稳压电路与应用该稳压电路的显示器 【技术领域】
本发明涉及一种稳压电路与显示器,特别涉及液晶显示器及其稳压电路。
背景技术
随着光学科技与半导体技术的进步,有许多显示器技术相继被开发出来,其中,液晶显示装置(LCD)因为具有高画质、体积小、重量轻、低电压驱动、低耗电量及应用范围广等优点,因此被广泛应用于中、小型可携式电视、移动电话、摄录放影机、笔记型计算机、桌上型显示器、以及投影电视等消费电子或计算机产品,并已逐渐取代阴极射线管(Cathode RayTube;CRT),成为未来显示器的主流,其中特别是薄膜晶体管(Thin FilmTransistor;TFT)液晶显示装置,因其高显示质量与低消耗功率的特性,几乎占据了大部分的市场。此外,近年来随着高画质数字电视的蓬勃发展,薄膜晶体管液晶显示器更已成为高画质电视的最佳显示技术。
参照图1,其所示为根据已知技术的液晶显示器的稳压电路10的电路示意图。在已知技术中,面板电源VDA的电压纹波较大,不适合作为面板11的参考电源。因为参考电源一般用以产生伽玛电压(gamma voltage),并作为数字模拟转换器(DAC)的参考电压,也就是用于数字灰度信号至像素驱动电压的转换。如果参考电源不稳定,相对应所产生的伽玛电压也不稳定,使得用以驱动面板11的像素驱动电压不稳定,显示画面将产生异常。因此需要稳压电路10以降低面板电源VDA的电压纹波,并提供具有较小电压纹波的参考电源Vref给面板11。
传统的稳压电路10由稳压二极管12和多个电阻14构成。当面板电源VDA的电压值超过预设阀值时,稳压电路10可将多余的电能吸收,以将面板电源VDA的电压值维持在预设阀值附近。
然而,由于稳压二极管12的价格不斐,备料时间也相当长,导致使用传统稳压电路的面板整体成本上升。
【发明内容】
因此,本发明的一方面在于提供一种成本低廉的稳压电路。
本发明的另一方面在于提供一种成本低廉的显示器。
根据本发明的一个实施例,该稳压电路至少包括负载电路和开关电路。负载电路具有第一负载端点和第二负载端点,第一负载端点电连接至电源。开关电路用以根据负载的工作状态来开关,其中开关电路具有第一开关端点、第二开关端点和第一控制端点,第一开关端点电连接第二负载端点,第二开关端点电连接至接地端。其中,当负载从电源抽取电流时,开关电路被关闭,当负载停止从电源抽取电流时,开关电路被开启,以使电源所提供的电流通过负载电路流至接地端。
根据本发明的另一实施例,第一控制端点电连接至一时序控制器以接收工作状态信号,当工作状态信号的逻辑电平为高时,负载从所述电源抽取电流,开关电路被关闭;当工作状态信号的逻辑电平为低时,负载停止从电源抽取电流,开关电路被开启。
根据本发明的另一实施例,开关电路至少包括第一N通道晶体管开关和反相器。第一N通道晶体管开关具有第三开关端点、第四开关端点和第二控制端点,其中第三开关端点电连接至第一开关端点,第四开关端点电连接至第二开关端点。反相器用以将工作状态信号反相,以获得反相工作状态信号,并将反相工作状态信号输出至第二控制端点,其中反相器电连接至第一控制端点。
根据本发明的又一实施例,反相器至少包括上拉电阻和第二N通道晶体管开关。上拉电阻具有第三负载端点和第四负载端点,第三负载端点电连接至另一电源。第二N通道晶体管开关具有第五开关端点、第六开关端点和第三控制端点,第三控制端点电连接至第一控制端点,第五开关端点电连接至接地端,第六开关端点电连接至第四负载端点,并输出反相工作状态信号。
