用于控制向SCR催化剂的尿素供给的系统.pdf

上传人:Y0****01 文档编号:898672 上传时间:2018-03-17 格式:PDF 页数:25 大小:1,001.47KB
返回 下载 相关 举报
摘要
申请专利号:

CN200510129691.6

申请日:

2005.12.20

公开号:

CN1804378A

公开日:

2006.07.19

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

F01N3/10(2006.01); F01N9/00(2006.01); B01D53/94(2006.01)

主分类号:

F01N3/10

申请人:

通用汽车公司;

发明人:

C·E·索尔布里格

地址:

美国密执安州

优先权:

2004.12.20 US 11/017363

专利代理机构:

中国专利代理(香港)有限公司

代理人:

程天正;王忠忠

PDF下载: PDF下载
内容摘要

一种还原剂剂量给予控制系统,用于在机动车辆的选择性催化还原(SCR)系统中使用,包括:输入,其接收来自提供给所述SCR系统的NOx传感器的NOx反馈信号。基础剂量给予模块基于NOx反馈信号来计算在SCR系统的SCR催化剂之前注入的所需还原剂的量。所述SCR催化剂具有氨存储特性。输出基于所需的还原剂的量向还原剂计量机构发信号以周期性地或连续地注入过量的还原剂。

权利要求书

1.  一种还原剂剂量给予控制系统,用于在机动车辆的SCR系统中使用,包括:
输入,其接收来自提供给所述SCR系统的NOx传感器的NOx反馈信号;
基础剂量给予模块,其基于NOx反馈信号来计算在所述SCR系统的SCR催化剂之前注入的所需还原剂的量,其中SCR催化剂具有氨存储特性;以及
输出,其基于所需的还原剂量向还原剂计量机构发信号以周期性地注入过量的还原剂。

2.
  权利要求1的系统,进一步包括间歇剂量给予模块,其通过使用基础查询过度尿素量和基础工作时间在间歇的基础上计算还原剂的量,并基于所需还原剂的量来计算不工作时间,并且所述输出适于向所述还原剂计量机构发信号以根据基础工作时间、不工作时间和所述还原剂的量来间歇地注入还原剂,这是通过根据基础工作时间和不工作时间将一位转变为on和off,并且将该位乘以所述还原剂的量来实现的。

3.
  权利要求1的系统,进一步包括使能逻辑模块,其确定所述SCR系统的还原剂剂量给予系统是否能够在当前情况下供给所述还原剂的量,并且基于确定结果来选择性地将反映所述还原剂量的设置点剂量给予量传送给还原剂剂量给予系统。

4.
  权利要求1的系统,其中所述输入接收来自所述机动车辆的引擎质量空气流量传感器和所述SCR系统的温度传感器的感测信号,所述系统进一步包括剂量给予修正模块,其基于所述感测信号来计算修改量以使所述还原剂量适应于引擎和催化剂的物理条件,包括温度和空间速度,并且根据所述修改量针对引擎和催化剂操作条件来修正所述还原剂的量。

5.
  权利要求1的系统,进一步包括NOx流率确定模块,其通过使用空气流率、燃料流率和NOx分子量将来自NOx传感器的PPM信号转换成单位时间质量NOx流率信号,其中所述基础剂量给予模块适于针对32.5%尿素/水溶液来计算尿素的化学当量剂量给予量,包括使用尿素到氨的分解特性以及尿素和NOx的分子量根据NOx流率计算所述剂量给予量,以针对利用水的附加稀释来校正所述化学当量剂量给予量并且过滤该量以减小噪声,由此确定设置点剂量给予量。

6.
  权利要求1的系统,进一步包括浓度计算模块,其基于氧化催化剂(DOC)特性来估算NO/NO2分数。

7.
  权利要求1的系统,进一步包括计算NH3/NOx摩尔比的浓度计算模块。

8.
  一种还原剂剂量给予控制方法,用于在机动车辆的SCR系统中使用,包括:
接收来自提供给所述SCR系统的NOx传感器的NOx反馈信号;
基于NOx反馈信号来计算在所述SCR系统的SCR催化剂之前注入的所需还原剂的量,其中SCR催化剂具有氨存储特性;以及
基于所需的还原剂的量来周期性地供给过量的还原剂。

9.
  权利要求8的方法,进一步包括:
在间歇的基础上计算还原剂的量,包括使用基础查询过度尿素量和基础工作时间,并基于所述还原剂的量来计算不工作时间;以及
根据基础工作时间、不工作时间和所述还原剂的量来间歇地注入还原剂,包括根据基础工作时间和不工作时间将一位转变为on和off,并且将该位乘以所述还原剂的量。

