 笹川泰英; 加濑克也; 桥川隆至; 武谷要

地址:

日本大阪

优先权:

1998.05.18 JP 153850/1998

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

段承恩

PDF下载: PDF下载
内容摘要

本发明的目的在于提供一种原材料合金粉末的制造方法,可以有效地用于R-Fe-B型烧结磁体剩料或次品的再生,同时仅留下主相晶粒,并且提供一种R-Fe-B型磁体的制造方法。对R-Fe-B型烧结磁体剩料或次品进行粉碎、酸洗和干燥,然后对此产物进行钙还原处理,对此产物清洗去除钙成分,可有效再生由有利于磁体性能的Nd2Fe14B主相系统组成的原材料合金粉末。通过向这种主相系统原材料合金粉末添加组成调节合金粉末,用于改善烧结和调节组成,制造烧结磁体,有助于制造具有优异磁性能的烧结磁体。

权利要求书

1: 一种R-Fe-B型磁体原材料粉末的制造方法,用于产生几乎仅 由Nd 2 Fe 14 B主相组成的R-Fe-B型合金粉末,包括以下步骤: 对R-Fe-B型烧结磁体的边角料和/或粉碎粉末进行酸洗; 对酸洗后的粉末进行钙还原。
2: 一种R-Fe-B型磁体原材料粉末的制造方法,用于产生几乎仅 由Nd 2 Fe 14 B主相组成的R-Fe-B型合金粉末,包括以下步骤: 对R-Fe-B型烧结磁体的边角料和/或粉碎粉末进行酸洗; 对酸洗后的粉末进行钙还原; 从还原反应产物中去除残留的钙成分。
3: 一种R-Fe-B型磁体原材料粉末的制造方法,用于产生几乎仅 由Nd 2 Fe 14 B主相组成的R-Fe-B型合金粉末,包括以下步骤: 对R-Fe-B型烧结磁体的边角料和/或粉碎粉末进行酸洗; 对酸洗后的粉末进行钙还原; 通过湿法清洗从还原反应产物中去除残留的钙成分。
4: 根据权利要求1、2或3的R-Fe-B型磁体原材料粉末的制造方 法,其中被处理的R-Fe-B型烧结磁体的边角料和/或粉碎粉末具有不 超过5mm的平均颗粒尺寸。
5: 根据权利要求1-3中任一项的R-Fe-B型磁体原材料粉末的制 造方法,其中用于酸洗的酸溶液的pH值是2.0-5.0。
6: 根据权利要求3的R-Fe-B型磁体原材料粉末的制造方法,其 中湿法清洗处理是使用pH值不超过11的稀释酸的步骤。
7: 一种R-Fe-B型磁体的制造方法,其中用于组成调节的合金粉 末添加于几乎仅由Nd 2 Fe 14 B主相组成并且由以下步骤获得的R-Fe-B 型合金粉末中: 对R-Fe-B型烧结磁体的边角料和/或粉碎粉末进行酸洗; 对酸洗后的粉末进行钙还原; 之后对这种混合物进行成型,烧结和热处理。
8: 一种R-Fe-B型磁体的制造方法,其中用于组成调节的合金粉 末添加于几乎仅由Nd 2 Fe 14 B主相组成并且由以下步骤获得的R-Fe-B 型合金粉末中: 对R-Fe-B型烧结磁体的边角料和/或粉碎粉末进行酸洗; 对酸洗后的粉末进行钙还原; 从还原反应产物中去除残留的钙成分; 之后对这种混合物进行成型,烧结和热处理。
9: 根据权利要求7或8的R-Fe-B型磁体的制造方法,其中用于 组成调节的合金粉末的组成是13-45at%的R、不多于12at%的B、余 量是作为主要成分的Fe。
10: 根据权利要求7或8的R-Fe-B型磁体的制造方法,其中仅由 主相组成的合金粉末和用于组成调节的合金粉末的混合比例(wt%)在 10∶90和90∶10之间。

