气泡泵型热输送设备 【技术领域】
本发明涉及一种热输送设备,特别是涉及不需要外部动力、利用气泡泵的气泡泵型热输送设备。
背景技术
过去,作为不使用外部动力的热输送设备,使用热虹吸(利用重力热管)。然而,热虹吸的热输送方向受到限制,特别是难以从上部朝下方进行热输送。基于这样的背景,作为新型热输送设备开发了利用气泡泵的热输送设备(例如参照日本特开2002-122392号公报)。该热输送设备如日本特开2002-122392号公报的图1所示那样,具有存放从升温到高温的热交换用循环溶液和热交换用循环溶液产生相变后的高温蒸汽的热交换循环溶液存放容器。另外,在该热交换循环溶液存放容器上设有溶液送出口和气液二相流体送入口,在上述溶液送出口与上述气液二相流体送入口之间连接循环溶液输送管。上述循环溶液输送管包含连接到上述溶液送出口的溶液送出管、贯通热交换循环溶液存放容器内的容器内管、及连接于上述气液二相流体送入口的气液二相流体送入管。在上述溶液送出管设置显热放散热交换器,在上述气液二相流体送入管设置加热热交换器。
这样构成的已有热输送设备利用由热交换用循环溶液的气液相变化产生的循环溶液输送管内的循环溶液的密度差,从高热源向低热源输送热量,不使用外部动力即可朝任意的方向进行热输送。
然而,在上述已有热输送设备中,存在最大热输送量小、热阻大(热特性差)的问题。另外,存在小温度差的热输送困难的问题。
另外,在热负荷小的场合,具有在循环溶液输送管中循环地热交换用循环溶液的循环流量出现脉动、产生振动的问题。
发明的公开
本发明的目的在于提供一种可消除上述那样的问题、热阻小、热输送量大的气泡泵型热输送设备。另外,本发明的目的还在于提供不易产生循环溶液的循环流量的脉动的、可靠性高的气泡泵型热输送设备。
本发明的气泡泵型热输送设备包括热交换循环溶液存放容器、溶液送出口、气液二相流体送入口、及循环溶液输送通道;该热交换循环溶液存放容器由第1空间和第2空间构成,该第2空间由设于该第1空间下部的连通孔与上述第1空间连通,在各空间中收容热交换用循环溶液和上述循环溶液的蒸汽;该溶液送出口用于将该存放容器内的上述热交换用循环溶液送出到存放容器外;该气液二相流体送入口将由高温的热交换用循环溶液和上述循环溶液的蒸汽泡构成的气液二相流体仅送入到上述存放容器的上述第1空间内;该循环溶液输送通道具有第1输送通道、第2输送通道、及第3输送通道,并连接上述第1输送通道、第2输送通道、及第3输送通道,该第1输送通道与上述溶液送出口连接并设置显热放散热交换器,该第2输送通道用于内部的低温的热交换用循环溶液与上述第1空间内的热交换用循环溶液或内部的低温的热交换用循环溶液与上述第1空间内的热交换用循环溶液及上述第1空间内的热交换用循环溶液的蒸汽进行热交换,该第3输送通道与上述气液二相流体送入口连接并设置加热热交换器。
为此,按照本发明的气泡泵型热输送设备,相应于热负荷的大小,上述2个空间内的气液界面位置从动地变化,设备内的压力上升可受到抑制,所以,具有获得热输送能力高的热输送设备的效果。另外,即使在温度差小的场合,也可输送大量的热。另外,可缓和耐压设计条件,可实现轻量化。
另外,本发明的气泡泵型热输送设备包括热交换循环溶液存放容器、溶液送出口、气液二相流体送入口、开孔、及循环溶液输送通道;该热交换循环溶液存放容器收容热交换用循环溶液和上述循环溶液的蒸汽;该溶液送出口用于将该存放容器内的上述热交换用循环溶液送出到存放容器外;该气液二相流体送入口将由高温的热交换用循环溶液和上述循环溶液的蒸汽泡构成的气液二相流体送入到上述存放容器内;该开孔设于上述存放容器内的上部并与上述存放容器外的周围空间连通;该循环溶液输送通道具有第1输送通道、第2输送通道、及第3输送通道,并连接上述第1输送通道、第2输送通道、及第3输送通道,该第1输送通道与上述溶液送出口连接并设置显热放散热交换器,该第2输送通道用于内部的低温的热交换用循环溶液与上述存放容器内的热交换用循环溶液或内部的低温的热交换用循环溶液与上述存放容器内的热交换用循环溶液及上述存放容器内的热交换用循环溶液的蒸汽进行热交换,该第3输送通道与上述气液二相流体送入口连接并设置加热热交换器。
为此,按照本发明的气泡泵型热输送设备,可获得热阻小、热输送量大的气泡泵型热输送设备。
另外,本发明的气泡泵型热输送设备包括热交换循环溶液存放容器、溶液送出口、溶液送入口、及循环溶液输送通道;该热交换循环溶液存放容器收容热交换用循环溶液和上述循环溶液的蒸汽;该溶液送出口用于将该存放容器内的上述热交换用循环溶液送出到存放容器外;该溶液送入口将热交换用循环溶液送入到上述存放容器内;该循环溶液输送通道具有第1输送通道、第2输送通道、及第3输送通道,并连接上述第1输送通道、第2输送通道及第3输送通道,该第1输送通道与上述溶液送出口连接并设置显热放散热交换器,该第2输送通道用于内部的热交换用循环溶液与上述存放容器内的热交换用循环溶液进行热交换,该第3输送通道与上述溶液送入口连接并设置加热热交换器。另外,上述第3输送通道的上述溶液送入口与加热热交换器之间与上述第2输送通道连接,进行上述第2输送通道内的热交换用循环溶液与上述第3输送通道内的热交换用循环溶液及上述第3输送通道内的热交换用循环溶液的蒸汽泡进行热交换。
为此,按照本发明的气泡泵型热输送设备,可获得热阻小、热输送量大的气泡泵型热输送设备。
本发明的以上和其它目的、特征、观点、及优点通过以下根据附图对本发明进行的详细说明而变得更加明确。
【附图说明】
图1为示出本发明实施形式1的气泡泵型热输送设备的断面构成图。
图2为示出实施形式1的气泡泵型热输送设备(高热负荷的场合)的断面构成图。
图3为示出本发明实施形式1的另一气泡泵型热输送设备的断面构成图。
图4为示出本发明实施形式1的另一气泡泵型热输送设备的断面构成图。
图5为示出本发明实施形式2的气泡泵型热输送设备的断面构成图。
图6为示出本发明实施形式2的另一气泡泵型热输送设备的断面构成图。
图7为示出本发明实施形式3的气泡泵型热输送设备的断面构成图。
图8为示出本发明实施形式3的另一气泡泵型热输送设备的断面构成图。
图9为示出本发明实施形式4的气泡泵型热输送设备的断面构成图。
图10为示出本发明实施形式5的气泡泵型热输送设备的断面构成图。
