接收机及其调整系统、方法 技术领域
本发明涉及进行正交检波器等的微调整的接收机及其调整系统、方法。
背景技术
以往,在FM接收机中使用着福斯特-西利检波器或比例检波器、正交检波器等各种检波方式。其中,正交检波器是通过从预定频率的中间频率信号和该信号的相位移动了π/2的信号相乘的结果中除去预定的高频率成分而进行FM检波的,对于输入的中间频率信号需要将其相位移动π/2左右的π/2移相器。该π/2移相器例如将电感器或线圈并联或串联组合而构成。
另外,由于在制造上述以往的π/2移相器中所包含地电感器或电容器时存在偏差,因此那些元件常数也在某范围内存在偏差。例如,电感器的电感或电容器的静电电容的偏差在±10%的范围内。当然,在组合这些电感器或电容器构成π/2移相器的情况下,相位移动量为π/2的频率从预定频率偏离,作为正交检波器,即,作为使用了该正交检波器的FM接收机,无法得到良好的特性。因此,以往就从偏差大的部件中选出具有期望的特性值的部件并使用,或使用陶瓷滤波器等高价部件而谋求频率的稳定化,为了得到良好的特性而花费了劳力、时间和成本。
发明内容
本发明鉴于上述问题而被作出,其目的在于,提供一种能降低为了得到良好的特性所花费的劳力、时间和成本的接收机及其调整系统、方法。
为了解决上述课题,本发明的接收机具有通过调整静电电容值而使特性值变化的检波器,该检波器被构成为包含:形成于半导体基板上的可变电容电路、以及包括形成于半导体基板的外部的电感器和第1电容器的共振电路,通过改变可变电容电路的静电电容值而可调整检波器的特性值。由此,即使在构成检波器的共振电路的电感器或电容器等元件常数在制造时存在偏差的情况下,也能改变形成于半导体基板上的可变电容电路的静电电容值从而调整检波器的特性值,因此,无需为了得到检波器或接收机的良好特性而选出偏差小的部件、或使用高价的部件,能够减少劳力、时间和成本。
而且,最好是上述可变电容电路具有多个第2电容器、以及分别组合且并联连接这些第2电容器的开关。由此,通过改变第2电容器的组合的同时进行并联连接,就能使用少数的第2电容器来得到多个静电电容值。
而且,最好是多个上述第2电容器分别具有互不相同的静电电容。由此,通过改变第2电容器的组合,就能得到更多的静电电容值。
而且,最好是上述多个第2电容器各自的静电电容被设定为相互成2倍关系。由此,通过组合第2电容器,就能得到以一定间隔增减的静电电容值。
而且,最好是上述可变电容电路还具有存储至少与开关的数目相对应的位数的数据的存储单元,将开关的连接状态根据存储于存储单元中的数据的各位的值进行设定。由此,仅将预定的数据存储到存储单元就能设定各开关的连接状态,并能减少调整检波器的特性时的劳力、时间。
而且,最好是本发明的接收机还具有:非易失性存储器,被预先测定接收状态为最佳状态的检波器的特性值,保持了对应于该特性值的数据;以及控制单元,在开始接收工作之前读出保持在存储器中的数据并存储于存储单元。由此,仅预先求出接收状态最佳的数据并存储到存储器中,就能进行每个接收器的调整作业,并能减少将接收机调整为最佳接收状态时的劳力、时间。
而且,最好是上述控制单元,检测检波器的温度,并对应于温度变化而改变在接收工作开始前存储于存储单元中的数据的内容。由此,即使是在温度变动、检波器的特性变化的情况下,也能维持接收机最佳的接收状态。
而且,最好是上述控制单元,检测电源电压,并对应于电源电压的变化而改变在接收工作开始前存储于存储单元中的数据的内容。由此,即使是在电源电压变动、检波器的特性变化的情况下,也能维持接收机最佳的接收状态。
而且,最好是上述检波器是具有包括共振电路和可变电容电路而构成的π/2移相器的正交检波器,通过使可变电容电路的静电电容值可变,而可正确地将对输入信号的、上述π/2移相器中的相位移动量调整为π/2。即使是共振电路或其他元件的元件常数由于制造时的偏差而不恒定的情况下,通过使可变电容电路的静电电容值可变,也能正确地对输入信号将π/2移相器中的相位移动量设定为π/2,因此就能直接使用制造时元件常数偏差的各种部件,无需使用高价的部件,因而能大幅降低部件成本。