说明书


稀土-铁-硼型磁体用原料粉末和 稀土-铁-硼型磁体的制造方法

    【技术领域】

    本发明涉及利用稀土-铁-硼(R-Fe-B)磁体、尤其是边角料、剩料和次品的再生,获得R-Fe-B型烧结磁体合金粉末的制造方法,用于获取具有优异磁性能的R-Fe-B型磁体。特别是涉及用于制造具有优异磁性能的烧结磁体的R-Fe-B型磁体原材料粉末的制造方法,通过对烧结磁体剩料或烧结磁体次品进行粉碎、酸洗和干燥,然后对此产物进行钙还原,对此产物清洗去除钙成分,向如此获得的以Nd2Fe14B主相为基的合金粉末添加组成调节合金粉末,由此制造烧结磁体,并且涉及R-Fe-B型磁体的制造方法。

    背景技术

    通常,R-Fe-B型烧结磁体由Nd2Fe14B主相和作为晶界相的富R相和富B相组成。已经进行了各种研究并且做出了增加Nd2Fe14B主相的努力,这影响到磁性能。

    同时,R-Fe-B型烧结磁体在烧结和磁体组装过程中,可能发生尺寸改变、开裂和形变,其次品率可能高达10%,这是降低磁体成本的主要障碍。

    已知的稀土磁体剩料和次品再生方法包括湿法冶金工艺,其中上述磁体全部被化学溶解,从溶液中提取稀土成分;还包括称为熔炼的干法冶金工艺,其中烧结磁体边角料、磁体次品等被熔化制成R-Fe-B型合金,这种合金重新用做原材料;还有一种方法其中烧结磁体边角料或次品被重新用做母合金用于熔化。

    日本专利申请公开昭58-049631中也提出一种稀土磁体的再生方法,其中次品磁体中的氧和碳杂质成分与钙或Ca(OH)2混合,对混合物进行钙还原脱碳,去除氧和碳,在日本专利申请公开昭61-153201,首先通过在脱氢气氛中的热处理去除碳,之后与钙进行直接还原去除氧。

    上述湿法冶金工艺是传统的再生方法,在其涉及复杂工序、主结构成分是稀土金属或相当昂贵的元素例如钴的R-Co基磁体的情况相当有效,但是在R-Fe-B型磁体的情况,由于磁体含约65%的不昂贵地铁,从成本观点来看这种工艺没有价值。

    同时,干法冶金工艺在熔炼过程中产生大量的熔渣,稀土元素不可避免地洗脱进熔渣,这就要求一个独立的工序从熔渣中回收稀土金属成分。

    此外,为了使用重熔炼磁体作为熔炼的母材料,必须重新调节组成,并且难以控制成分,在其它缺点和涉及重熔炼的问题之中,包括难以把氧去除到熔融合金的原始水平。

    上述熔炼方法基本全部涉及再生成为合金化的原材料,不能在有效地再生的同时仅留下烧结磁体的结构,特别是仅留下能够提高磁性能的主相晶粒。

    而且,通过钙还原使稀土磁体剩料或次品再生的上述方法,其目的在于对在稀土磁体制造工艺中产生的粉尘、碎片和碎块进行抛光,基本目的在于对SmCo基磁体的粉尘进行抛光。

    发明的公开

    本发明的目的在于解决把R-Fe-B型烧结磁体的边角料、剩料或次品再生成为这些磁体的合金粉末的传统方法所存在的各种问题,提供一种R-Fe-B型磁体原材料粉末的制造方法,通过有效地利用这些磁体,同时仅留下主相晶粒,由此能够更有效地实现再生,更有效地利用自然资源,经过重复利用实现环境保护。本发明的目的还在于提供一种R-Fe-B型磁体的制造方法,由此通过使用这种原材料粉末可以获得具有优异磁性能的R-Fe-B型磁体。

