CN200480015467.8
2004.05.25
CN1798617A
2006.07.05
终止
无权
未缴年费专利权终止IPC(主分类):B05D 5/12申请日:20040525授权公告日:20090114终止日期:20120525|||授权|||实质审查的生效|||公开
B05D5/12(2006.01); C23C14/00(2006.01); H01L39/24(2006.01)
B05D5/12
美国超能公司;
V·塞尔瓦曼尼克姆; 李喜均
美国纽约州
2003.06.05 US 10/456,733
上海专利商标事务所有限公司
徐迅
将离子源照射在将要进行涂布的基材上,从而提高用于制造超导材料的MOCVD、PVD或其它方法。
1. 一种连续制造涂层厚度超过1.5微米、临界电流超过200A/厘米宽度的高电流密度HTS带的方法,所述方法包括:当基材平移通过沉积反应器中的第一沉积区时,在所述基材上施涂第一厚度的涂层;并在所述基材平移通过该沉积反应器中的至少一个附加沉积区时,立即在所述基材上施涂附加厚度的涂层,其中在第一沉积区出口处的涂层厚度不超过1.5微米,且在基材平移通过至少最后的沉积区时,用离子束对基材进行轰击。2. 如权利要求1所述的方法,其特征在于,所述方法为MOCVD法。3. 如权利要求1所述的方法,其特征在于,所述方法为PVD法。4. 如权利要求1所述的方法,其特征在于,所述方法为溅射法。5. 如权利要求1所述的方法,其特征在于,其中具有两个沉积区。6. 如权利要求1所述的方法,其特征在于,所述离子束也对第一沉积区内的基材进行轰击。7. 如权利要求1所述的方法,其特征在于,所述临界电流超过300A/厘米宽度。8. 如权利要求1所述的方法,其特征在于,所述临界电流超过400A/厘米宽度。9. 一种权利要求1所述的方法的产品。10. 一种权利要求6所述的方法的产品。11. 一种权利要求7所述的方法的产品。12. 一种权利要求8所述的方法的产品。
用于厚膜带的离子束辅助高温超导体(HTS)沉积 技术领域 本发明涉及厚膜高温超导体(HTS)涂布的导线的制造,这种HTS涂布的导线具有提高的电流密度。 发明背景 在过去的三十年中,美国的最终能量消耗中电能已从25%上升到了40%。随着对能源的需求增加,越来越急需高度可靠、高质量的能源。随着对能源的需求不断增长,城市电力系统被推到了其性能的极限,较陈旧的部分更甚,需要有新的解决方案。 导线形成了世界电力系统的基本结构单元,包括变压器、传输和配电系统,以及电动机。由于1986年革命性的HTS化合物的发现,开发出了完全新型的电力工业用的导线;这个发现是导线技术在一个多世纪里最重要的进步。 HTS涂布的导线具有最佳的性能,它所输送的电流比相同物理尺寸的常规铜导体或铝导体高100倍。HTS涂布导线的出众功率密度,可以产生新一代的电力工业技术。它提供重大的尺寸、重量和功率方面的益处。HTS技术可以以各种方式降低电力系统的成本,增加其能力和可靠性。例如,HTS涂布的导线的输送能力超过通过现有的路线的两倍至五倍。这种新的电缆将提供一种有力的工具,从而在改进输电网的同时,减少它们在环境中留下的痕迹(footprint)。然而,迄今为止,仅制得了高性能的用来制造下一代HTS涂布导线的HTS带的短样品。为使HTS能够实际应用于电力生产和配电工业,需要开发出用于连续、高生产量地生产HTS带的技术。 气相沉积法是一种制造HTS带的方法,在此方法中,将超导材料的蒸气沉积在带基材上,从而在带基材上形成HTS涂层。有希望用于高生产量、低成本地制备HTS带的众所周知的气相沉积法包括金属有机气相沉积法(MOCVD)和脉冲激光沉积法(PLD)。