而且,最好是在上述半导体基板上其他构成电路与可变电容电路一同一体形成。由此,就能由部件件数的降低来降低成本。
而且,最好是上述半导体基板上的电路用CMOS工艺或MOS工艺形成。由此,能实现制造工序的简化或部件的小型化。
而且,本发明的接收机的调整系统是将上述接收机调整到最佳接收状态的系统,其特征在于,具有:将试验用信号输入到接收机的信号产生器;测定接收机中的接收状态的测定器;根据测定器的测定结果来判定接收机的接收状态,切换可变电容电路所包含的多个第2电容器的连接状态以使接收状态成为最佳状态的调整装置。另外,本发明的接收机的调整方法是将上述接收机调整到最佳接收状态的方法,具有:将试验用信号输入到接收机的步骤;测定接收机中的接收状态的步骤;根据接收机的接收状态的测定结果来判定接收机的接收状态,切换可变电容电路所包含的多个第2电容器的连接状态,以使接收状态成为最佳状态的步骤。通过使用该调整系统,或通过实施该调整方法,即使在使用制造时元件常数的偏差大的部件的情况下,也能在切换可变电容电路内的第2电容器的连接状态的同时、设定接收机的最佳接收状态,能减少部件选择时所需要的劳力、时间,并能降低部件成本。
而且,本发明的接收机的调整系统是将具有上述存储器的接收机调整到最佳接收状态的系统,具有:将试验用信号输入到接收机的信号产生器;测定接收机中的接收状态的测定器;根据测定器的测定结果来判定接收机的接收状态,以使接收状态成为最佳状态的方式,决定存储于存储单元中的数据,并将该数据写入存储器的控制装置。
而且,本发明的接收机的调整方法是将具有上述存储器的接收机调整到最佳接收状态的方法,具有:将试验用信号输入到接收机的步骤;测定接收机中的接收状态的步骤;根据接收机的接收状态的测定结果来判定接收机的接收状态,以使接收状态成为最佳状态的方式,决定存储于存储单元中的数据,并将该数据写入存储器的步骤。
通过使用该调整系统,或通过实施该调整方法,即使在使用制造时元件常数的偏差大的部件的情况下,也能在切换可变电容电路内的第2电容器的连接状态的同时、设定接收机的最佳接收状态,仅将此时的数据存储到存储器中,就能维持通常工作时的接收机的最佳接收状态,能减少部件选择时所需要的劳力、时间,并能降低部件成本。
附图说明
图1是一实施例的FM接收机的结构的示意图。
图2是由FM检波电路和LC并联共振电路构成的正交检波器的详细结构的示意图。
图3是可变电容电路的详细结构的示意图。
图4是包含FM接收机的调整系统的整体结构的示意图。
图5是电平测量器的输出Vo和存储于可变电容电路内的寄存器中的数据N的关系的示意图。
图6是表示由个人电脑测定最佳值的工作次序的流程图。
图7是表示图6所示的调整结束后的FM接收机起动时的工作次序的流程图。
图8是表示考虑了温度变化的FM接收机的工作次序的流程图。
图9是考虑了电源电压的变动的FM接收机的工作次序的示意图。
具体实施方式
下面,参照附图对于适用了本发明的一实施例的FM接收机进行详细的说明。
图1是本实施例的FM接收机的结构的示意图。图1所示的FM接收机被构成为包含:作为1芯片部件10而形成的高频放大电路11、混频电路12、局部振荡器13、中间频率滤波器14、16、中间频率放大电路、限制电路17、FM检波电路18,以及与1芯片部件10分开设置的立体声解调电路19、LC并联共振电路20、微型电子计算机(微型电子计算机)21、EEPROM22。
由天线9接收的FM调制波通过高频放大电路11放大后,混频从局部振荡器13输出的局部振荡信号,由此来进行从高频信号向中间频率信号的变换。中间频率滤波器14、16被设置在中间频率放大电路15的前级和后级,仅从输入的中间频率信号抽出预定的频带成分。中间频率放大电路15使通过中间频率滤波器14、16的一部分中间频率信号放大。限制电路17使输入的中间频率信号以高增益放大,并输出振幅一定的信号。FM检波电路18与连接于1芯片部件10的外部的LC并联共振电路20一起形成正交检波器,对于从限制电路17输出的振幅一定的信号进行FM检波处理。使用CMOS工艺或MOS工艺使上述1芯片部件10一体形成于半导体基板上。在该半导体基板上,除了只形成构成图1所示的1芯片部件10的各电路的情况之外,还考虑有形成各种模拟电路或数字电路的情况。而且,立体声解调电路19,对于从FM检波电路18输出的FM检波后的合成信号进行立体声解调处理,并生成L信号和R信号。