图11为示出本发明实施形式6的气泡泵型热输送设备的断面构成图。
图12为示出本发明实施形式7的气泡泵型热输送设备的断面构成图。
图13为示出本发明实施形式7的另一气泡泵型热输送设备的断面构成图。
图14为示出本发明实施形式8的气泡泵型热输送设备的断面构成图。
图15为示出本发明实施形式9的气泡泵型热输送设备的断面构成图。
图16为示出本发明实施形式10的气泡泵型热输送设备的断面构成图。
图17为示出本发明实施形式10的另一气泡泵型热输送设备的断面构成图。
图18为示出本发明实施形式10的另一气泡泵型热输送设备的断面构成图。
图19为示出本发明实施形式11的气泡泵型热输送设备的断面构成图。
图20为示出实施形式11的气泡核的图。
图21为示出实施形式11的另一气泡核的图。
图22为示出本发明实施形式12的气泡泵型热输送设备的断面构成图。
图23为示出本发明实施形式12的另一气泡泵型热输送设备的断面构成图。
图24为示出实施形式13的箱体的空调系统的构成图。
图25为示出实施形式13的箱体的另一空调系统的构成图。
图26为示出实施形式13的高层建筑物空调系统和地板采暖系统的构成图。
图27为示出实施形式13的温室栽培的空调系统的构成图。
图28为示出实施形式14的室外测量设备散冷元件的构成图。
图29为示出实施形式15的抑制热岛现象的应用例的构成图。
图30为示出实施形式15的在季间融雪或砂漠的绿地化的应用例的构成图。
图31为示出实施形式16的无泵水冷系统的构成图。
图32为示出实施形式17的高效焚烧炉的构成图。
图33为示出实施形式18的混合式热利用系统的构成图。
图34为示出实施形式19在海洋深层水的吸引的应用例的构成图。
图35为示出实施形式20在淡水化领域的应用例的构成图。
图36为示出实施形式21在月面居住区的建设的应用例的构成图。
图37为示出实施形式21在月面居住区的建设的另一应用例的构成图。
图38为示出实施形式23在地下室利用的应用例的构成图。
【具体实施方式】
实施形式1
上述已有的热输送设备存在设备的最大热输送量小、热阻大等问题,在本发明中发现,产生这样的问题的原因在于容器内的压力增大。
即,当热负荷增加时,加热热交换器中产生的蒸汽泡大量流入到热交换循环溶液存放容器,在容器内管外壁的热交换能力小,所以,该蒸汽泡不能完全冷凝,设备内压力增大。压力增大使得设备内饱和温度上升,容器内管的内外温度差增大,加热热交换器与显热放散热交换器之间的温度差增大,所以,设备的热阻大幅度恶化(增大)。另外,如该容器内管的内外温度差不大,则不能输送热,难以进行小温度差的热输送。另外,由于容器内的压力增大引起的热输送极限的原因使最大的热输送量变小,即,容器内的压力增大使饱和温度上升,但随着饱和温度的增加,相对上述饱和温度的饱和压力的上升率增大,所以,随着热负荷的增加,设备内压力急剧增大。另一方面,已有的气泡泵型热输送设备利用循环溶液的密度差产生的浮力进行热输送,但随着设备内的压力的增加,产生的蒸汽泡的密度增大,所以,蒸汽泡的体积减小,不能获得大的浮力。为此,液体的循环流量减小,通过容器内管实现的热交换能力下降。结果,饱和温度上升,设备内压力进一步增大。由于这一连串的恶性循环导致的设备内压力增大引起的热输送极限的原因使最大热输送量减小。另外,设备内压力的进一步增大导致设备的破坏。
本实施形式的气泡泵型热输送设备的特征在于,对使得尽可能不达到产生上述那样的恶性循环的压力的构成进行了改良,形成为可抑制设备内压力的上升的构成,同时,提高通过容器内管实现的热交换能力,减小相对于热负荷的压力上升率,由此可增大最大热输送量。
下面根据附图说明本发明的实施形式1。
图1为示出本发明实施形式1的气泡泵型热输送设备的断面构成图。在图1中,热交换循环溶液存放容器4收容上升到高温的热交换用循环溶液1和该溶液1产生相变而产生的保有潜热的高温的蒸汽12。另外,在该热交换循环溶液存放容器4内设置分隔壁3,由分隔壁3将容器4内分成第1空间4a和第2空间4b。第1空间4a和第2空间4b由开孔2或间隙(连通孔)连通,热交换用循环溶液1通过该开孔2跨两空间4a、4b地被收容。即,第1空间4a和第2空间4b由设于充满热交换用循环溶液1的部分的开孔2连通,在收容高温的蒸汽12的空间(蒸汽空间)未被连通。另外,在热交换循环溶液存放容器4设置送出容器4内的热交换用循环溶液1的溶液送出口5和气液二相流体送入口8。从气液二相流体送入口8流入上升到高温的热交换用循环溶液1和上升到高温而沸腾的热交换用循环溶液1的蒸汽泡13的气液二相流体。从气液二相流体送入口8流入的上述气液二相流体仅流入到第1空间4a内,不流入到第2空间4b内。另外,如上述那样,第1空间4a与第2空间4b由开孔2连通,热交换用循环溶液1可自由地在两空间4a、4b移动,所以,气液二相流体流入到第1空间4a内,当各空间内的压力产生压力差时,上述压力差容易使第1空间4a的气液界面位置和第2空间4b的气液界面位置变化。
热交换用循环溶液1最好为热特性高(例如导热系数大、比热大)、流动特性良好(例如粘性系数小)、液体相对气体的密度比大的流体,使用蒸馏水、酒精、液体金属等由单一成分构成的液体、防冻溶液、酒精水溶液等水溶液、或磁性流体等混合液体即产生气液相变的流体。蒸汽12为由该热交换用循环溶液1或其一部分气化而产生的蒸汽,但也可混入空气等不冷凝气体。
在设于热交换循环溶液存放容器4的上述溶液送出口5与上述气液二相流体送入口8之间连接循环溶液输送管A,构成热交换用循环溶液1循环的循环溶液输送通道。
循环溶液输送管A包含与上述溶液送出口5连接的溶液送出管(第1输送通道)6、通过热交换循环溶液存放容器4的第1空间4a内的容器内管(第2输送通道)7、及与上述气液二相流体送入口8连接的气液二相流体送入管(第3输送通道)9,收容于热交换循环溶液存放容器4的热交换用循环溶液1从该容器4中流出,从溶液送出管6经过容器内管7,再经过气液二相流体送入管9,返回到该容器4。
在循环溶液输送管A中的上述溶液送出管6设置显热放散热交换器10,在溶液送出管6内循环的循环溶液从管壁散热。另外,在上述气液二相流体送入管9设置加热热交换器11,在溶液送出管6内循环的循环溶液从管壁吸热而受到加热。