可以使用MOCVD或PLD法,将钇-钡-铜-氧化物(YBa2Cu3O7或“YBCO”)膜之类的HTS膜沉积在加热的缓冲的(buffered)金属基材上,形成HTS涂布的导体。然而,迄今为止,通过任何一种上述方法,仅仅制得了短长度的高性能涂布导体导线样品。必须克服一些挑战,以便低成本地制造长长度(即几公里)的HTS涂布导体。 一种表征涂布的导体的方法是其每米的成本。另外,可以根据每千安培-米的成本来评价成本和性能。更具体地说,对于给定的每米涂布导体的成本,随着电流的增大,每千安培-米的成本降低。这被表述为沉积的HTS材料的临界电流(Jc)与膜的横截面积的乘积。 对于给定的临界电流和被涂导体的宽度,一种提高横截面积的方法是增加HTS膜的厚度。然而,已经证明,尽管临界电流是厚度的函数,随着HTS膜单层厚度的增加超过大约1.5微米,临界电流会下降,并达到饱和。这是由于在膜厚超过大约1.5微米的情况下,HTS材料变得非常多孔,产生空隙,使得表面糙度增大,所有这些变化都会抑制电流的流动。由于简单地增加HTS膜的厚度无法相应地增大临界电流,如何以低成本高效益的方法在使膜厚度超过1.5微米的同时,还要使HTS涂布的导体的临界电流实现相应的增加,在技术上是一个挑战。 一种制备高质量YBCO厚膜地方法是对膜的形态进行改进,例如当厚度超过1.5微米时,增加材料的密度和平滑度,从而提高电流密度。Tatekawa等人在2000年11月7日的名为“制造超导厚膜的方法(Method for producingsuperconducting thick film)”的美国专利No.6143697号中,描述了制造超导厚膜的方法,该方法包括以下步骤:形成厚层,该厚层包括基材上的超导材料;对形成在基材上的厚层进行烧制;对烧制过的厚层进行冷等静压压制;然后对进行了冷等静压压制的厚层再次进行烧制。 Tatekawa等人方法的一个缺点是,尽管这是一种宜用于制造超导氧化物厚膜的方法,但是该方法无法低成本地改进膜的形态以便使膜的缺陷(例如高孔隙率、空隙和表面糙度)最小化,以便提供具有提高的临界电流的厚HTS膜。因此,Tatekawa等人的方法不适于低成本地制造高电流HTS涂布的导体。 因此,本发明的一个目标是提供用于制造高电流HTS涂布带的YBCO膜,这种膜的厚度要超过1.5微米,还要具有提高的电流密度。 附图简述 图1示出根据本发明通过沉积具有提高的电流密度的HTS厚膜来制造高电流HTS涂布带的离子辅助MOCVD系统。 图2说明根据本发明通过沉积具有提高的电流密度的HTS厚膜来制造高电流HTS涂布带的离子辅助PLD系统。 发明简述 本发明是一种用来制造厚度超过1.5微米、电流密度提高的YBCO膜的离子辅助HTS厚膜连续沉积法,这种膜被用于制造高电流HTS涂布带。本发明的离子辅助HTS厚膜沉积法包括离子源,该离子源在MOCVD、PLD或溅射法之类的众所周知的方法中,对沉积区进行轰击。 该离子源为沉积方法提供了额外的能量,这使得厚度超过1.5微米的膜的形态得到了改进。这种膜形态的改进导致例如材料密度增大、表面糙度改善、孔隙率减小。结果,在本发明的沉积过程中,随着YBCO膜的厚度增加到超过1.5微米,膜的缺陷最大限度地减小,这使得所制得的YBCO厚膜的电流密度增大。 离子束辅助电子束蒸发在例如光学应用中是众所周知的,在此方法中,在膜生长的时候将高能离子聚焦在膜上,从而形成极为致密、平滑、均一的光学结构。然而,迄今为止,尚未将该技术应用于HTS沉积过程中,以得到类似的生长提高。 本发明的新颖方面为,在至少两区涂布沉积工艺的至少最后一个区中,包括有一离子源,从而对本发明系统中进行的常规涂布工艺进行增强。 