由于对于从限制电路17输入的预定频率(例如10.7MHz)的中间频率信号需要正确地生成相位偏离π/2的信号,因此在由FM检波电路18和LC并联共振电路20构成的本实施例的正交检波器中,使用LC并联共振电路20。但是,由于在构成LC并联共振电路20的电感器120或电容器122的元件常数或包含于FM检波电路18中的电容器的元件常数等中,由于容许存在一定程度的制造时的偏差,因此在组合这些各部件时不进行调整而使输入信号的相位正确地错开90°几乎是很困难的。因此,在本实施例中,在FM检波电路18内包含可改变静电电容值的可变电容电路(后述),通过调整该电路的静电电容值,就能使输入信号的相位正确地错开π/2。
微型电子计算机21是在FM接收机起动时、将包含于FM检波电路18中的可变电容电路的静电电容值设定为预定的调整值的控制单元。该调整值使用FM接收机制造时等预先测定的值。EEPROM22是存储该调整值的非易失性存储器。
接着,详细说明本实施例的正交检波器。图2是由FM检波电路18和LC并联共振电路20构成的正交检波器的详细结构的示意图。
如图2所示,FM检波电路18被构成为包括电容器180、可变电容电路182、乘法器184、以及LPF(低通滤波器)186。通过电容器180和可变电容电路182、以及外部连接的LC并联共振电路20构成π/2移相器190。可变电容电路182与LC并联共振电路20并联连接,电容器180还与这些并联电路串联连接。可变电容电路182在预定范围内可任意设定静电电容值,为了使由π/2移相器190产生的相位移动量对于预定频率的中间频率信号正确地成为π/2而调整静电电容值。
乘法器184使从限制电路17输出的中间频率信号和用π/2移相器190使该中间频率信号的相位移动了π/2的信号相乘。LPF186除去包含于乘法器184的输出信号中的不需要的高频成分。
图3是可变电容电路182的详细结构的示意图。如图3所示,可变电容电路182被构成为包括寄存器188、开关Sw0~Sw7、电容器C0~C7。寄存器188是存储8位数据的存储单元,使从其最低位d0到最高位d7的各位并联输出。
电容器C0的一端被连接于LC并联共振电路20的一端上,另一端经由开关Sw0而接地。由于LC并联共振电路20的另一端接地,因此,开关Sw0接通时,电容器C0还并联地与LC并联共振电路20相连接。同样,电容器C1~C7各自的一端与LC并联共振电路20的一端相连接,另一端分别经由开关Sw1~Sw7而接地。开关Sw1~Sw7各自接通时,相对应的电容器C1~C7并联地与LC并联共振电路20相连接。
开关Sw0~Sw7分别与存储于寄存器188的8位数据的各位d0~d7的值相对应,而被设定为开、关状态。具体说,开关Sw0与最低位d0相对应,d0的值为“1”时其为打开状态,为“0”时其为关闭状态。同样,Sw1~Sw7分别与第1位d1~最低位d7相对应,各位值为“1”时其为打开状态,为“0”时其为关闭状态。
而且,电容器C0的静电电容为Ct(=20×Ct)时,电容器C1的静电电容被设定为2Ct(=21×Ct),电容器C2的静电电容被设定为4Ct(=22×Ct),......,电容器C7的静电电容被设定为128Ct(=27×Ct)。
仅接通与电容器C0串联连接的开关Sw0时,上述可变电容电路182成为最小静电电容Cmin(=Ct),接通分别与所有的电容器C0~C7相连接的开关Sw0~Sw7时,上述可变电容电路182成为最大静电电容Cmax(=(20+21+22+23+24+25+26+27)ct)。改变存储于寄存器188中的数据的内容,适当切换开关Sw0~Sw7的开、关状态,由此能在Cmin~Cmax范围内将Ct作为单位,台阶式地切换可变电容电路182整体的静电电容值。