加热热交换器11为电子设备等的发热体的散热部或从上述发热体输送热量的设备的散热部,显热放散热交换器10为热管等热输送设备的受热部或利用自然·强制对流传热、辐射等的散热壁。另外,也可将设置了加热热交换器11的气液二相流体送入管9和设置了显热放散热交换器10的溶液送出管6直接露出到任意空间(空气中、水中、土壤等)地设置,利用导热、自然·强制对流传热、辐射等加热或散热。另外,也可将翅片等设置到散热壁或该露出部外表面。另外,作为显热放散热交换器10的冷却手法,也可利用行走风。
另外,加热热交换器11和显热放散热交换器10也可沿流路设置多个。
循环溶液输送管A为由移送热交换用循环溶液1的圆管、椭圆管、矩形管、波纹管(柔性管)等构成的通道。另外,循环溶液输送管A中的设置了加热热交换器11的气液二相流体送入管9、设置了显热放散热交换器10的溶液送出管6、及容器内管7的各管壁面具有进行热交换的传热壁的作用,也可在各管的内部设置传热促进用的紊流促进体或旋转流促进体(例如螺旋带)或翅片等,另外,为了增大单位体积的传热面积,也可形成为螺旋管或蛇行管。另外,容器内管7用于进行容器内管7内的热交换用循环溶液1与容器内管7外的热交换用循环溶液1和蒸汽12的热交换,也可在容器内管7的外表面设置翅片等。
下面,说明实施形式1的热输送设备的动作。收容于热交换循环溶液存放容器4内的保有高温的热的热交换用循环溶液1一边在循环溶液输送管A中流动一边在设备内循环,但高温的上述热交换用循环溶液1通过循环溶液输送管A的溶液送出管6时,由显热放散热交换器10放出显热,进行热交换而被冷却成低温。冷却后,当通过容器内管7时,由收容于第1空间4a的高温的热交换用循环溶液1或热交换用循环溶液1和上述循环溶液的蒸汽12预热而升温。升温后的热交换用循环溶液1由设于气液二相流体送入管9的加热热交换器11进一步升温成高温而沸腾,一边产生蒸汽泡13一边返回到热交换循环溶液存放容器4。返回到热交换循环溶液存放容器4的热交换用循环溶液1再次在循环溶液输送管A中流动,反复进行冷却、预热、升温到沸腾温度。
在该实施形式的热输送设备中,利用由热交换用循环溶液1的相变产生的循环溶液输送管A内的密度差(由密度差产生的浮力)使热交换用循环溶液1在设备内循环。即,利用从加热热交换器11到气液二相流体送入口8的气液二相流体送入管9内的气液二相流体的表观密度与位于与该区间高度相同高度区间的循环溶液输送管A内的热交换用循环溶液1的密度的密度差使热交换用循环溶液1循环。另外,通过反复进行该循环,将从加热热交换器11传递的高温的热输送到显热放散热交换器10,从显热放散热交换器10将热输送到需要热的别的设备或低热源。
另外,在该实施形式的热输送设备中,热输送时,随着从加热热交换器11传递的热量(热负荷)的增加,流入到热交换循环溶液存放容器4中的蒸汽泡13的量增大,第1空间4a的蒸汽12的量增大,由与第1空间4a连通的第2空间4b自己调整气液界面,可抑制第1空间4a内的压力上升。另外,气液界面位置变化,使得与容器内的蒸汽进行热交换的部分增加,冷凝能力提高,可抑制设备内压力的上升。这样,可抑制设备内饱和温度的上升,所以,加热热交换器11与显热放散热交换器10之间的温度差不增大,小的温度差的热输送也变得容易。另外,由于可抑制第1空间4a内的压力上升,所以,可抑制最大热输送量的下降。另外,由于容器内的压力上升可受到抑制,所以,不需要加厚热交换循环溶液存放容器和各管的外壁,可使设备轻量化。
另外,随着热量(热负荷)的增加,自己调整第1空间4a和第2空间4b的气液界面,如图2所示那样,收容容器内管7的第1空间4a内的气液界面下降,相反,未收容容器内管7的第2空间4b内的气液界面升高。这样,容器内管7与蒸汽12接触的面积增大,即,由作为更高传热的冷凝传热进行热交换的面积更加增大,随着在容器内管7的热交换产生的热阻减小。
在已有的构成的热输送设备中,当热负荷小时,循环溶液的循环流量产生脉动,但这为在已有的热输送设备中容器内管时常从热交换溶液存放容器内的气液界面的上方通过的构成。即,在气液界面的上方,由于容器内管内的压力比热交换溶液存放容器内压力低,所以,容器内管中的热交换用循环溶液容易沸腾,发生的蒸汽泡妨碍了循环溶液输送管中的热交换用循环溶液的循环,并且,循环流量产生脉动。另外,由于容器内管与蒸汽接触的面积大,所以,热负荷小、循环溶液的流动慢时,该容器内管的热交换过于良好,在该容器内管中产生沸腾,产生的蒸汽泡阻碍了循环溶液输送管中的热交换用循环溶液的循环,另外,循环流量产生脉动。
在该实施形式中,如图1所示那样,在热输送的初期状态,全部或基本上所有的容器内管7与热交换用循环溶液1接触,与蒸汽12接触的部分较少。即,容器内管(第2输送通道)7至少在热输送的初期状态下处于第1空间内的气液界面位置以下或容器内管(第2输送通道)7的顶部与上述气液界面位置接近。这样,在热负荷较小的场合,保持了上述状态,所以,热交换循环溶液存放容器4内的压力与容器内管7内的压力差小,另外,通过容器内管7获得的热交换能力较小,所以,难以在容器内管7内沸腾,循环流量不易产生脉动。在热负荷较大的场合,随着热输送的进行,如图2所示那样,容器内管7与蒸汽12接触,热交换能力增大,但循环溶液的流动快,循环溶液的温度为较低的温度,所以,即使通过容器内管7与蒸汽12进行热交换也难以沸腾。
在上述实施形式中,气液二相流体送入管9如图3所示那样,也可伸出到第1空间4a内。此时,气液二相流体送入管9的口即气液二相流体送入口8应常位于第1空间4a内的气液界面的下方即热交换用循环溶液1中。使热交换循环溶液存放容器4为纵长形,气液二相流体送入管9越长则密度差越大,可获得用于使热交换用循环溶液1循环的大的驱动力,热输送能力提高。但是,当气液二相流体送入管9过长时,由于压力损失变得过大,所以,其长度需要考虑这一点后设计为最佳值。
另外,溶液送出口5用于送出高温的热交换用循环溶液1,当蒸汽泡13与热交换用循环溶液1一起流入时,在与热交换用循环溶液1的循环方向相反的方向作用浮力,使热交换用循环溶液1的循环量减少,所以,为了防止蒸汽泡13流入,最好在溶液送出口5设置与蒸汽泡相同或比蒸汽泡小的直径的金属网或挡板。