10.
  权利要求8的方法,进一步包括:
确定所述SCR系统的还原剂剂量给予系统是否能够在当前情况下供给所述还原剂的量;
基于确定结果来选择性地将反映所述还原剂量的设置点剂量给予量传送给还原剂剂量给予系统。

11.
  权利要求8的方法,进一步包括:
接收来自所述机动车辆的引擎质量空气流量传感器和所述SCR系统的温度传感器的感测信号;
基于所述感测信号来计算修改量以使所述还原剂的量适应于引擎和催化剂的物理条件,包括温度和空间速度;以及
根据所述修改量针对引擎和催化剂操作条件来修正所述还原剂量。

12.
  权利要求8的方法,进一步包括:
使用空气流率、燃料流率和NOx分子量将来自NOx传感器的PPM信号转换成单位时间质量NOx流率信号;
针对32.5%尿素/水溶液来计算尿素的化学当量剂量给予量,包括使用尿素到氨的分解特性以及尿素和NOx的分子量根据所述NOx流率来计算所述剂量给予量;以及
针对利用水的附加稀释来校正所述化学当量剂量给予量并且过滤该量以减小噪声,由此确定设置点剂量给予量。

13.
  权利要求8的方法,进一步包括基于氧化催化剂(DOC)特性来估算NO/NO2分数。

14.
  权利要求8的方法,进一步包括计算NH3/NOx摩尔比。

15.
  一种用于在机动车辆中使用的选择性催化还原系统,包括:
基于沸石的催化剂,其存在于接收出自内燃机引擎的NOx排气的排气系统中;
还原剂的供给;
还原剂剂量给予机构,其适于根据可变还原剂剂量给予设置点将还原剂在催化剂之前注入到排气系统中;
NOx反馈传感器,其提供指示出自内燃机引擎的NOx排气量的NOx反馈信号;以及
还原剂剂量给予控制系统,其适于基于NOx反馈信号来计算在基于沸石的SCR催化剂之前注入的所需还原剂的量,以基于来自所述内燃机引擎的引擎质量空气流量传感器和机壳的温度传感器的感测信号来修正所述还原剂的量,并且基于所需的还原剂的量将还原剂设置点传送给所述还原剂剂量给予机构。

16.
  权利要求15的系统,其中所述还原剂剂量给予控制系统适于控制所述还原剂剂量给予机构以针对由无注入持续时间分隔的时间段,在还原剂之前间歇地注入过量还原剂到排气系统中,其中所述时间段和持续时间的至少一个是基于所需还原剂的量来计算的。

17.
  权利要求16的系统,其中所述还原剂剂量给予控制系统适于将所需还原剂的量和在最小设置点与所述剂量给予机构的恒定操作关联的还原剂的量相比较。

18.
  权利要求17的系统,其中所述还原剂剂量给予控制系统适于估算NO/NO2分数,并且计算NH3/NOx摩尔比。

19.
  权利要求18的系统,其中所述还原剂剂量给予控制系统适于通过使用空气流率、燃料流率和NOx分子量将来自NOx传感器的PPM信号转换成单位时间质量NOx流率信号,针对32.5%尿素/水溶液来计算尿素的化学当量剂量给予量,包括使用尿素到氨的分解特性以及尿素和NOx的分子量根据NOx流率来计算所述剂量给予量,以针对利用水的附加稀释来校正所述化学当量剂量给予量并且过滤该量以减小噪声,由此确定基础设置点剂量给予量。