因此,即使在构成LC并联共振电路20的电感器120和电容器122的元件常数和包含在FM检波电路18中的电容器180等元件常数有偏差,组合LC并联共振电路20和电容器180等而构成的π/2移相器190的相位移动量对例如10.7MHz的中间频率信号无法正确地成为π/2的情况下,通过将可变电容电路182的静电电容值设定适当值,也能可靠地设定成π/2。
另外,由经验可知,构成LC并联共振电路20的电感器120和电容器122各自的元件常数偏差在±5%的范围内。即,以LC并联共振电路20整体来看,共振频率的偏差在±10%的范围内。因此,在10.7MHz的中间频率信号的附近,若能在该±10%的范围(2140kHz)使共振频率可变即可。而且,可知,在该频率范围内,若能以10kHz单位使共振频率可变就足够,此时所需的步骤数M为214(=2140/10)。通过将存储于上述寄存器188的数据作为8位,确保256(=28)的步骤数,就能进行实用的调整。
接着,说明本实施例的FM接收机的具体的调整方法。图4是包含FM接收机的调整系统的整体结构的示意图。除了本实施例的FM接收机1之外,该调整系统还具有信号产生器(SG)200、电平测量器202、个人电脑(PC)210。
信号产生器200产生预定频率的试验信号。例如,FM广播的接收频带所包含的频率的试验信号从信号产生器200输出,被输入到高频放大电路11。电平测量器202是测定从FM接收机所包含的FM检波电路18输出的信号的水平的测定器。另外,在本实施例中,将FM检波电路18的输出信号输入到电平测量器202,但也可以是将立体声解调电路19的输出信号输入到电平测量器202。
个人电脑210,通过执行存储于存储器或硬盘装置的预定的调整用程序,从而在观察电平测量器202的输出的同时、调整FM检波电路18内的可变电容电路182的静电电容值,作为进行将其结果写入到EEPROM22的处理的控制装置而工作。
图5是电平测量器202的输出Vo和存储于可变电容电路182内的寄存器188中的数据N的关系的示意图。存储于寄存器188的数据N存在最佳值N1,该最佳值N1是包含可变电容电路182的π/2移相器190中的相位移动量为π/2时、电平测量器202的输出Vo成为最大的值。与构成LC并联共振电路20的电感器120或电容器122等的制造时的偏差相对应,该最佳值N1在每个FM接收机上不同,个人电脑210对于各FM接收机测定最佳值N1。
图6是表示由个人电脑210测定最佳值N1的工作次序的流程图。首先,个人电脑210将初始值N0设定为存储于寄存器188中的数据N(步骤100)。例如,将与到此为止的测定所得到的多个FM接收机1相对应的多个最佳值N1的平均值用为初始值N0。初始值N0被存储到寄存器188后,个人电脑210就取入电平测量器202的输出Vo(步骤101)。
而且,个人电脑210,将存储于寄存器188的数据N(=N0)加上1而更新后(步骤102),取入电平测量器202的输出Vo′(步骤103)。
接着,个人电脑210判断第2次取入的电平测量器202的输出Vo′和第1次取入的电平测量器202的输出Vo是否几乎是一致的(步骤104)。如图5所示,电平测量器202的输出Vo,在存储于寄存器188的数据N被包含在最佳值N1附近的范围A中时几乎没有变化。在步骤104中,判断数据N是否被包含在该范围A中。在两次取入的电平测量器202的输出Vo、Vo′几乎相等的情况(包含完全一致的情况、和并不完全一致但差在预定值以内的情况)下在步骤104的判断中进行肯定判断,接着,个人电脑210将数据N写入EEPROM22中(步骤105),结束一系列的调整工作。