另外,在上述实施形式中,作为热交换循环溶液存放容器4、显热放散热交换器10、及加热热交换器11的位置关系,加热热交换器11处于热交换循环溶液存放容器4的下方即可,也可为与实施形式不同的位置关系。例如,显热放散热交换器10也可处于加热热交换器11和热交换循环溶液存放容器4的上方。
另外,在加热热交换器11与热交换循环溶液存放容器4的气液二相流体送入口8间的距离足够长的场合,由作用于该部分的管9a内的热交换用循环溶液1的浮力可使热交换用循环溶液1循环,所以,可以水平姿势设置加热热交换器11。图4为示出使加热热交换器11水平的气泡泵型热输送设备的断面构成图。这样,可从水平面进行热输送。
在该场合,加热热交换器11最好使其出口侧比水平稍朝上倾斜。
在图4中,从加热热交换器11的设置部分开始沸腾,但有时在加热热交换器11的设置部分不沸腾,而在管9a内沸腾。这样的沸腾被称为闪蒸,这是因为在下方水位差大、处于高压,因而不沸腾,但越往上方水位差越小,成为更低压力(液体的饱和压力以下),开始沸腾。即使为这样的状态,由于作用于管9a内的热交换用循环溶液1的浮力使热交换用循环溶液1循环,所以,可以水平姿势设置加热热交换器11。
另外,在上述实施形式中,第1空间4a内的蒸汽空间虽然也可不与周围空间(外气)连通,但第2空间4b内的蒸汽空间也可与周围连通。
另外,分隔壁3也可具有进行第1空间4a与第2空间4b间的热交换的作用,可在分隔壁3两面上安装翅片等。
在如以上那样按照该实施形式的热输送设备中,不使用外部动力,利用热交换循环溶液的密度差使热交换循环溶液连续地在设备内循环,所以,可朝所有方向(水平、从下部朝上方、从上方到下方等)输送大量的热。另外,也可长距离输送。另外,由于未设有包含可动部的泵等,所以,耐久性、可靠性好,紧凑而且重量轻。
另外,在热交换循环溶液存放容器内设置具有开孔的分隔壁,分隔容器内,可自动地抑制设备内的压力上升,所以,热阻小,热输送能力提高。另外,即使是在加热热交换器与显热放散热交换器之间的温度差小的场合,也可输送大量的热。另外,由于相应于热负荷自身调整气液界面,所以,从低热负荷到高热负荷可稳定地输送热。
实施形式2
图5为示出本发明实施形式2的气泡泵型热输送设备的断面构成图。在各实施形式中,相同符号示出相同或相当部分。在图5中,热交换循环溶液存放容器4与实施形式1同样,由分隔壁3分成第1空间4a和第2空间4b,但在实施形式2中,外侧的空间为第1空间4a,容器内管7围在内侧的第2空间4b的周围以螺旋状设于第1空间4a内。这样的构成也具有与上述实施形式1同样的效果。
另外,图6为示出本发明实施形式2的另一气泡泵型热输送设备的断面构成图。在图6中,热交换循环溶液存放容器4由分隔壁3分成第1空间4a和第2空间4b,与图5同样,外侧的空间为第1空间4a,但容器内管7与构成第1空间4a的容器外壁邻接地围住第1空间4a以螺旋状设置。作为这样的构成在容器内管7内循环的热交换用循环溶液1可与第1空间4a内的循环溶液1或第1空间4a内的循环溶液1和上述溶液的蒸汽12进行热交换,具有与图1和图5所示构成同样的效果。
对于图5和图6所示构成,在热输送的初期状态下,以全部或基本所有的容器内管7仅与第1空间4a内的热交换用循环溶液1进行热交换的方式调整容器内的气液二相界面,从而使得在容器内管7内难以沸腾,不易发生循环流量的脉动。
实施形式3
图7为示出本发明实施形式3的气泡泵型热输送设备的断面构成图。另外,图8为示出本发明实施形式3的另一气泡泵型热输送设备的断面构成图。在图7、8中,热交换循环溶液存放容器4不由分隔壁分隔内部空间,在第1热交换循环溶液存放容器4c外设置与该容器4c连接的第2热交换循环溶液存放容器4d。在该场合,第1热交换循环溶液存放容器4c具有与实施形式1的第1空间4a对应的作用,第2热交换循环溶液存放容器4d具有与实施形式1的第2空间4b对应的作用。
第2热交换循环溶液存放容器4d的设置场所为第1热交换循环溶液存放容器4c与加热热交换器11之间的气液二相流体送入管9以外的部分,与第1热交换循环溶液存放容器4c的下部连通地设置即可,不限于图7、图8的构成。
即使这样,也与实施形式1同样,可抑制内压上升进而抑制系内饱和温度的上升,减小热阻。另外,可消除在热交换循环溶液存放容器4内设置分隔壁3的麻烦,容易地进行制作。
另外,通过在第2热交换循环溶液存放容器4d内或该容器4d外壁上设置发热器等加热器,控制该容器4d内温度,从而可调节第1热交换循环溶液存放容器4c内压力,可控制加热热交换器11内的沸腾温度,可调节加热热交换器11的温度。
在该场合,将空气等不冷凝性气体封入到第2热交换循环溶液存放容器4d内,有时利用不冷凝性气体的膨胀、收缩对第1热交换循环溶液存放容器4c内的压力进行调整即可。另外,在将加热器设置于该容器4d外壁上的场合,当在该第2热交换循环溶液存放容器4d内壁形成金属网等多孔质物质的内衬时,可经常由热交换循环溶液润湿该内壁,防止该容器4d壁变干导致的温度上升。
实施形式4
图9为示出本发明实施形式4的气泡泵型热输送设备的断面构成图。在图9中,热交换循环溶液存放容器4未如上述各实施形式那样由具有开孔2的分隔壁3分隔,而是由设于容器4上部的开孔15与容器4外的周围空间连通地构成。
这样,由于容器4内与周围空间连通,所以,设备内的压力经常为周围压力,设备内压力不会上升。另外,由于设备内压力不上升,所以,设备内饱和温度经常成为周围压力下的饱和温度,可抑制饱和温度的上升。在实施形式下,可抑制容器内的压力上升,所以,可缓和耐压设计限制,可减小构成设备的壁的厚度,重量轻、成本低。另外,容器4制成只要没有液体泄漏即可,不需要气密性,制作容易。另外,由于不需要形成真空容器,所以,液体封入作业容易。但是,需要对来自开孔15的灰尘的侵入或来自开孔15的蒸汽泄漏导致的液体不足采取对策,需要定期维护。
在该实施形式中,如上述那样,由于容器4内与周围空间由开孔15连通,所以,设备内的压力常为一定,即使热负荷增加,容器内的气液二相界面也基本不变化。在这样的构成的场合,如上述各实施形式那样,在热输送的初期状态下,容器内管7几乎全部与热交换用循环溶液1接触、与蒸汽12接触的部分少时,即使热负荷增加,气液二相界面也基本上不变化,所以,容器内的热交换不能充分进行。在实施形式中,例如容器内管7从上向下贯通容器4内,容器内管7构成为常与蒸汽12和热交换用循环溶液1接触。这样,即使在高热负荷下,容器内的热交换也可充分进行。
