电容耦合的射频类金刚石碳反应器 发明的领域
本发明涉及一种用于用类金刚石碳涂覆非电导性纤维的装置,以及一种用类金刚石碳涂覆非电导性纤维的方法。本发明是与美国能源部签订的合同的结果(合同号:W-7405-ENG-36)。
本发明的背景
至少自19世纪60年代早期就用液晶聚合物制造高强纤维。这类纤维的公知例子包括由高取向棒状聚(对亚苯基对苯二酰胺)聚合物制造的纤维,公知的如可从杜邦公司(Wilmington,DE)商购的KEVLAR芳族聚酰胺纤维,或者可从AKZO Nobel NV(荷兰)商购的TWARON纤维。这些芳族聚酰胺纤维提供了意外的韧性和高的拉伸模量。这些纤维的断裂强度为2.3-3.4GPa,模量为55-143GPa。结合其低的比重和热稳定性,这在很多结构应用如飞机、船、体育用品、火箭和装甲中具有改善的性能。然而,这类纤维的主要缺点是其相当差的抗弯强度和抗压性能。该纤维于400MPa量级的低应力值屈服,形成弯折带。
为了减轻这种困难,已经作出了很多努力来试图交联该长丝中的聚合物,但是迄今几乎没有成功。其它地方法是用足够高模量的材料涂覆该纤维,实际上“围绕”该长丝以防止弯折。由McGarry等人的早期工作(见SAMPE,季刊,第35页,1993,7月)表明了利用汽相沉积氧化铝涂层的作用。目前,已经报道了在KEVLAR芳族聚酰胺纤维上用微波等离子体辅助有机金属沉积TiN涂层,从而提高了性能。
另一种具有能改善KEVLAR芳族聚酰胺纤维机械性能潜力的涂层是“类金刚石碳”(DLC)。DLC是一种由高度交联的具有基本上为sp3键合程度的碳网络组成的平滑非晶固体。该sp3键合使机械性能接近于金刚石本身的性能。sp3键合所占份额可以从所产生的膜的10%至90%变化,这取决于方法和方法的工艺条件,其性能也从类似聚合物至类金刚石的范围变化。该硬质涂层的模量值一般为约20-约177GPa。结合低密度、低摩擦系数、高硬度和低沉积温度,这使DLC成为用于涂覆芳族聚酰胺纤维的理想的选择物。
还有,不能直接涂覆非电导性材料如芳族聚酰胺。先前已经通过用薄镍层预涂覆纤维以使其具有电导性而将类金刚石碳沉积在KEVLAR芳族聚酰胺纤维上,希望直接涂覆非电导性纤维如KEVLAR芳族聚酰胺纤维,而无需任何中间金属层。
本发明的目的是提供一种用于用类金刚石碳涂覆非电导性纤维,特别是芳族聚酰胺纤维如KEVLAR芳族聚酰胺纤维的装置。
本发明的再一目的是提供一种用类金刚石碳涂覆非电导性纤维,特别是芳族聚酰胺纤维如KEVLAR芳族聚酰胺纤维的方法。通过参照附图以及下述对本发明的详述,本领域技术人员会明了本发明的其他目的和优点。
本发明的概述
为了得到上述和其他目的,作为具体和一般性的描述,依据本发明的目的,本发明提供了一种用类金刚石碳涂覆非电导性纤维的方法,该方法包括将非电导性纤维在反应室中的一对平面金属栅极之间穿过,在反应室中充入烃气体,在反应室中形成等离子体,并保持足够的一段时间,由此在非电导性纤维上形成类金刚石碳。
本发明还提供了一种用于在非电导性纤维上沉积类金刚石碳的反应器室,该反应器室包括一个真空室,一个阴极组件,该阴极组件包括一对间隔距离小于约1厘米的电绝缘相对的平面金属栅极,一个阳极,一个将烃气体充入所述真空室中的装置,以及一个在所述真空室中产生等离子体的装置。
本发明还提供了一种阴极组件,包括一对间隔距离小于约1厘米的电绝缘相对的平面金属栅极,以便足以避免在平面金属栅极之间的间距内形成等离子体。
附图简述
图1是本发明的阴极组件的侧视图。
图2是本发明的阴极组件的第二个侧视图。
图3是表明对涂覆的和未涂覆的KEVLAR芳族聚酰胺纤维的三点弯曲试验结果的图。
发明详述
本发明涉及在非电导性纤维上沉积DLC,包括用于在非电导性纤维上沉积DLC的装置以及用于在非电导性纤维上沉积DLC的方法。