而且,在两次取入的电平测量器202的输出Vo、Vo′不一致的情况下,在步骤104的判断中进行否定判断,接着,个人电脑210判断后取入的电平测量器202的输出Vo′是否比先取入的电平测量器202的输出Vo大(步骤106)。后取入的输出Vo′比先取入的输出Vo大时,此时的数据N被包含在如图5所示的范围B中。这种情况下,在步骤106中进行肯定判断,接着,个人电脑210,加上1而更新数据N的值后(步骤107),返回到步骤103重复电平测量器202的输出Vo′的取入工作的处理。相反,后取入的输出Vo′比先取入的输出Vo小时,此时的数据N被包含在如图5所示的范围C中,这种情况下,在步骤106中进行否定判断,接着,个人电脑210,减去1而更新数据N的值后(步骤108),返回到步骤103重复电平测量器202的输出Vo′的取入工作。
这样,在本实施例的FM接收机1中,通过使存储于寄存器188的数据N可变来改变可变电容电路182的静电电容值,在由该可变电容电路182和电容器180以及LC并联共振电路20构成的π/2移相器190中,能正确调整相位移动量为π/2的频率。特别是,将包含在可变电容电路182中的多个电容器C0~C7的各静电电容值按顺序设定为2倍关系,并适当组合这些且并联连接地使用,由此,就能组合少数的电容器并使静电电容值按一定间隔变化。
图7是表示图6所示的调整结束后的FM接收机1起动时的工作次序的流程图。
当投入了FM接收机1的电源开关(无图示),微型电子计算机21读入存储于EEPROM22中的数据N(步骤200),并设置到可变电容电路182内的寄存器188中(步骤201)。该数据N,为了使FM检波电路18在最佳的状态下工作而设定了预先测定的最佳值N1,通过将该数据N设置到寄存器188中,就能每投入FM接收机1的电源开关便设定最佳的接收状态。这样一来,数据N的设置结束后,FM接收机1开始通常的接收工作(步骤202)。
这样,在本实施例的接收机中,即使在构成正交检波器的LC并联共振电路20所包含的电感器120或电容器122等的元件常数在制造时存在偏差的情况下,由于能改变形成于半导体极板上的可变电容电路182的静电电容值并调整该检波器的特性值,因此作为检波器或接收机为了得到良好的特性,无需选出偏差小的部件或使用高价的部件,能降低劳力、时间和成本。
而且,在可变电容电路182中,通过改变电容器C0~C7的组合的同时进行并联连接,就能使用较少的电容器而得到较多的静电电容值。另外,通过使这些电容器的静电电容值相互不同,通过可改变并联连接的电容器的组合,就能得到更多的静电电容值。特别是,设定各电容器的静电电容值以使静电电容相互为2倍,并且改变这些电容器的组合,由此,就能得到以一定间隔增减的静电电容值。
而且,在可变电容电路182中,具有存储对应于开关Sw0~Sw7的数目的位数的数据的寄存器188,仅将数据存储于该寄存器188就能设定各开关的连接状态,因此,能降低调整检波器的特性时的劳力、时间。
而且,在接收机中,预先测定接收状态成为最佳的检波器的特性值时,具有保持了对应于该特性值的数据的EEPROM22、开始接收工作前读出保持在EEPROM22中的数据并存储于寄存器188中的微型电子计算机21,因此,仅预先求出接收状态成为最佳的数据并存储到EEPROM22中就能进行每个接收机的调整作业,就能降低将接收机调整到最佳接收状态时的劳力、时间。
而且,由于其他的结构电路与可变电容电路182一起一体形成于半导体基板上,因此,能由部件件数的减少而降低成本。特别是,通过使用CMOS工艺或MOS工艺形成半导体基板上的电路,就能实现制造工序的简化或部件的小型化。
另外,本发明并不限于上述实施例,在本发明的要旨范围内可有种种变形例。在上述实施例中,预先测定FM接收机的接收状态成为最佳状态的数据N并存储于EEPROM22中,电源开关投入时读入该数据N,但在温度变化激烈的情况、或使用了对应于温度变化特性值产生很大变化的元件的情况下等,最好在投入了电源开关的起动时、和在温度产生很大变化时,都进行数据N的再设定。