实施形式5
图10为示出本发明实施形式5的气泡泵型热输送设备的断面构成图。在该实施形式中,如图10所示那样,在热交换循环溶液存放容器4设置2根循环溶液输送管A。通过设置2根以上循环溶液输送管A,从而可使传热面积增大、热阻减小。另外,从分散的高热源或向分散的低热源的热输送容易。另外,热交换循环溶液存放容器4由于可相对多个循环溶液输送管A共有化,所以,可比设置多个热输送设备的场合更紧凑。
实施形式6
图11为示出本发明实施形式6的气泡泵型热输送设备的断面构成图。在该实施形式中,如图11所示,形成通过分配容器16a和集合容器16b分别将气液二相流体送入管9的设置加热热交换器11的部分、溶液送出管6的设置显热放散热交换器10的部分、及容器内管7分成多个的循环溶液输送管。
这样,各部的传热面积增大,热阻和摩擦压力损失减小。另外,从平面、曲面和无形的流体中的热回收和散热变容易。另外,通过将分配容器16a与集合容器16b之间的分成上述多个的循环溶液输送管形成为细管,从而可提高传热效果,进一步提高传热特性。
实施形式7
图12为示出本发明实施形式7的气泡泵型热输送设备的断面构成图。在该实施形式中,如图12所示那样,循环溶液输送管A由1根气液二相流体送入管9、1根溶液送出管6、2根容器内管7、7a、设于2根容器内管7、7a间的1根第1容器外管(第4输送通道)6a构成。在容器外管6a设置与设于溶液送出管6的场合同样的显热放散热交换器10。
这样,容器4内和显热放散热交换器10部分的传热面积增大,热阻减小。
另外,通过将2根以上的第1容器外管6a和3根以上的容器内管7、7a将循环溶液输送管A进一步形成为并列流路,可减小在循环溶液输送管A绕一圈的期间的摩擦压力损失,进一步增大热交换用循环溶液1的循环流量(显热输送量增大)。结果,整体的热阻变小,即使加热热交换器11与显热放散热交换器10之间的温差小,也可输送大量的热。另外,从固体平面和曲面或无形的流体中等的热回收或散热容易。
在上述实施形式中,设于溶液送出管6和容器外管6a的显热放散热交换器10也可设置分别不同的显热放散热交换器10、10a。
在该实施形式中,也可使最接近加热热交换器11的容器内管7以外的容器内管7a不通过热交换循环溶液存放容器4内,在该容器内管7a设置别的加热热交换器11a。即,也可如图13所示那样,在容器内管(第2输送通道)7与溶液送出管(第1输送通道)6之间具有设置了加热热交换器11a和显热放散热交换器10a的第2容器外管(第5输送通道)7b。另外,也可设置多个第2容器外管(第5输送通道)7b。
这样,由1个热交换循环溶液存放容器4可容易地进行从分散存在的热源的热回收和热输送。另外,变得紧凑。
另外,通过控制加热热交换器11(例如作为加热热交换器11安装发热器,调节供给到该发热器的电力),可调节热交换用循环溶液1的循环流量,可从另一加热热交换器11a输送热,同时,可调节加热热交换器11a的温度。
实施形式8
图14为示出本发明实施形式8的气泡泵型热输送设备的断面构成图。图14(a)为图14(c)的A-A断面图,图14(b)为图14(c)的B-B线断面。
在该实施形式中,热交换循环溶液存放容器4收容上升到高温的热交换用循环溶液1和蒸汽12。另外,在热交换循环溶液存放容器4具有送出容器4内的热交换用循环溶液1的溶液送出口5和将热交换用循环溶液1送入到容器4内的溶液送入口80。在设于热交换循环溶液存放容器4的上述溶液送出口5与上述溶液送入口80之间连接循环溶液输送管A,构成热交换用循环溶液1循环的循环溶液输送通道。
循环溶液输送管A包含与上述溶液送出口5连接的溶液送出管(第1输送通道)6、通过热交换循环溶液存放容器4内进行内部的热交换用循环溶液与容器内的热交换用循环溶液的热交换的容器内管(第2输送通道)7、及与上述溶液送入口80连接的溶液送入管(第3输送通道)90,收容于热交换循环溶液存放容器4的热交换用循环溶液1从该容器4出来,从溶液送出管6经过容器内管7,再经过溶液送入管90,返回到该容器4。在循环溶液输送管A中的上述溶液送出管6设置显热放散热交换器10,在上述溶液送入管90设置加热热交换器11。
设置加热热交换器11的溶液送入管90凸出到容器4内,溶液送入口80位于容器内的气液界面的下方。另外,溶液送入口80与加热热交换器11之间的、凸出到容器内的管90a与容器内管7接触,容器内管7内的热交换用循环溶液1与管90a内的热交换用循环溶液1和管90a内的热交换用循环溶液的蒸汽泡13进行热交换。
虽然蒸汽泡13有时从溶液送入口80流入到热交换循环溶液存放容器4,但容器4内的热交换用循环溶液1或蒸汽泡13与容器内管7接触,在该部位进行热交换,这样,该蒸汽泡13进行冷凝。另外,由于溶液送入管90内的蒸汽泡13的量产生变化,所以,需要预先在容器4内形成存在蒸汽12的空间地封入溶液1。
另外,在图14中,从溶液送入管90的加热热交换器11到溶液送入口80的部分通过分配容器16a分成多个。另外,容器内管7与实施形式6同样成为通过分配容器16a和集合容器16b分成多个的构成。
另外,热交换循环溶液存放容器4不由分隔壁3分隔,仅由第1空间构成。
在该实施形式下,虽然由加热热交换器11使溶液送入管90内的热交换用循环溶液1沸腾,但在与容器内管7接触的管90a内,沸腾而产生的蒸汽泡13冷凝,从溶液送入口80将冷凝的的热交换用循环溶液1送入到容器内。管90a内的蒸汽量随着热负荷的增加而增大,所以,冷凝的部分的面积和搅拌溶液的力增大,可更有效地进行热交换。因此,在该实施形式中,管90a内的蒸汽量的变化使该部分的传热特性变化,可自动抑制设备内的压力上升,所以,热阻小,热输送能力提高。即,与实施形式1同样,热交换循环溶液存放容器内的热交换特性随着热负荷的增加而增大。
这样,与实施形式1同样,即使在该实施形式的热输送设备中,也不使用外部动力,利用热交换循环溶液的密度差使热交换循环溶液在设备内连续地循环,可朝任何方向输送大量的热。另外,还可长距离输送。另外,由于未设置具有可动部的泵等,所以,耐久性、可靠性好,紧凑而且重量轻。
另外,可由管90a内的蒸汽量的变化使该部分的传热特性变化,自动地抑制设备内的压力上升,所以,热阻小,热输送能力提高。