本发明的方法可制造总涂层厚度超过1.5微米、临界电流密度超过200A/厘米的高电流密度HTS带。在一个优选的实施方式中,该方法所制造的带的总涂层厚度超过1.5微米,临界电流密度超过300A/厘米,在最优选的实施方式中,该方法所制造的带的总涂层厚度超过1.5微米,临界电流密度超过400A/厘米。 发明描述 出于说明的目的,首先结合图1所示的MOCVD法揭示本发明的离子辅助HTS厚膜沉积法,然后结合图2所示的PLD法揭示本发明的离子辅助HTS厚膜沉积法。然而,本发明的离子辅助HTS厚膜沉积法并不仅限于MOCVD法和PLD法。例如,本发明的离子辅助HTS厚膜沉积法可应用于蒸发及和溅射工艺。 作为本发明的第一实施方式,图1说明了根据本发明的离子辅助MOCVD系统100,该系统是用来通过沉积具有提高的电流密度的HTS厚膜,从而制造高电流HTS涂布带。本发明的离子辅助MOCVD系统100包括常规的MOCVD反应器110,该反应器是一个真空密封的沉积室,在此室内发生MOCVD过程,例如能够维持在例如1.6托压力下的冷壁反应器。 MOCVD反应器110中具有喷头(showerhead)112,该喷头的位置接近基材加热器114。在喷头112和基材加热器114之间、在沿喷头112的长度方向形成的沉积区118之内(即基材带116暴露于前体蒸气的区域)放置基材带116,并使之在操作时平移。在沉积区118中设定多个区,例如图1所示的A区和B区。 所述基材带116是一种由不锈钢或铬镍铁合金之类的各种材料形成的各种长度的基材,在此基材带上事先沉积了缓冲层,例如钇稳定的氧化锆(YSZ)和/或氧化铈(CeO2)。该基材带能够耐受高达950℃的温度,其尺寸可因满足最终产品需要和系统的限制而不同。例如,基材带116的厚度可为25微米,宽1厘米,长100米。 喷头112是一种用来将前体蒸气均匀分散至基材带116上的装置。喷头112朝向基材带116的表面上,均匀分布有多个细孔,前体蒸气通过这些细孔喷向基材带116。用户可以根据用途确定喷头112的长度和蒸气前体的具体组成。 在沉积过程中,通过基材加热器114控制基材带116的温度。所述基材加热器是一种众所周知的单区或多区基材加热器,该加热器通过电灯之类的辐射加热元件对基材带进行加热,通常加热温度为700-950℃。或者该基材加热器114是具有坎萨尔斯铬铝电热丝或MoSi2之类加热元件的电阻加热器。 离子辅助MOCVD系统100还包括用来输送涂料前体的系统。示例性的前体输送系统包括泵120,该泵连接液体前体源(未示出),前体源包含一种溶液,该溶液含有钇(Y)、钡(Ba)和铜(Cu)的四甲基庚二酸(tetramethyl heptanedionate)(THD)化合物之类的有机金属前体,以及四氢呋喃和异丙醇之类的溶剂的混合物。泵120是高压低流速泵,例如高压液相色谱(HPLC)泵,这种泵可达到0.1-10毫升/分钟的低流速。泵120通过管道或管线形成的液体管道124,向前体气化室122进料。 前体气化室122是一种众所周知的设备,在此气化室内对前体溶液进行闪蒸,并将其与氩气或氮气之类的惰性气体混合,用来将其输入喷头112。通过管道或管线形成的气体管道126将惰性载气通入前体气化室122。前体蒸气通过前体蒸气管道128离开前体气化室122,所述前体蒸气管道128与喷头112的进口相连。蒸气管道128是连接管道或连接管线,前体蒸气和惰性载气经管道128从前体气化室122通入喷头112。 在蒸气管道128进入MOCVD反应器110之前,氧气管道130接入蒸气管道128。氧气管道是一根管子或管线,通过该管道或管线将氧气引入在蒸气管道128中流动的前体蒸气及其惰性载气。 