    本发明人研究了有效地再生磁体同时仅留下其主相晶粒的各种方法,因此,基于以下发现完成了本发明,从磁体边角料或烧结磁体次品中取出主相R2Fe14B晶粒,作为R-Fe-B型原材料粉末使用,对这种原材料粉末补充液相烧结所需的稀土成分,在用于调节的原材料粉末中混合,调整磁体组成,然后对混合物进行成型,烧结和热处理,由此能够提供具有优异磁性能的廉价R-Fe-B型磁体。

    具体地,本发明是一种R-Fe-B型磁体原材料粉末的制造方法,其特征在于,把R-Fe-B型烧结磁体粉碎成为平均颗粒尺寸不超过5mm,之后对此粉碎粉末和磁体边角料进行酸洗,降低粉碎粉末中的氧和碳成分含量,消除富R和富B晶界相,结果酸洗后的粉末几乎仅由Nd2Fe14B主相组成,之后对这种粉末进行干燥,然后使用钙或CaH2进行还原处理,降低及去除残留于处理粉末中的所有O2成分,对这种反应产物进行湿法处理,去除所有残留的钙成分,之后干燥这种产物,获得几乎仅由Nd2Fe14B主相组成的磁体原材料粉末。

    本发明还是一种R-Fe-B型磁体的制造方法,其特征在于,由13-45at%的R、不多于12at%的B、余量是作为主要成分的Fe组成的调节使用的合金粉末,按10∶90~90∶10(wt%)的比例,添加于上述几乎仅由Nd2Fe14B主相组成的再生合金粉末,之后对这种混合物进行成型、烧结和热处理,可以容易地制造高性能磁体。

    实施发明的最佳模式

    本发明中,烧结磁体的粉碎可以通过公知方法完成,可以是H2粉碎或者是在N2气、氩气等的惰性气体气氛中的机械粉碎。如此获得的粉碎材料的尺寸最好是不超过5mm。超过5mm是不希望的,因为可以去除的O2成分不足够。当磁体边角料例如加工余料、碎片等被在首先粉碎前可以进行酸洗。磁体边角料也可以与处理前的粉碎磁体混合。

    为了在酸洗中从上述烧结磁体去除碳和O2成分,溶解富R和富B晶界相,最好添加乙酸水溶液等作为酸溶液,酸溶液的pH值最好是2.0-5.0。

    通过上述酸洗,处理的粉末中除了几乎构成全部粉末的Nd2Fe14B主相之外,将含有痕量的氧和碳,从而向上述处理的粉末添加钙或Ca(OH)2进行还原。钙或Ca(OH)2的添加量最好是还原稀土氧化物所需化学计量的1.1-4.0倍,还原温度是900-1200℃,还原最好持续1-5小时。

    通过这种钙还原处理把酸洗后残留的全部O2成分还原去除掉,但仍需要从这种反应产物中去除残留的钙成分,为此采用湿法清洗处理等。

    在钙还原处理之后用于去除钙成分的湿法清洗处理,最好是用稀释酸例如去离子水的清洗,清洗条件最好是包括不超过11的pH值。

    本发明中,通过粉碎和酸洗烧结磁体,对这种产物进行钙还原,然后通过湿法清洗再生磁体,由此产生的原材料粉末几乎仅由Nd2Fe14B主相组成。为了利用这种再生原材料粉末制备具有所需组成的R-Fe-B型磁体原材料粉末,添加由13-45at%的R、不多于12at%的B、余量是作为主要成分的Fe构成的调节组成的合金粉末,以便改善烧结及调节上述再生粉末的组成。

    把再生原材料粉末与用于组成调节的粉末混合的比例限制在10∶90和90∶10(wt%)之间的原因,在于使用含量小于10wt%的这种再生粉末和含量超过90wt%的组成调节粉末,从提高磁性能或再生粉末的使用效率的观点来看是不适当的,使用含量超过90wt%的这种再生粉末和含量小于10wt%的组成调节粉末,由于烧结过程中不能出现足够的液相,烧结后的密度将不足够,所以是不适当的。