另外,即使是在加热热交换器与显热放散热交换器之间的温差小的场合,也可输送大量的热。
另外,由于在热交换循环溶液存放容器内的气液界面以下设置容器内管7,所以,不发生在低热负荷下出现的循环流量的脉动,从低热负荷到高热负荷稳定地输送热。
另外,当从加热热交换器直接将热传递到第2输送通道时,蒸汽发生量下降,热交换循环溶液的循环流量减少,所以,最好在加热热交换器与第2输送通道之间设置绝热槽。
实施形式9
图15为示出本发明实施形式9的气泡泵型热输送设备的断面构成图。在该实施形式中,如图15所示,在热交换循环溶液存放容器4的周围设置散热热交换器17。
这样,可将从加热热交换器11进入的热量输送到散热热交换器17和显热放散热交换器10双方,提高散热能力。
散热热交换器17为另一热输送设备的受热部,可使热交换循环溶液存放容器4外壁直接露出到周围流体,利用水冷、自然空冷、强制空冷(也包含行走风)、辐射进行散热,也可将翅片安装于该外壁。
这样的构成主要是为了散热,在希望减小散热量的场合,也可使该外壁绝热。例如,也可出于在某一时间增大散热量的目的将该外壁露出散热,在别的时间以将热输送到显热放散热交换器10为目的,将绝热用的罩设置于该外壁的周围。
另外,当将显热放散热交换器10作为加热器、将散热热交换器17作为散热器使用时,可从下部朝上方输送热量,可朝双向输送热量。
实施形式10
图16为示出本发明实施形式10的气泡泵型热输送设备的断面构成图。在该实施形式中,如图16所示,在环形通道存放容器18内插入本发明构成的热输送设备本体。即,在环形通道存放容器18内收容由第1空间4a和第2空间4b构成的热交换循环溶液存放容器4,加热热交换器11和显热放散热交换器10接触于环形通道存放容器18地配置。另外,构成溶液循环管A的容器内管7、气液二相流体送入管9、及溶液送出管6分别收容于环形通道存放容器18内,分别在第1空间4a内的加热热交换器11的设置部分和显热放散热交换器10的设置部分以螺旋状配置。
这样,易于埋设于土壤中或建筑物的壁中等。
另外,图17为示出本发明实施形式10的另一气泡泵型热输送设备的断面构成图。图17所示气泡泵型热输送设备在环形通道存放容器18与加热热交换器11相接的部分的环形通道存放容器18内部和环形通道存放容器18与显热放散热交换器10相接的部分的环形通道存放容器18内部分别设置隔板19,另外,分别将热交换溶液20适量地封入到被分隔的部分中。
这样,可减少溶液循环管A与环形通道存放容器18的接触热阻,提高热输送特性。
环形通道存放容器18具有土壤或周围流体或受热部或散热部进行热交换的作用,也可在该环形通道存放容器18内外壁上安装翅片。特别是当在设置显热放散热交换器10的部分的周围安装螺旋状的翅片时,更容易埋设到土壤中。
另外,图18为示出本发明实施形式10的另一气泡泵型热输送设备的断面构成图。图18所示气泡泵型热输送设备将实施形式8的气泡泵型热输送设备形成为4重管构造。在该场合,如图18所示那样,在不必要的热交换部设置绝热材料(包含空气或真空绝热)20a,减小热的交换。
这样,可更容易地制作,可低成本化。
实施形式11
图19为示出本发明实施形式11的气泡泵型热输送设备的断面构成图。在该实施形式中,如图19所示那样,在气液二相流体送入管9的途中设置辅助发热器21。
这样,即使在显热放散热交换器11与加热热交换器10之间的温差小、加热热交换器10内的热交换用循环溶液1不沸腾的场合,通过在辅助发热器21通电进行加热,也可在加热交换器10内产生沸腾。这样,热交换用循环溶液1可在溶液循环管A内进行循环,即使在温差小的场合,也可输送热量。
辅助发热器21的位置如为气液二相流体送入管9的内部的溶液上升的部分,则可如图19所示那样处于加热交换器10的下部,也可处于加热交换器10的上部。
另外,也可在设置了辅助发热器21的部分的管内壁或设置了加热热交换器11的部分的内壁上设置气泡核。气泡核具有不受流体的流动·搅拌、流体和通道壁的温度变化等的影响、稳定地将气体残留于上述内壁面或流体通道中的作用,为图20(a)所示那样的设于管内壁面A1上的划痕22或图20(b)所示那样的由小导管23连接到流体(热交换用循环溶液)1的流道的空间(凹腔型腔室)24。图20那样的凹坑也可由机械或化学加工形成,另外,也可在内壁张设金属网来形成。或者,也可如图20所示那样在管内壁面A1上烧结或接合金属粒子25形成气泡核26。
按照该构造,即使在温度低、内部压力低的场合,存在于气泡核内的残留气体成为蒸汽泡13的发生的起点,可容易发生蒸汽泡13,易于发生热输送的起动,热特性也提高。另外,即使在管内部的流体与加热热交换器部分的管内壁之间的温度差小的场合,沸腾也容易发生,热特性提高。
实施形式12
图22为示出本发明实施形式12的气泡泵型热输送设备的断面构成图。在该实施形式中,如图22所示那样,在热交换循环溶液存放容器4的左右两端设置溶液送出口5、5a,溶液送出管6连接到该溶液送出口5、5a双方,在途中合流,连接到容器内管7。
在将气泡泵型热输送设备搭载于车上的场合,由于倾斜和重力的影响可能使热交换循环溶液存放容器4内的热交换用循环溶液1的气液界面变动,导致溶液送出口5露出到蒸汽空间。在该场合,由于将蒸汽引入到溶液送出管6内,所以,热交换用循环溶液1的循环变差,热输送特性变差。对此,如该实施形式那样,在热交换循环溶液存放容器4上设置多个溶液送出口5、5a,溶液送出管6与该多个溶液送出口连接,同时,连接部分合流,与容器内管7连接,从而使得不易受到朝左右、前后的倾斜的影响和体积力(例如重力)的方向的影响。
图23为示出本发明实施形式12的另一气泡泵型热输送设备的断面构成图。图23(b)为图23(a)的B-B线断面图。在图23所示场合,热交换循环溶液存放容器4横向设置,在其左右两端设置溶液送出口5、5a,溶液送出管6连接于该溶液送出口5、5a双方,在途中合流,连接到容器内管7。
在该实施形式下,气液二相流体送入管9的设置加热热交换器11的部分通过分配容器16a形成为分成多个的循环溶液输送管。另外,容器内管7通过分配容器16a和集合容器16b形成为分成多个循环溶液输送管。
即使这样构成,也可获得与图22的场合同样的效果。
实施形式13