离子辅助MOCVD系统100包括离子源132,该离子源在MOCVD反应器内向基材带116发射离子束134。离子源132可以是廉价的无栅离子轰击源,该轰击源可产生能级通常为0.5-10千瓦的准直离子束或非扩散离子束。无栅离子源132的例子是从Veeco Instrument[2330E Prospect Fort Collins,CO 80525]购得的,该离子源在高达100-1000电子伏的电压下操作,其尺寸为6厘米×66厘米。离子源132的尺寸和取向要根据要受到辐射的基材带116的长度、以及MOCVD反应器110的设计来确定。离子源132未必安装在靠近沉积区118的位置,因为离子束134的离子可做长距离跋涉。 或者离子源132也可为有栅离子源。然而,有栅离子源不如无栅离子源合人心意,这是由于有栅离子源的成本通常高于无栅离子源,对压力的要求也比无栅离子源更苛刻,即104至10-6托,而无栅离子源的压力要求为10-2至10-3。 通过在MOCVD反应器110外壁内安装压差装置(pressure diffential)136,使得离子源132与MOCVD反应器110之间完成压力界面。所述压差装置136是一种通常能够将离子源132保持在大约10-4至10-2托的真空压力、同时能够将MOCVD反应器110保持在通常为1-50托的真空压力的装置。这可通过涡轮分子泵或低温泵之类完成。所述压差装置136还包括一个开口,离子束134可通过该开口进入MOCVD反应器110。 参照图1的离子辅助MOCVD系统100,可将本领域众所周知的基本MOCVD法归纳如下。在离子辅助MOCVD系统100的反应器110中,通过在基材带116表面上进行的化学反应,用气相前体将YBCO之类的HTS膜沉积到加热的基材带116上。更具体地讲,基材带116按照从A区至B区的方向线性地平移通过沉积区118(基材带116的平移机构未示出),启动泵120,启动前体气化室122,启动基材加热器114。 蒸气管道128将钇-钡-铜蒸气前体输送至喷头112,喷头将蒸气前体均匀地导向沉积区118内的基材带116。氧气与钇-钡-铜蒸气前体反应,然后该反应组合(reacting combination)在沉积区118内与加热的基材带116接触,使得钇-钡-铜蒸气前体分解,随着基材带116平移经过沉积区118,在其上形成YBCO层。 基材带116在沉积区118的A区内经历了最初的YBCO膜积累,其中膜的厚度从0微米积累至1.0-1.5微米。然后基材带116在沉积区118的B区进一步积累YBCO膜,膜厚度从大约1.5微米继续积累至5微米。 在如上所述的离子辅助MOCVD系统100中进行常规的沉积过程的同时,启动离子源132,放出离子束134。形成离子束134的正离子流被加速射向沉积区118内的基材带116。更具体地讲,当基材带116平移穿过沉积区118的B区时,将从离子源132射出的离子流134聚焦在基材带116上,在此处进一步积累YBCO膜,其厚度接近和/或超过1.5微米。尽管所显示的本方法具有两个沉积区A和B,但是也可有多个沉积区,只是要求在那些基材上的涂层厚度超过1.5微米的沉积区中,当基材平移穿过这些沉积区时,有离子源聚焦在基材之上。尽管不是绝对的要求,但较佳的是,甚至当基材在膜的厚度生长到1.5微米的第一个沉积区内时,就有离子源聚焦在基材上。这样可以确保为随后的生长提供密实膜的模板。 结果,在沉积区118内的B区进行的YBCO沉积过程受到了离子束134的离子轰击的影响。由于这种离子轰击,为沉积区118B区内的沉积过程添加了额外的能量,从而可以使膜的缺陷(例如高孔隙率、空隙和表面糙度)变得最小,从而当YBCO膜通过气相沉积累积在基材带116上的时候,保持了高质量生长模板。