    用于组成调节的R-Fe-B型粉末可以是各向同性或者各向异性粉末,这是通过各种制造方法中的任一种获得的,例如熔炼粉碎法,其中熔炼铸造所需的R-Fe-B型合金,然后粉碎;直接还原分散法,其中通过钙还原直接获得粉末;急冷合金化法,其中采用熔体喷射设备获得带箔形式的所需原材料合金,对这种箔进行粉碎和退火;气体雾化法,其中熔化所需的R-Fe-B型合金,采用气体雾化对这种熔体进行粉末化处理和热处理;机械合金化法,其中对所需原材料金属进行粉末化处理,然后通过机械合金化进行微粉化和热处理;和在氢气中对所需R-Fe-B型合金加热、分解和再结晶的方法(HDDR法)。

    本发明中,再生R-Fe-B型磁体原材料粉末和组成调节粉末中的稀土元素R,最好包括Nd、Pr、Dy、Ho和Tb之中的至少一种,或者还包括La、Ce、Sm、Gd、Er、Eu、Tm、Yb、Lu和Y之中的至少一种。再生R-Fe-B型磁体原材料粉末的R含量最好是组成的11-13at%。

    组成调节粉末中的稀土元素R含量最好是13-45at%。具体地,如果小于13at%,则在与主相原材料混合烧结、制备磁体的过程中将不能出现足够的液相,而如果超过45at%则是不期望的,因为这将导致氧含量的增加。

    对于用于组成调节的粉末通常一种R就足够了,但是针对易于获得的原因,也可以使用两种或多种的混合物(含铈混合稀土、钕镨混合稀土等)。这种R不必是纯稀土元素,而是可含在工业范围内于制造中不可避免的杂质。

    在由本发明的制造方法生产的R-Fe-B型磁体中R是必要元素,如果其含量小于10at%,则晶构将是结构与α-铁相同的立方系统,所以不能获得良好的磁性能,特别是矫顽力。但是如果超过30at%,则将存在大量的富R非磁性相,剩余磁通密度(Br)将降低,不能获得性能优异的永磁体。

    硼是磁体的必要元素,如果其含量小于2at%,主相将具有菱形晶构,不能获得高矫顽力(iHc),但是如果超过28at%,则将存在大量的富B非磁性相,剩余磁通密度(Br)将降低,不能获得性能优异的永磁体。于是,硼的优选范围是2-28at%。

    而且,如果硼含量大于组成调节粉末的12at%,则在Nd2Fe14B相之外将存在过量的富硼相或Fe-B相,于是硼的优选是12at%以下。

    铁是上述磁体的基本元素,如果其含量小于65at%,则剩余磁通密度(Br)降低,但是如果超过80at%则不能获得高矫顽力,所以铁含量应在65-80at%。

    用钴置换部分铁可以改善温度特性,而不损失获得的磁体的任何磁性能,但是用钴置换大于20at%的铁是不期望的,因为磁性能反而降低。钴的置换量是铁和钴的总量的5-15at%有利于获得高的磁通密度,因为(Br)将高于无置换的情况。

    除了R、硼和铁之外,也可以存在工业制造不可避免的杂质。例如,如果用碳(4.0wt%以下)、磷(2.0wt%以下)、硫(2.0wt%以下)、和铜(2.0wt%以下)之中的一种或多种置换部分硼,将易于制造永磁体和降低成本,总置换量应不超过2.0wt%。

    此外,为了提高磁体粉末的矫顽力或者退磁曲线的弯曲度,或者使得磁体易于制造和降低成本,可以根据需要向再生粉末或组成调节粉末添加Al、Ti、V、Cr、Mn、Bi、Nb、Ta、Mo、W、Sb、Ge、Ga、Sn、Zr、Ni、Si、Zn和Hf之中的一种或多种。添加量的上限应满足达到磁体的(BH)max和(Br)要求值所需的条件。