图24~图27为示出将气泡泵型热输送设备用作箱体或建筑物内的空调系统或空调辅助系统的场合的具体构成的图。
在图24和图25中,在保护控制设备等的发热体28的箱体27中设置加热热交换器11,在周围空气(室外机30)或地下(土壤、下水、利用热的场合的蓄热体)29设置显热放散热交换器10。
通过这样形成,可在无负荷状态下输送热量。另外,还可减小该箱体或建筑物内的温度变化。因此,通过代替此前使用的空调设备或用作该空调设备的辅助系统,可减少能量。
加热热交换器11的设置部位不限于箱体27中,也可直接设置到发热体、或设置到太阳光入射的箱体或建筑物的屋顶、屋顶平台、顶楼层、侧壁等任一个。另外,显热放散热交换器10的设置部位除上述外也可为河流、海洋等。
图26为示出应用于高层建筑物空调系统和地板采暖系统的例子。在图26中,将热源32设置于建筑物31的屋顶平台上,来自该热源32的热由本发明的热输送设备100输送,用于地板暖气设备33和建筑物内的空调34。
过去,高层建筑物空调系统大多根据设置、维护、及散热的容易性将该热源和冷源设置于屋顶平台,所以,利用机械驱动型泵将热朝下方输送。然而,通过将本发明的热输送设备用于该高层建筑物空调系统,从而不需要上述机械驱动型泵,可减少热媒体输送所需要的能量。另外,可消除从机械驱动型泵产生的噪声。
另外,在地板采暖时,过去由机械驱动型泵将由锅炉升温后的工作流体送入到埋设于地板的流路进行地板采暖,但通过使用本发明的热输送设备代替机械驱动型泵,可减少机械驱动型泵所需要的能量,可消除从机械驱动型泵产生的噪声。
图27示出在温室栽培的空调系统中应用的例子。近年的农业得到进一步的提升,许多作物进行温室栽培。虽然机械地进行温度·湿度的管理的场合也变多,但几乎所有场合温室内的温度管理由人手进行,为非常烦杂的作业。
在这样的场合,如图27所示那样,如在均热性优良的土壤29设置本发明的热输送设备的显热放散热交换器10,则可减少塑料薄膜大棚35内的温度变化。相反,当利用地热使温室内温度上升时,可减少此前将室温保持为高温的状态而使用的锅炉等所消耗的能量。
实施形式14
图28为示出气泡泵型热输送设备用作室外测量设备散冷元件的场合的具体构成的图。
室外测量·控制设备或变压器(例如输配电线中继设备和迟滞测量设备等)的性能提高、大容量化及紧凑化等使内部发热密度增大,其冷却方法成为问题。另外,关于室外设备的冷却,受到天气左右的部分较大,需要不受天气左右的冷却元件。另外,将空冷用的翅片等设置于箱体表面的例子较多,存在灰尘等堵塞孔导致的冷却性能下降和不良天气(例如台风等)导致的破损等问题。另外,在砂漠地带中,由于白天周围环境温度较高,所以,发热体的冷却为严重的问题。
因此,如图28所示,通过将本发明的热输送设备100用作这些冷却元件,将显热放散热交换器10设置到土壤29中或电线杆36等不易破坏的物体的内部,可解决上述问题。
实施形式15
图29为示出将本发明的气泡泵型热输送设备用于抑制热岛现象的场合的具体构成的图。
在城市,大地的表面由混凝土和沥青覆盖,土壤露出的部分和绿地显著减少。此外,该地区的大气温度易于上升,产生所谓的热岛现象。
作为解决该现象的方法,如图29所示那样,利用本发明的热输送设备100,通过热管37将加热热交换器11设置于路面38和空调用室外机39等,将显热放散热交换器10设置到土壤29或河流、下水等中,将来自太阳光的进入热量和从生活产生的废热积极地输送到地中等,从而可抑制热岛现象。另外,周围环境温度下降,可减少冷气所消耗的电力,对减少CO2作出大的贡献。
图30为示出将本发明的气泡泵型热输送设备用于季间融雪或砂漠的绿地化的场合的具体的构成。
存在冬季道路中的积雪导致的打滑事故、屋顶的耙雪、道路上的除雪作业等在大雪地区由积雪产生的问题。实施形式10所示热输送设备为易于埋设于土壤并且可朝双向进行热输送的热输送设备,所以,也可如图30那样设置上述热输送设备100,将夏季的太阳能储存于土壤(或专用的蓄热体)29中,在冬季使用该热量,将落下堆积的雪融化。而且,无负荷而且没有控制的必要性,不需维护,在山中等难以获得电力的场所也可使用。
同样,通过将该热输送设备埋设于砂漠中,将白天的太阳能存储到土壤中,晚上将该能量放出到大气中。这样,可抑制砂漠地带特有的昼夜间的大的气温变动,另外,可抑制水分蒸发,为此,有助于砂漠的绿地化事业。
实施形式16
图31为示出将本发明的气泡泵型热输送设备用于无泵水冷系统的场合的具体构成的图。
搭载于电车、汽车的电子设备的发热量逐年增加,过去由空冷散热,但现在达到了如不进行水冷则不能对应的状况。然而,从空冷系统向水冷系统的转移产生成本高、设置位置限制(主要由泵设置位置限制或为了缩短冷却水配管而受到限制)、可靠性、需要维护等许多的问题。如利用本发明的热输送设备,则不需要循环用泵,不需要用于设置该泵的空间。另外,本发明的热输送设备可进行灵活的配置,所以,设置位置的限制减轻。
图31(a)、(b)为示出实施形式的具体构成的图,第1空间、加热热交换器、分配容器、集合容器一体成形,将其设置于电气设备部40。另外,将显热放散热交换器10设置于风扇41。这样,可由低成本实现可靠性高、紧凑的无泵水冷系统。另外,在过去的冷却系统中,为了从发热体将热传递到冷却水,利用对流传热,所以,必须在传热面安装多个翅片,增大传热面积,翅片制作使成本变高,但在本发明中,由于利用沸腾对流传热,所以,传热特性良好,不一定非要该部分的翅片制作,可实现低成本化。
实施形式17
图32为示出将本发明的气泡泵型热输送设备用于高效焚烧炉的构成图。
焚烧炉一般利用烟囱效果吸引低温新鲜空气,排出由燃烧产生的高温废气。由于吸入低温空气,所以燃烧温度变低,其效率下降,同时,必须设置高烟囱。
利用本发明的热输送设备,如图32所示那样,由热输送设备101将从燃烧室42送出的高温气体43保有的热能提供给从送风通道44吸入的空气45,以自然送风的方式将高温新鲜的空气送到燃烧室42。另外,由热输送设备102将上述高温气体43保有的热能提供给输送到燃烧室42的垃圾46,对垃圾46进行预热,除去包含于垃圾46中的水分,从而可提高燃烧效率。另外,不需要设置高烟囱。另外,由于使燃烧温度上升,所以,可抑制特别是在小型焚烧炉中成为问题的有害的二噁英等的发生。