根据本发明的再一实施例,该显示器至少包括电源供应器、时序控制器、稳压电路、伽玛电压产生电路、至少一个源极驱动器、至少一个栅极驱动器和显示面板。电源供应器用以提供电源电压。时序控制器用以输出图像数据信号、驱动控制信号和工作状态信号。稳压电路电连接至电源供应器,以稳定电源电压来输出参考电压,其中稳压电路至少包括负载电路和开关电路。负载电路具有第一负载端点和第二负载端点,该第一负载端点电连接该电源供应器。开关电路具有第一开关端点、第二开关端点和控制端点,其中第一开关端点电连接至第二负载端点,第二开关端点电连接至接地端,其中控制端点电连接至时序控制器,以接收工作状态信号。伽玛电压产生电路电连接至稳压电路,以接收参考电压来工作,并输出伽玛电压。源极驱动器电连接至伽玛电压产生电路和时序控制器,以根据伽玛电压来将图像数据信号转换为灰度信号。栅极驱动器电连接至时序控制器以接收驱动控信号来输出像素控制信号。显示面板电连接至源极驱动器和栅极驱动器,以根据像素控制信号和灰度信号来显示图像。其中当伽玛电压产生电路从电源供应器抽取电流时,时序控制器可利用工作状态信号来关闭开关电路。当伽玛电压产生电路停止从电源供应器抽取电流时,时序控制器可利用工作状态信号来开启开关电路,以使电源供应器所提供的电流通过负载电路流至接地端。
【附图说明】
为了本发明上述和其它目的、特征、和优点能更加明显易懂,上文特举优选实施例,并结合附图,做详细说明如下:
图1所示为根据已知技术的液晶显示器的稳压电路的电路示意图;
图2所示为根据本发明第一实施例的稳压电路的电路示意图;
图3所示为根据本发明第二实施例的稳压电路的电路示意图;
图4所示为根据本发明第三实施例的显示器的功能方框示意图;
图5所示为根据本发明第四实施例的显示器的功能方框示意图。
【主要组件符号说明】
10:稳压电路 11:面板
12:稳压二极管 14:电阻
100:稳压电路 102:负载电路
102a:负载端点 102b:负载端点
104:开关电路 104a:开关端点
104b:开关端点 104c:控制端
106:电压电平转换器 108:负载
110:P通道晶体管开关 110a:开关端点
110b:开关端点 110c:控制端点
200:稳压电路 202:N通道晶体管开关
202a:开关端点 202b开关端点
202c:控制端点 204:开关电路
204a:开关端点 204b:开关端点
204c:控制端 206:N通道晶体管开关
206a:开关端点 206b:开关端点
206c:控制端 208:上拉电阻
208a:负载端点 208b:负载端点
210:反向器 300:显示器
302:时序控制器 304:电源供应器
306:伽玛电压产生电路 308:源极驱动器
310:栅极驱动器 312:显示面板
400:显示器 408:源极驱动器
Vref:参考电源 VDA:电源
VDD:电源 Vss:接地端
Vin:外部电源 DE:工作状态信号
Sd:图像数据 Sf:编码图像数据
Sg:驱动控制信号 Vga:伽玛电压
Sp:像素控制信号
【具体实施方式】
参照图2,其示出根据本发明第一实施例的稳压电路100的电路示意图。稳压电路100包括负载电路102、开关电路104和电压电平转换器(levelshifter)106。在本实施例中,负载电路102以电阻为例表示,然而在其它的实施例中,负载电路102可为结构较为复杂的电路装置。负载电路102具有负载端点102a和负载端点102b,负载端点102a电连接至电源VDA,负载端点102b电连接至开关电路104。
开关电路104具有开关端点104a、开关端点104b和控制端点104c。开关端点104a电连接至负载端点102b,开关端点104b电连接至接地端VSS,而控制端点104c通过电压电平转换器106来电连接至一时序控制器以接收工作状态信号DE。工作状态信号DE表示负载108的工作状态。
在本实施例中,当工作状态信号DE的逻辑电平为高(high)时,负载108开始从电源VDA抽取电流。当工作状态信号DE的逻辑电平为低(low)时,负载108停止从电源VDA抽取电流。另外,本实施例的开关电路104包括P通道晶体管开关110。P通道晶体管开关110具有开关端点110a、开关端点110b和控制端点110c,其中开关端点110a电连接至开关端点104a,开关端点110b电连接至开关端点104b,控制端点110c电连接至控制端点104c。