20.
  权利要求16的系统,其中采用基础工作时间来用于所述时段,并且作为还原剂量的函数来周期性地计算所述设置点和持续时间。

说明书

用于控制向SCR催化剂的尿素供给的系统
技术领域
本发明总地涉及内燃机引擎控制系统,更具体而言涉及到选择性催化还原(SCR)催化剂的间歇或连续还原剂供给,其基于来自引擎输出NOx传感器的反馈。
背景技术
使用尿素作为还原剂的对NOx的选择性催化还原(SCR)的方法已经很好的建立起来用于静止源和移动应用上的NOx排放减少。在SCR过程中,NOx与诸如纯无水氨、氨水和/或尿素的还原剂反应,该还原剂在专门的SCR催化剂之前被注入到排气气流中。SCR方法显著减少了内燃机NOx。
SCR过程需要对还原剂注入率的精确控制。不足的注入可导致不可接受的低NOx转换。过高的注入率可将还原剂释放到大气中。当前的剂量给予(dosing)控制系统基于引擎速度和负载、使用具有温度修改量的开环剂量给予图来查询所需的剂量给予量。然而,开环控制器逻辑可能得不到最优的NOx排放消除,这可能是由于具有低水平排放的瞬态操作而造成的。部分由于有关还原剂剂量给予机构的最小实际设置,难以精确供给处于这些低水平的还原剂而没有还原剂漏到大气中。
发明内容
用于在机动车辆的选择性催化还原(SCR)系统中使用的还原剂剂量给予控制系统包括输入,其接收来自提供给SCR系统的NOx传感器的NOx反馈信号。基础剂量给予模块基于NOx反馈信号进行对在SCR系统的SCR催化剂之前注入的还原剂量的计算,其中SCR催化剂具有NH3存储特性。输出基于所述计算向还原剂计量机构发信号以周期性地或连续地供给过量的还原剂。
根据以下提供的详述,本发明另外领域的适用性将变得显而易见。应理解,尽管示出本发明的优选实施例,所述详述和特定实例仅仅是为了说明的目的而不是想要限制本发明的范围。
附图说明
根据所述详述和附图,本发明将得到更加充分的理解,在附图中:
图1是包括根据本发明的选择性催化还原系统的内燃机引擎的功能块图;
图2是根据本发明的SCR系统的块图;
图3是说明根据本发明的还原剂剂量给予控制的一组曲线图;
图4是根据本发明的还原剂剂量给予控制系统的块图;
图5是根据本发明的NOx流率确定模块的块图;
图6是根据本发明的基础剂量给予模块的块图;
图7是根据本发明的尿素剂量给予量修改量计算模块的块图;
图8是根据本发明的使能逻辑模块的块图;
图9是根据本发明的间歇剂量给予模块的块图;
图10是根据本发明的最终限制应用模块的块图;
图11是根据本发明的浓度计算模块的块图;
图12是根据本发明的效率计算模块的块图;
图13A是根据本发明的CAN模块的块图;并且
图13B是根据本发明的重置积分模块(reset integrationmodule)的块图。
具体实施方式
以下对优选实施例的描述本质上仅仅是示例性的而决不是要限制本发明、其应用或使用。如在此所使用的,术语模块指的是专用集成电路(ASIC)、电子电路、处理器(共享、专用或分组)和存储器,其执行一个或多个软件或固件程序、组合逻辑电路和/或提供所述功能性的其它适当组件。
图1以概观的形式示出根据本发明的选择性催化还原系统。其中内燃机引擎100将NOx排入排气系统102。电子控制模块104接收来自提供给引擎100和排气系统102地多个传感器的感测信号。这些传感器包括质量空气流量传感器106,引擎速度传感器108,入口空气温度传感器110,节流位置传感器112,引擎输出NOx传感器114,排气温度传感器116、118和120、SCR催化剂输出NOx传感器122,和/或德耳塔压力传感器124和126。
应当容易理解的是,SCR和内燃机颗粒过滤器(DPF)系统可分开或一起存在于同一车辆中。在过滤器可用于依照DPF从引擎排气中去除颗粒物的同时,SCR可通过使用催化剂在化学上改变气态排放的化学结构,所述催化剂将有害排放保持为化学反应的非气态产物。因此,德耳塔压力传感器124和126可用在根据本发明的组合SCR/DPF系统中,或者在只有SCR的本发明实施例中被省去。
电子控制模块104使用一个或多个传感器信号,包括来自引擎输出NOx传感器114的信号,以计算还原剂剂量给予设置点(set point)并将该设置点,如电压电平,传送给还原剂剂量给予系统30的剂量给予控制模块26。接下来,剂量给予控制模块26又使还原剂计量单元32,如螺线管激励阀,将还原剂从还原剂供给128在处于SCR催化剂130之前的点注入到排气系统102中。例如,所述设置点电压将所述阀打开到允许还原剂以预定速率通过的位置。在电压设置点改变时,注入速率相应地改变。