结果,本发明的离子辅助MOCVD系统100能够制造厚度超过1.5微米的YBCO膜,而这种膜具有提高的材料密度和平滑度,从而增加了其电流密度。 对离子源132在B区中的取向并无特殊要求。相反,其取向是由MOCVD反应器110的设计决定的,因为基材带116和喷头112之间有一个最佳距离。特别地说,入射离子束134的取向,是由喷头112和基材加热器114的尺寸来调节的。 所形成的YBCO膜的厚度小于例如1.0-1.5微米的,离子源132产生的离子束134不聚焦在沉积区118的A区之内的基材带116上。如上所述,这是由于在头1.0-1.5微米的生长中,YBCO膜形态的质量极高,不会抑制电流密度。 尽管不是为了获得本发明的益处所要求的,但是也可以在A区用离子束轰击基材。YBCO膜的厚度小于1.0-1.5微米的,在沉积区118的A区内进行离子轰击可用以确保膜的密实,从而为随后的层提供良好的模板。 图2说明本发明的第二实施方式:通过沉积具有提高的电流密度的HTS厚膜制造高电流HTS涂布带的离子辅助PLD系统200。本发明的离子辅助PLD系统200包括常规沉积室210,该沉积室是专门设计用于脉冲激光沉积应用的真空室。这种真空室的一个例子是购自Neocera,[美国地址:10000 Virginia ManorRoad Beltsville,MD20705]的12或18英寸真空室,但是本领域的技术人员可以理解,可使用许多供应商制造的各种形状和尺寸的真空室。沉积室210的压力保持在例如200毫托。在此例子中,沉积室210内包含第一靶212和第二靶214,这些靶被安装在靠近基材加热器216的位置,基材带116如图1所示被安置在靶212及214与基材加热器216之间,并在它们之间平移(在操作的时候)。靶212和214由YBCO之类的HTS材料组成,它们可以购自Praxair Surface Technologies、Specialty Ceramics[美国地址:16130WoodRedRoad,#7,Woodinville,WA98072]和Supercomductive Components,Inc.[美国地址:1145 Chesapeake Ave.,Columbus,OH43212]。 在沉积过程中,通过基材加热器216控制基材带116的温度。像图1中的基材加热器114一样,基材加热器216是一种众所周知的单区或多区基材加热器,该基材加热器通过灯之类的辐射加热元件将基材带116通常加热至750-830℃。 最后,离子辅助PLD系统200包括离子源210,该离子源发射出导向沉积室210内的基材带116的离子束220。离子源318是廉价的无栅离子轰击源,该轰击源可产生能级通常为0.5-10千瓦的准直离子束或非扩散离子束。无栅离子源218的例子是从Veeco Instrument[美国地址:2330 E Prospect Fort Collins,CO 80525]购得的,该离子源在高达100-1000电子伏的电压下操作,其尺寸直径3-6厘米。离子源218的尺寸,尤其是离子源218的长度与膜沉积区的长度相近。 离子源218相对于膜沉积区并无特殊的取向。相反,其取向由沉积室210的设计来确定,因为在基材带116与靶212和214之间存在一最佳的距离。特别地,入射离子束218的取向受制于靶212和214、以及基材加热器216的尺寸。由于离子束220的离子可以移行长的距离,离子源218并非安装在靠近基材带116的位置。或者离子源218为有栅离子源。 参照图2的离子辅助PLD系统200,基本的PLD法在本领域是众所周知的,仅需归纳如下。在离子辅助PLD系统200的沉积室210内通过对HTS材料的蒸发、然后使加热的基材带116暴露在这些蒸发的材料之下,从而沉积YBCO之类的HTS膜。