当工作状态信号DE的逻辑电平为高时,开关电路104为关闭状态,电源VDA提供电流至负载108。当工作状态信号DE的逻辑电平为低时,负载108停止从电源VDA抽取电流,且开关电路104为开启状态,因此电源VDA提供电流至负载电路102。适当地设计负载电路102的阻值,使其与负载108的负载匹配,可使流过负载电路102地电流值与负载108所抽取的电流值接近。
由上述说明可知,由于电源VDA总是提供固定的电流值至后端电路,因此,电源VDA的电压纹波可大幅降低。
另外,电压电平转换器106用以转换工作状态信号DE的逻辑电平。因此,如果工作状态信号DE的逻辑电平已位于符合系统需求的预设范围内时,电压电平转换器106即可被省略。
参照图3,其示出根据本发明第二实施例的稳压电路200的电路示意图。稳压电路200类似于稳压电路100,但不同之处在于稳压电路200的开关电路204包括N通道晶体管开关202和反相器210。其中,开关电路204具有开关端点204a、开关端点204b和控制端点204c。开关端点204a电连接至负载端点202b,开关端点204b电连接至接地端Vss,而控制端点204c电连接至一时序控制器以接收工作状态信号DE。
N通道晶体管开关202具有开关端点202a、开关端点202b和控制端点202c,其中开关端点202a电连接至开关端点104a,开关端点202b电连接至开关端点104b,控制端点202c电连接至反相器210。
反相器210包括N通道晶体管开关206和上拉电阻208。上拉电阻208具有负载端点208a和208b,其中负载端点208a电连接至电源VDD。N通道晶体管开关206具有开关端点206a、开关端点206b和控制端206c,其中开关端点206b电连接至开关端点204b,开关端点206c电连接至控制端点204c,而开关端点206a电连接至负载端点208b,并输出反相工作状态信号至控制端点202c。
参照图4,其示出根据本发明第三实施例的显示器300的功能方框示意图。显示器300包括时序控制器302、电源供应器304、稳压电路100、伽玛电压产生电路306、源极驱动器308、栅极驱动器310和显示面板312。时序控制器302用以接收来自主机端的编码图像数据Sf,并将其译码,以获得驱动控制信号Sg、图像数据Sd和工作状态信号DE。电源供应器304用以接收外部电源Vin来提供电能至伽玛电压产生电路306,而稳压电路100则电连接于电源供应器304和伽玛电压产生电路306之间,以稳定电源供应器304所提供的电压VDA,并输出稳定的参考电压Vref至伽玛电压产生电路306。源极驱动器308电连接至时序控制器302和伽玛电压产生电路306,以接收时序控制器302所传送的图像数据Sd,并根据伽玛电压产生电路306所传送的伽玛电压Vga来将图像数据转换成灰度数据Sgray。栅极驱动器310电连接至时序控制器302,以接收驱动控制信号Sg,并输出像素控制信号Sp。当显示面板312显示图像时,时序控制器302控制栅极驱动器310来驱动显示面板312中的晶体管开关,以使显示面板312中的每个像素相应地显示源极驱动器308所传送的灰度数据Sgray。
本实施例的显示器300利用稳压电路100来稳定提供至伽玛电压产生电路306的电源,因此显示器300的电压纹波可获得明显改善,且显示器300的成本可较已知技术低廉。
参照图5,其示出根据本发明第四实施例的显示器400的结构示意图。显示器400类似于显示器300,但不同之处在于显示器400的源极驱动器408整合了稳压电路100、伽玛电压产生电路306和源极驱动器308,因此源极驱动器408可轻易地设置在面板312的基板上,以减少显示器400的体积。
虽然本发明已以实施例公开如上,然而其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可做各种修改与变型,因此本发明的保护范围应以所附权利要求书的范围为准。