图8是表示考虑了温度变化的FM接收机的工作次序的流程图。首先,与未考虑温度变化的FM接收机一样,投入电源开关(未图示)时,微型电子计算机21读入存储于EEPROM22中的数据N(步骤200),并设置到可变电容电路182内的寄存器188中(步骤201)。此后,开始FM接收机的通常的接收工作(步骤202)。
接着,微型电子计算机21测定LC并联共振电路20或FM检波电路18的周边温度(步骤203)。该测定是使用电流值或两端电压等依赖于温度的元件而进行的。例如,使电流流入到二极管,研究其值,由此能容易地测定上述周围温度。
接下来,微型电子计算机21判断是否存在预定的温度变化(步骤204)。以将数据N设置到了寄存器188时的温度为基准,判断是否存在超过预定范围的温度变化(例如±10℃以上)。在几乎没有温度变化的情况、或即使有温度变化但该变化很小的情况下,就在步骤204的判断中进行否定判断,重复该判断工作。
而且,在存在超过预定范围的温度变化的情况下,就在步骤204的判断中进行肯定判断,接着,微型电子计算机21将存储于寄存器188中的数据N的内容改变为对应于变化后的温度的值(步骤205)。通过进行预先测定、或根据电感器120的电感和电容器122的静电电容等温度系数来计算,就能求出温度变化为怎样程度变化时存储于寄存器188中的数据N做怎样程度的变化才好。改变存储于寄存器188中的数据N的值时,返回到步骤203,重复温度测定以后的处理。
这样,即使在通过温度变化而使正交检波器的特性变化的情况下,也能与变化的温度相符合而调整可变电容电路182的静电电容值,因此,能常常实现最佳接收状态。
而且,也可以是FM接收机开始接收工作后监视电源电压的变动,适当改变存储于寄存器188中的数据N的值。
图9是表示考虑了电源电压的变动的FM接收机的工作次序的图。首先,与未考虑温度变化的FM接收机一样,投入电源开关(未图示)时,微型电子计算机21读入存储于EEPROM22中的数据N(步骤200),并设置到可变电容电路182内的寄存器188中(步骤201)。此后,开始FM接收机的通常的接收工作(步骤202)。
接着,微型电子计算机21测定测定电源电压(步骤210)。例如,可通过使用A/D(模拟-数字)变换器而直接检测电源端子的电压、或以电压比较器比较预定的基准电压和电源端子的电压,来进行该测定。
接下来,微型电子计算机21判断是否存在预定的电源电压的变动(步骤211)。以将数据N设置到了寄存器188时的电源电压为基准(工作开始后一次数据N的更新都没有的情况下,以在出厂前设置了数据N时的电源电压为基准),判断是否存在超过预定范围的电源电压变化(例如±0.3V以上)。在几乎没有电源电压变化的情况、或即使有电源电压变化但该变化很小的情况下,就在步骤211的判断中进行否定判断,重复该判断工作。
而且,在存在超过预定范围的电源电压变化的情况下,就在步骤211的判断中进行肯定判断,接着,微型电子计算机21将存储于寄存器188中的数据N的内容改变为对应于变化后的电源电压的值(步骤212)。通过进行预先测定、或模拟等来计算,就能求出电源电压变化为怎样程度变化时存储于寄存器188中的数据N做怎样程度的变化才好。改变存储于寄存器188中的数据N的值时,返回到步骤210,重复电源电压测定以后的处理。
而且,在上述实施例中,虽然调整了正交检波器的特性,但若通过调整可变电容电路182的静电电容值而可改变特性值,则也可将本发明适用于其他方式的检波器。
而且,在上述实施例中,虽然要使用电平测量器202来测定接收机的接收状态,但也可以用失真系数测试器来代替。使用失真系数测试器的情况下,该输出电平为最小时,接收机的接收状态成为最佳,因此,在图6所示的步骤106的判定中,也可以使大小比较的对象相反,判断后取入的失真系数测试器的输出(Vo′)是否比先取入的输出(Vo)小。
如上所述,根据本发明,即使是在构成检波器的共振电路的电感器或电容器等元件常数在制造时存在偏差的情况下,也能改变形成于半导体基板上的可变电容电路的静电电容值、调整检波器的特性值,因此,作为检波器或接收机为了得到良好的特性,无需选出偏差小的部件、或使用高价的部件,能够减少劳力、时间和成本。