另外,在大型焚烧炉中,为了除去废气中的有害成分,需要设置化学处理设备47、使废气多次成为低温,但为了最终排出废气,进行再加热,形成为高温气体。如对这样的部分也由本发明的热输送设备103将上述高温气体43保有的热能输送到最终排出的废气,则可有效地利用热能。另外,虽然图中未示出,但也可由本发明的热输送设备将除去有害成分时除去的热量输送到最终排出的废气,有效地利用热能。
另外,也可使用本发明的热输送设备,利用燃烧热能对回收的空罐等低熔点金属进行精炼,构成融合了垃圾回收和精炼作业的高效型精炼厂。
另外,通过相对本发明的热输送设备安装发电系统(利用热交换用循环溶液1的循环),也可进行垃圾发电。
实施形式18
图33为示出将本发明的气泡泵型热输送设备用于混合式热利用系统的构成图。
如图33所示,在太阳能电池板38设置本发明的热输送设备的加热热交换器11,作为热交换用循环溶液1,例如封入磁性流体。另外,在循环溶液输送管A的周围卷绕导线49。这样,可使太阳能电池板38的温度下降,防止其发电能力下降,同时,可由热交换用循环溶液1的循环使电流在导线49内流动,可进行发电。另外,与蓄热体(例如装入绝热容器中的水)接触地设置显热放散热交换器10,可将其热用于别的用途(例如家庭用温水)。
实施形式19
图34为示出为了人工地形成优良渔场或为了吸引在用于饮料、化妆品的场合受到注目的海洋深层水而应用本发明的气泡泵型热输送设备的场合的具体的构成图。
如图34所示,将本发明的热输送设备100的加热热交换器11设置到海洋上部的高温海水或太阳光入射的大气中,在以连接海洋深层水部分与海洋表面的方式设置的圆筒形管50的下端内设置显热放散热交换器10,从而使圆筒形管50的下端内的海洋深层水的温度上升,由周围低温海水的密度差产生的浮力使海洋深层水在该圆筒形管50中自然上升,所以,可容易地吸引该海洋深层水。
实施形式20
图35为示出将本发明的气泡泵型热输送设备用于淡水化领域的场合的具体构成图。
通过利用太阳热、使海水蒸发,在别的容器中使发生的蒸汽冷凝,从而可广泛地利用淡水化的技术。然而,在进行淡水化的许多的地方,没有用于冷凝的冷热源的场合较多。
如图35所示,将本发明的热输送设备100的加热热交换器11设置到由太阳热蒸发的海水的蒸汽51通过的通道中,同时,将热输送设备100的显热放散热交换器10设置到土壤29中,利用土壤中的冷热,可高效率地将海水52淡化成淡水53,不选择场所就可进行淡水化。
另外,也可使用低温海水代替土壤中的冷热。
另外,也可作为遇难时的携带用紧急淡水化设备。
实施形式21
图36和图37为示出分别将本发明的气泡泵型热输送设备用于在月环表面居住区的建设的场合的具体构成图。
现在,航天技术的发展已使得到达月面成为可能。然而,在月面中,当太阳光入射时,表面温度在150℃以上,相反,在太阳光不入射时,达到-150℃以下,存在300K左右的温度变化。此外,通常的固体由热应力破坏,月面上已砂漠化。因此,即使在月面上设置建筑物其寿命也较短。
如图36所示,利用本发明的热输送设备将加热热交换器11埋设于建筑物54的壁和屋顶中,将显热放散热交换器10埋设于月面55的地中,将地中作为蓄热体,从而可缩小该温度变动幅度,使得可建设建筑物。此时,如图36所示,为了减小周向的温度分布,最好将环形热管56设置到加热热交换器11的内侧或外侧。另外,也可由热管57将存贮于地中的热输送到建筑物54的地板。
另外,当如图37所示那样将建筑物54建设于洼地58的经常被遮荫的部分时,温度变动小,建筑物54的寿命变长,但为了人进行居住,必须将建筑物54的内部温度保持为地球环境程度的温度。为此,可考虑由太阳能电池板发电、使用该电力管理室内温度的方法,但在万一发生故障时,可能成为-150℃以下的环境。因此,如图37所示那样,将加热热交换器11设置到阳光照射到的表面或表层中,由本发明的热输送设备101将入射到该表面的太阳能存贮到土壤中,由本发明的热输送设备102或热管等将存贮的地中的热输送到建筑物54内,形成对建筑物温度进行补偿的系统。这样,可减小用于室内温度管理的能量,即使在发生意外的情况下,也可保证人生存的最低限度的温度环境。
由这样的手法,使得月面居住成为可能,可进一步促进航天、天体观测、及无重力加工技术的发展。
实施形式22
此外,还可考虑向循环型社会系统的构筑的应用。
作为节能和气候变暖的1个对策,研究了循环型社会系统特别是能量的长距离输送技术。然而,在此前的热输送技术中,存在与能量的使用和高低差相关的问题等,难以得到实现。本发明的热输送设备可在无动力状态下朝所有方向进行热输送,另外,由于为显热输送,所以,流路的上下方向的曲行没有问题,所以,可实现由本发明的热输送设备连接的高效能量循环城市。
实施形式23
另外,可考虑相对建筑物高层化的在地下室利用方面的应用。现在对住宅获得的需求仍很高,但找到便于利用的土地非常困难,另外,用于建设住宅的土地的价格仍然较高。因此,住宅建设从过去的2层住宅转移到3层或4层住宅,土地面积小,但建筑了大量的地面面积宽的住宅。然而,过去考虑的地下的利用一向未有进展。原因是地下的居住空间不易换气,易于成为多湿空间,所以,作为居住空间和保管仓库都不适合。
如图38所示那样,在住宅壁面形成从地下到顶楼层的通道59、60,将本发明的热输送设备100设置到一方的通道59,使显热放散热交换器10处于通道下端内地将加热热交换器11安装于住宅的壁面,这样,通道下端内空气温度上升,通过通道59将热和空气输送到顶楼层(烟囱效果)。另外,新鲜空气从连接到地下室61的另一方的通道60流入,所以,地下室61不成为多湿、空气沉积的空间,在地下可提供舒适的生活空间。
实施形式24
另外,可考虑在个人计算机等电子设备的冷却的应用。在现在使用的个人计算机中,进行发热量大、使用风扇的强制空冷散热。虽然风扇的静音性能不断提高,但要求更高的静音性。
因此,在个人计算机内底部或横侧的宽空间设置自然空冷式的显热放散热交换器11,另一方面,将发热的CPU安装于气液二相流体送入管9,从而不需要风扇即可有效地散热。另外,也可将壳体壁用作显热放散热交换器。这样,可构筑无风扇散热系统,提供低噪声的个人计算机。
以上说明了本发明的优选实施形式。应该理解,这样公开的目的是进行说明,不脱离由后附权利要求规定的本发明的范围即可进行多种变更和修改。