本发明涉及一种液晶显示(LCD)单元,这种单元包括设置在两板之间的螺旋状扭曲的向列液晶层,以及具有电极和表面取向的偏振片,液晶层呈现一种正的介电各向异性性能。 本发明尤其涉及怎样一种LCD单元,即在单元内的向列液晶层有非常低的光程差。
如果需要有一个高的倍增比(multiplex ratio),那么LCD单元必需具有一种陡的电-光特性。相应的研制集中在高扭曲的向列型液晶结构上。“高扭曲向列结构”一词,是表示该结构其扭曲超过90度。当然,产生这样一种扭曲通常需要渗入手性添加物。
具有高扭曲向列结构的液晶单元的优点是一个非常陡的电-光特性,和宽的视角范围。
陡的电-光特性导致高的倍增比,这种倍增比对于提供高信息密度的指示是必须的。
然而,事实上对某些目的应用的主要要求不是高的倍增比,而是有可能提供一种高地差示灰度(differentiated grey scale)。例如,较为突出的是在电视应用的情况下。
所以,本发明的目的在于提供一种具有非常低斜率的电-光特性的LCD单元。
根据发明,利用前面提到过的那种LCD单元来实现该目的,这种LCD单元的特征是采用下述几个参数的结合,即扭角ψ为10°-80°;光入射侧板上的表面取向和偏振方向之间的夹角θ为-30°-60°;两个偏振片的偏振方向之间的角度ψ为80°-110°;光程差△n·d为0.2-0.7毫米。
为说明起见,需要对下面的角度含义了解清楚:
扭角ψ包括由前板(光入射侧的板)和后板上的两个向列指向(nematic director)所确定的面之间角度,这两个指向都垂直于板。即,换言之该角度是向列指向互相偏置的角度。该规定相当于常规的规定。
角θ是前板上的面取向或该板上向列指向n1与和该板有关的偏振片的偏振方向之间的角度。θ角的正值表示偏振方向在ψ角的外侧,而负值表示偏振方向在向列指向之间。
角ψ是偏振片互相偏置的角度。在偏振片之间不用任何光感应手段,而它们实质上挡住光通路时,称这样的偏振片处于正交状态。这意味着“正交”一词包括所有相应的ψ值,并不仅仅限于90°偏置。
由此所得到的单元提供正反差显示,出乎意料,对于低的d△n值和θ=0时,它不显色。
在正反差显示情况,在明亮背景上加电供能的分段显暗,而在负反差显示时情形相反。
下面将参照附图描述发明的实施例:
图1是根据发明所述的LCD单元的各部分示意分解图。
图2是表示角度设置,表面取向和两个互相相关偏振片的示意图。
图3是优选实施例的电压-反差示图。
根据本发明的LCD单元其结构是非常类似于已知的单元,如螺旋扭曲的向列型LCD的单元(见Schadt and Helfrich,Appl.phys.Lett.18,127〔1971〕),因此在此不需对结构进行详细的说明。本发明的单元包括设置在实质上互相呈平行平面的两板2、3之间的液晶层1,所述的板是由透明材料,诸如:玻璃或丙烯酸玻璃或塑料薄膜等制成。偏振片4放置在前板2之前,并最好连接到前板,例如用粘合方法连接,偏振片5以类似的方式连接到后板3,板与板之间的间隔或间隙为d。
在朝着液晶的板2、3表面上有用于显示符号或圆点的分段的常规电极涂层6。而且,表面经处理成在相邻的液晶分子上施加一种定向的效应,因此决定向列指向n的方向。这种处理属于例如在一个方向上研磨定向层表向或者定向层的倾斜蒸发等;提供倾角不是必须的,但也是有利的。这种处理的结果称为用于本发明目的的表向取向。箭头7指出在前板2上的表面取向,而后板3上的表面取向偏置于前板,它用箭头8指出。
前板偏振片设置成使它的偏振方向相对于向外方向的扭角有一个预定的角度,这一点将在下面作更为详细的说明。后偏振片设置成使它的偏振方向正交于前偏振片的偏振方向。
液晶层1是一种能有手性添加剂的向列型液晶。
图2表示向列指向和偏振方向的相对角度位置。如前面提到过的,n1是前板上的向列指向,n2是后板3上的向列指向,两个向列指向之间的扭角为φ,在本实施例中,该角度近似地为50°。然而,它可以在50°左右变化,用ψ的绝对值在10°-80°之间取得满意的结果,ψ值的优选角度为20°至60°,最好为30°-50°。
前偏振片4有一个偏振方向P1。在本实施例中,该方向偏置向列指向n1的角度为20°。然而,P1的方向能偏离向列指向n1一个θ角度,它的变化范围为-30°<θ<60°。换言之,偏振片可以对称于向列指向设置,如果ψ=90°,这种设置的条件是θ=(90°-φ)/2。对称是最可取的,但是不是必要的。后偏振片5的偏振方向P2偏置于前偏振片P1为角ψ,ψ角最好为90°,然而ψ角为80-110°可以取得满意的效果。偏振方向P1和P2互换其结果不变。