更具体地说,使基材带116按照先通过靶212、然后通过靶214的方向线性平移经过沉积室210,所述的两个靶沿基材带116的传输线路排列(用来平移基材带116的机构未示出)。启动基材加热器216。 启动第一激光源(未示出)产生激光束222,激光束222照射在靶212上,形成烟流(plume)224,烟流224从靶212被激光束222照射的部分发射出来,以高度正向的形式射向基材带116。以相似的方式,启动第二激光源(未示出)产生激光束226,激光束226照射在靶214上,形成烟流228,烟流228从靶214被激光束226照射的部分发射出来,以高度正向的形式射向基材带116。 烟流224和228分别为靶212和靶214的材料分别受到激光束222和226的照射时,熔融并随后爆炸性地产生的等离子体烟尘(cloud)。 当基材带116以预定的速度通过沉积室210时,将烟流224中的YBCO颗粒沉积在基材带的表面上。 当基材带116以预定的速度通过沉积室210时,将其暴露于烟流224中所含的YBCO颗粒,从而在基材带116上初步地积累YBCO膜。由于暴露在烟流224的颗粒之下,在基材带116的表面上膜的厚度从0微米累积至可达1.0-1.5微米。然后当基材带116以预定的速度通过沉积室210时,将其暴露于烟流228中所含的YBCO颗粒,从而在基材带116上进一步地积累YBCO膜。由于暴露在烟流228的颗粒之下,在基材带116的表面上膜的厚度从大约1.5微米累积至可达5微米。 在如上所述的离子辅助PLD系统200中进行常规的沉积过程的同时,启动离子源318,放出离子束220。形成离子束220的正离子流被加速射向基材带116,当基材带116平移通过烟流228的颗粒时,将形成离子束220的正离子流聚焦在其上,在此处进一步积累YBCO膜,其厚度接近和/或超过1.5微米。通过暴露在烟流228的颗粒下而进行的YBCO沉积过程,受到了离子束220的离子轰击的影响。尽管图中本方法具有两股烟流,但是也可有多股烟流,只是要求在那些基材上涂层的厚度超过1.5微米的沉积区中,当基材带移过这些沉积区的烟流时,有离子源聚焦在基材带之上。 由于这种离子轰击,为暴露在烟流228的颗粒中进行的沉积过程添加了额外的能量,从而可以使膜的缺陷(例如高孔隙率、空隙和表面糙度)变得最小,从而当YBCO膜通过气相沉积沉积在基材带116上的时候,保持高质量生长模板。结果,本发明的离子辅助PLD系统200制造厚度超过1.5微米的YBCO膜,这种膜具有提高的材料密度和平滑度,从而增加了其电流密度。 形成的YBCO的厚度小于例如1.0-1.5微米的,当基材带116暴露在烟流224之下时,不需要将离子源218产生的离子束220聚焦在基材带116上。这是由于,如上所述,在1.0-1.5微米的生长内,YBCO膜形态的质量仍然很高,因此电流密度不受抑制。 然而,或者当基材带116暴露在烟流224中而YBCO膜的厚度小于1.0-1.5微米的,也可在此区域进行离子轰击。特别地,可在基材带116被暴露于烟流224的区域进行离子轰击,以确保膜的密实,从而为随后的层提供良好的模板。
《用于厚膜带的离子束辅助高温超导体HTS沉积.pdf》由会员分享,可在线阅读,更多相关《用于厚膜带的离子束辅助高温超导体HTS沉积.pdf(13页珍藏版)》请在专利查询网上搜索。
将离子源照射在将要进行涂布的基材上,从而提高用于制造超导材料的MOCVD、PVD或其它方法。 。
copyright@ 2017-2020 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1