在本文中所用的类金刚石碳或DLC意指具有合适的短程有序的碳,即在任何方向上的原子的有序排列均小于约10纳米(nm)。
可用DLC涂覆的非电导性纤维包括有机聚合物纤维,如聚(对亚苯基对苯二酰胺)纤维,或无机聚合物或材料纤维如碳化硅纤维。其他非电导性聚合物纤维如尼龙、其他液晶聚合物、或NOMEX芳族聚酰胺纤维(可从杜邦公司购得,Wilmington,DE)、或其他非电导性无机纤维如氧化铝基纤维或玻璃纤维,均可进行类似的涂覆。
用本发明方法和装置所涂覆在纤维上的DLC涂层的厚度一般为约0.1um-约10μm,优选约0.1μm-约2μm。
本发明的阴极组件包括一对金属(如钢)板,每块板的中心部分均被去除。在每块板的中心部分上都安装一具有方形或菱形孔的金属栅极或网。优选地将金属栅极或丝网定向以在沉积过程中使栅极的金属部分不平行于纤维线的方向,由此避免任何潜在的位于下面的纤维上的连续阴影。
该阴极组件示于图1,包括盖于第二板13(未示出)上的位于一个平面中的第一板12。该第一板12和第二板都具有一个中心开口,一金属栅极或网14盖在该开口之上。该金属栅极或网14具有方形或菱形的孔,并且该栅极的金属以不平行于下面的纤维束16的方式安装。用18所示的合适的连接装置将这些板连接在一起。
图2示出了图1所示组件的第二个侧视图,包括第一板12和第二板13、金属栅极或网14、以及下面的纤维束16。第一板12和第二板14用合适的非电导性垫片如氧化铝垫片分离开来,并且金属栅极或网14以适于避免在栅极间形成任何等离子体的距离分隔开。典型地,栅极间的间距保持小于约1厘米,优选为约0.1mm-约10mm,更优选为约1mm-约3mm。
本发明的反应器组件包括安装在合适高的真空室中的阴极组件(前述)。该真空室应能保持约10-5托至约10-6托的减压。该真空系统还应包括一个将烃气体充入真空室的装置如气体入口。还有,该真空系统还应包括在真空室中由烃气体产生等离子体的所需装置,例如合适的电连接,以给阴极组件供电,这与接地阳极联合,而在阴极上产生负DC偏压。一般地,偏压保持在约100伏-约1000伏。更高的偏压会产生不是DLC的产物如玻璃态碳或石墨碳。
为了形成用于本发明方法中形成DLC所需的等离子体,可以使用下述物质:烃气体如烷(甲烷、乙烷、丙烷、丁烷等)、烯(乙烯、丙烯、丁烷、戊烯等)、炔(乙炔、丙炔、丁炔、戊炔等),或者其他烃类如链二烯、链三烯、环烷、芳烃、枯烯(cumulenes)、萜烯等。优选地,烃气体是烷如甲烷。
该反应器组件还包括一个用于输送纤维的装置,以使纤维穿过该室,从而有效和连续地处理纤维。这种输送纤维的装置可以包括安装在真空体系中反应室之相对两侧的一对线轴或卷轴,这样待涂覆的纤维从第一线轴上解绕下来,穿过反应室以及穿过阴极组件以涂覆DLC,并且作为涂覆的纤维再绕在第二线轴上。
在该反应体系工作过程中,将烃气体充入反应室中,将阴极相对于阳极而适当地偏压,并且将阴极施以约13.56MHz的射频(RF)电能以产生等离子体。其他频率也可使用,或者等离子体由施加到阴极组件上的DC产生。当等离子体产生以及烃气体被离子化时,由于阴极的自偏压而使离子吸引至阴极并朝向阴极加速。
为了改进涂层与纤维的粘结力,在沉积前使用相同实验配置进行氩轰击清洗处理。在一个实施方案中,在完成初始DLC沉积之后,将安装有纤维的板翻转,并用相同的步骤将纤维的另一侧涂覆。用此步骤可得到高达2微米厚的粘结力好的DLC涂层。
与常规的热化学汽相沉积(CVD)不同,该离子轰击方式产生视线沉积。通过仔细设计阳极/阴极组件可以实现保形涂覆。为了围绕纤维进8行全面涂覆,在展开的纤维束上进行沉积,并且一次涂覆一侧。
在下面非限定性实施例中更具体地说明本发明,这些实施例仅用于说明,因为对于本领域技术人员来说多种改变和变化是明显的。
实施例1