在另外的优选的实施例中,例如,θ=30°,ψ=30°和ψ=90°,并在厚度d=3.4微米的层中使用下述的液晶混合物(混合物“A”):
成分 浓度(重量%)
φd(4)CP 对-〔反式-4-(4-戊烯 8,000
基)环己基〕苯基氰
5CP 对-(反式-4-戊基环己基) 11,000
苯基氰
4P(1)P 对-(5-丁基-2-嘧啶基) 3,000
苯基氰
5CAPO2 对〔-2-(反式-4-戊基环 6,000
己基)乙基〕-乙氧基苯
3CEC3 反式-4-丙基环己烷羧酸-反 8,000
式-4-丙基环己基酯
4CEC4 反式-4-丁基环己烷羧酸-反 11,000
式-4-丁基环己基酯
5CEC3 反式-4-戊基环己烷羧酸-反式 11,000
-4-丙基环己基酯
5CPAC4 1-〔2-(反式-4-丁基环己 9,500
基)-乙基〕-4-(反式-4-
戊基环己基)苯
5CPPAC4 4-〔2-(反式-4-丁基环己 5,500
基)-乙基〕4′(-反式-4-
戊基环己基)联苯
5CPAPAC4 4-(反式-4-戊基环己基)- 7,000
4′-〔2-(反式-4-丁基环己
基)-乙基〕-1,1′-亚乙基
二苯
4CEPO2 反式-4-丁基环己烷羧酸-对- 11,000
乙氧-苯基酯
5CEPO1 反式-4-戊基环己烷羧酸- 9,000
对-甲氧己基酯
第二个例子采用下述混合物“B”:
混合物“B”
成分 浓度(重量%)
4P(1)P 对-(5-丁基-2-嘧啶基) 8,820
-苯基氰
φd(3)CP 对-〔反式-4-(3-乙烯 7,390
基)环己基〕苯基氰
1d(3)CP 对-〔反式-4-(3E-戊烯 7,420
基)-环己基〕苯基氰
φd(4)CPP 4′-〔反式-4-(4-戊烯基) 6,170
-4-联苯基腈
3CEC3 反式-4-丙基环己烷羧酸- 21,050
反式-4-丙基环己基酯
4CEC4 反式-4-丁基环己烷羧酸- 28,100
反式-4-丁基环己基酯
5CEC3 反式-4-戊基环己烷羧酸- 21,050
反式-4-丙基环己基酯各种成分的名称对该技术领域的接触者是已知的,有关这方面的参考,例如可见Schadt等人的出版物,Mol.Cryst.Lig.Cryxt.122(1985)241ff和Proc.Int.Displ Res.Conf,SanDiego(1985)。
下表1列出两种混合物“A”和“B”的相关参数:
表1
混合物“A” 混合物“B”
清亮点Tc1〔℃〕 72 42.5
熔点Tm〔℃〕 <-20 <0
n01.432 1.476
光学各向异性△n 0.086 0.072
粘度η/(在22℃)〔mpa.s〕23 21
在表2中得到这些混合物的电-光参数的结果。这些结果由本发明的新单元取得,在每一种情况下,把所得的结果值与在常规的扭曲向列单元内用相同的液晶混合物的结果作比较,并把结果列在表中的第三列内。
表2
混合物“A”
ψ=30° ψ=60 ψ=90
θ=30 θ=15 θ=0
ψ=90 ψ=90 ψ=90
V10(伏) 2.165 2.058 1.971
V50(伏) 2.895 2.617 2.265
P00.337 0.271 0.149
d〔微伏〕 3.4 3.8 4.0
d△n〔微伏〕 0.29 0.33 0.34
混合物“B”
ψ=30° ψ=60 ψ=90
θ=30 θ=15 θ=0
ψ=90 ψ=90 ψ=90
V10(伏) 1.562 1.614 1.441
V50(伏) 2.092 2.015 1.671
P00.339 0.248 0.159
d〔微伏〕 4.5 6.0 7.0
d△n〔微伏〕 0.32 0.43 0.50
对表2的说明:
V10表示在消光为10%(或90%透过)时的光阈值电压。
V50表示在消光或透过各为50%时的电压。
P0表示在视角或光入射角β=0°时透过曲线的陡度,它符合下述关系式:
po= (V50-V10)/(V10)
图3表示与常规扭曲向列单元相比较的电-光性能的反差曲线特性,用白光,在ψ=30°,θ=30°,ψ=90°(曲线Ⅰ);在ψ=60°,θ=15°,ψ=90°(曲线Ⅱ);和在ψ=90°,θ=0°,ψ=90°(扭曲向列单元,曲线Ⅲ)分别作出曲线Ⅰ、Ⅱ、Ⅲ。很清楚,随着扭曲角度的增加,曲线越来越陡。
先前描述的单元可以以透射和反射方式操作。