    实施例

    实施例1

    通过R-Fe-B型磁体次品的吸氢裂变,获得平均颗粒尺寸是1-5mm的粗粉碎粉末,磁体组成是14.0at%的Nd、6.5at%的B、78.5at%的Fe、和1.0at%的Co,磁体尺寸是4-5mm×4.5mm×8mm。

    把1kg的这种粗粉碎粉末装入不锈钢容器,之后滴入添加五倍的乙酸水溶液同时搅拌10分钟,pH值保持在3.5,进行酸洗。然后,用去离子水对系统清洗5分钟彻底去除酸成分,对这种产物真空干燥,产生920g的再生材料。

    200g金属钙颗粒与900g上述再生粉末混合,这种混合物在1000℃于氩气中保持3小时,之后冷却反应产物并取出,产生平均颗粒尺寸是20mm的块。然后放入去离子水中,之后搅拌10分钟直到pH值是10或10以下,然后干燥获得再生粉末。如此获得的再生粉末的组成是11.5at%的Nd、6.5at%的B、81.0at%的Fe、和1.0at%的Co,组织是99.5%的Nd2Fe14B相。

    实施例2

    通过铸锭粉碎获得500g组成调节粉末,其组成是16.5at%的Nd、6.5at%的B、和余量的Fe,具有3.5mm的平均颗粒尺寸,添加到500g的实施例1获得的再生粉末中,混合之后,对混合物进行射流磨粉碎,产生平均颗粒尺寸约是3μm的细粉碎粉末。

    在1.3吨/cm2的成型压力下、12kOe磁场中对如此获得的细粉碎粉末进行成型,之后在氩气中于1090℃烧结3小时,然后在600℃进行1小时热处理,产生R-Fe-B型烧结磁体。如此获得的磁体的磁性能是12.8kOe的Br,14.1kOe的iHc,40.3 MGOe的(BH)max。

    工业实用性

    根据本发明,边角料、尺寸错误、开裂、或因变形成为次品的R-Fe-B型烧结磁体被粉碎,酸洗,干燥,之后这种产物进行钙还原和清洗去除钙成分,这样可以有效地再生由有利于磁体的性能的Nd2Fe14B主相系统组成的原材料合金粉末。通过添加组成调节合金粉末,用于增强这种主相原材料合金粉末的烧结和调节组成,可以容易地制造具有优异磁体性能的烧结磁体。本发明的另一种优点是有效地利用自然资源和保护环境,因为可以从特定的各种产品重复利用磁体。

稀土-铁-硼型磁体用原料粉末和稀土-铁-硼型磁体的制造方法.pdf_第1页
第1页 / 共10页
稀土-铁-硼型磁体用原料粉末和稀土-铁-硼型磁体的制造方法.pdf_第2页
第2页 / 共10页
稀土-铁-硼型磁体用原料粉末和稀土-铁-硼型磁体的制造方法.pdf_第3页
第3页 / 共10页
点击查看更多>>
资源描述

《稀土-铁-硼型磁体用原料粉末和稀土-铁-硼型磁体的制造方法.pdf》由会员分享,可在线阅读,更多相关《稀土-铁-硼型磁体用原料粉末和稀土-铁-硼型磁体的制造方法.pdf(10页珍藏版)》请在专利查询网上搜索。

本发明的目的在于提供一种原材料合金粉末的制造方法,可以有效地用于RFeB型烧结磁体剩料或次品的再生,同时仅留下主相晶粒,并且提供一种RFeB型磁体的制造方法。对RFeB型烧结磁体剩料或次品进行粉碎、酸洗和干燥,然后对此产物进行钙还原处理,对此产物清洗去除钙成分,可有效再生由有利于磁体性能的Nd2Fe14B主相系统组成的原材料合金粉末。通过向这种主相系统原材料合金粉末添加组成调节合金粉末,用于改善烧。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1