用图1所示的平面靶13.56MHz RF等离子体方法,将从杜邦公司购得的KEVLAR49芳族聚酰胺纤维涂覆。该体系包括扩散泵抽空的高真空室,该真空室装有质流控制器和用于在减压下操作的传导阀。基本方法需要在接地阳极(真空体系的壁)和供电的阴极之间形成等离子体。该阳极-阴极系统不是精密对称的,因而在阴极产生负DC自偏压。该等离子体由甲烷的烃气体形成,它在等离子体中离解和离子化。离子被加速穿过等离子体层而移向阴极,这是自偏压的结果。对于沉积具有所需性能的DLC来说,对离子轰击方式是严格。需要压力范围为50-100微米,偏压为几百伏至约1千伏。低的偏压会导致类似聚合物的性能,而太高的偏压会产生玻璃态或石墨态碳膜。
从丝束中切下长5cm的部分纤维束,并将2/3的纤维束去除。将纤维束的剩余部用手展开,并安装在约10×13cm的钢板上,该钢板尺寸为2.5×5cm的中心部分已被去除。用焊接的金属夹子将纤维固定在板上。将带有纤维的板安装在第二个“阴极板”上,并用氧化铝垫片与该阴极板电绝缘。将这种结构置于真空室中并与地绝缘。该阴极板与匹配网的电源输出端电连接,该网再与RF,13.56MHz电源相连。
真空室抽真空至10-6托的本身压力,再充入氩气至压力为3.5×10-5托。将65瓦的RF电加到阴极上,产生约-500伏DC的负自偏压。使用这些条件来溅射清洗纤维表面15分钟以改善膜粘合力。在氩预处理后,将RF电源和氩气均关闭,并将体系抽空至10-6托。引入甲烷至8.5×10-5托压力。将65瓦RF电加到阴极上产生-520伏DC的负自偏压。沉积进行4小时。此时间结束时关闭RF电源和甲烷气流并将真空室再抽空,使试样冷却。将真空室再充入氩气并在空气中打开。从阴极上取下不锈钢板,翻面后再固定到阴极上以涂覆纤维的另一侧。如前将真空室抽真空,并引入甲烷气至8.5×10-5托压力。将65瓦RF电源加到阴极上产生约475伏DC负自偏压。再进行沉积4小时。
用三点弯曲试验对所得材料即涂覆的芳族聚酰胺纤维进行试验,试验中使用从Nano Instrument,Inc(Knoxville,TN)购得的毫微压痕机,该试验公开在与此同时申请的美国临时专利申请号60/007,849中,由Devlin等人申请,题目为“用于小直径纤维的弯曲试验”,将其内容引入本文供参考。结果示于图3中。
实施例2
为了连续和有效地涂覆芳族聚酰胺纤维,提出了一种同时涂覆纤维两侧的方法。该方法如图1所示。该阴极结构包括两个由不锈钢网构成的平面栅极。该两个栅极相隔约3mm并形成阴极组件。将非导体纤维(即实施例1的KEVLAR49芳族聚酰胺纤维)在这两个栅极之间穿过,并且离子从两个方向穿过栅极而被加速,基本上同时轰击纤维的两侧。通过保持栅极的间距小于阴极的暗区距离(约为1厘米的量极),可避免在两栅极间形成等离子体。尽管在优选实施中只是静态地进行沉积,该纤维或若干纤维可以连续地在两栅极间输送,从而在纤维两侧形成均匀的涂层。用类似实施例1所述条件和预处理,得到高达0.1μm的均匀涂层。对于厚涂层,从栅极可观察到阴影效应、在连续体系中不存在阴影。
用手将十六根KEVLAR49芳族聚酰胺纤维散开并穿过1.5mm厚钢板的开口部分将纤维钉住。将与第一块板相同的第二块板安装上,因而将纤维夹在这两块板之间,并通过开口可从两侧看到纤维。将不锈钢网安在这两块板上并盖住开口。将整个组件作为阴极。两钢网栅极间的间距为3mm即满足需要,以避免在两栅极间离子化,同时由于自偏压使阴极外形成的离子加速穿过该组件两侧的暗区距离并穿过栅极而从两侧轰击纤维。当离子被加速从两个方向穿过栅极时,将非电导性纤维保持在两栅极之间,从而轰击纤维。
实施例3
将纤维在栅极(栅极的结构如实施例2)之间连续输送,以在两侧形成均匀涂层。连续涂层避免了栅极的阴影效应形成在涂层中。
尽管参照特别详细的说明描述了本发明,但这些详细说明不构成对本发明范围的限制,除非这些说明与所附权利要求所包括的范围相同。