根据本发明的一个方面,还原剂剂量给予系统30的范围通过克服还原剂计量单元32的最小设置点限制而得以扩展。例如,存在阀的最小打开位置,并因此存在还原剂注入的最小速率。因此,本发明包括对于以无注入持续时间分隔的时间段,在催化剂之前以给定速率间歇地注入还原剂到排气系统中。因此,在无注入持续时间期间,所述设置点变为零。在以下参照图2-8所述的优选实施例中,注入时段具有预定长度,而注入速率和无注入持续时间是可变的。然而可以设想,这三个因素中的任何一个可以固定,而其它因素的至少一个是变化的。亦可以设想,所有所述因素可以改变。基于沸石的SCR催化剂当前优选地用于以间歇注入维持跨催化剂的高转换效率。然而,应当容易理解的是,可采用具有氨存储特性的其他基本上等效的催化剂。
图2示出根据本发明用于在机动车辆中使用的选择性催化还原(SCR)系统的当前优选实施例。相应地,电子控制模块104采用还原剂剂量给予控制系统14来计算还原剂剂量给予系统30的设置点。该优选实施例采用尿素作为还原剂。还原剂剂量给予控制系统14包括NOx流率确定模块16、基础剂量给予模块18、尿素剂量给予量修改量计算模块20、间歇剂量给予模块50、使能逻辑模块24、最终限制应用模块52、浓度计算模块22、效率计算模块54、CAN模块56和重置积分模块58。电子控制模块104采用剂量给予控制系统14来影响剂量给予控制模块26的操作。剂量给予控制模块26通过CAN总线28与电子控制模块104通信。
剂量给予控制模块26操作还原剂剂量给予系统30以将尿素注入到排气系统102中。根据本发明,来自实时引擎输出NOx传感器114的反馈用于计算标准(即恒定注入)剂量给予模式和间歇剂量给予模式期间的所需尿素量。
当前优选实施例的剂量给予控制策略包括三个主要步骤来计算和供给到排气系统的尿素还原剂的正确(设置点)量。例如,来自实时NOx(反馈)传感器114的信号被用于计算需要在基于沸石的SCR催化剂之前注入的正确尿素量以维持最优的性能(NOx转换效率)。而且,现有剂量给予单元的操作通过经由称为间歇剂量给予的过程来扩展低端操作而得以增强。当还原剂剂量给予系统30(当如所设计的而使用时)不能另外供给任何尿素溶液时,所述过程周期性地供给过量的尿素并使用基于沸石的SCR催化剂的氨存储特性来维持跨催化剂的高转换效率。此外,自其它传感器,如引擎质量空气流量,和温度传感器的输入被用于计算修改量以使所计算的尿素量适应于催化剂的物理条件,如温度和空间速度。
现在转到图4-13,对还原剂剂量给予控制系统14(图4)加以详细描述。如图5中所示,在NOx流率确定模块16(图5)中,NOx传感器信号供给PPM信号并且通过使用空气流率+燃料流率作为排气流率(未示出但供给到0,Mexh)以及NOX和排气分子量(在浓度计算模块22(图4)中示出和计算,MW_NCX,MW_Exh)将其转换成单位时间质量信号。NOx流率确定模块16的主要输出是NOX流率(MNOXF,g/s)和质量排气流量(MEF,g/s)。
在基础剂量给予模块18中,并且如在图6中进一步所示,使用尿素到氨的分解特性(对于1mol尿素,为2mol NH3)以及尿素和NOx的分子量根据NOX流率(MNOXF)来计算尿素溶液的化学当量剂量给予量;针对32.5%尿素/水溶液(其是可用的标准浓度)来计算该量。基础设置点剂量给予量然后针对附加的稀释(利用水,用于稀释和密度)而被校正并且被过滤以减小噪声。基础剂量给予模块18的主要输出是基础尿素溶液流率(QUreaSolnBase,g/hr)。
返回到图4,在尿素剂量给予量修改量计算模块20中,针对如图7中所示的引擎和/或催化剂操作条件来计算处于乘数形式的尿素剂量给予量修改量。两种主要类型的修改量被计算。第一,确定基于催化剂条件(温度(SCR_TexOpt)和空间速度(SCR_SpVel))的修改量(UreaCatCondMulti),第二,确定基于引擎速度和负载以及催化剂温度的修改量(UreaEngineMapMulti)。最终基础修改量可以是这些方法的任何一种或两者的函数(其最好地适合于所述情形)。然后在应用最终修改量之前,包括了两个其它修改量(基于引擎运行时间和引擎加速度的修改量)。有两个最终的修改量,一个用于标准操作模式,一个用于间歇操作模式。返回到图4,尿素剂量给予量修改量计算模块20的主要输出是标准模式修改量(UreaFinal_Multi)和间歇模式修改量(UreaFinal_Multilnt)。这些修改量在MAIN中被乘以尿素基础溶液流率(QUreaSolnBase,g/hr)以获得(QUreaSolnStd),并且被供给到间歇剂量给予模块50和使能逻辑模块24。
转到图8,在使能逻辑模块24中,进行决策以确定是否所需尿素量可由现有剂量给予系统来供给(由于最小剂量给予限制)。返回到图4,如果剂量给予量符合剂量给予系统的最小剂量给予要求,则将(QUreaSolnStd,g/hr)传递给最终限制应用模块52。否则,使能间歇剂量给予模式并且将由间歇剂量给予模块50所计算的间歇剂量给予量(QUreaSolnInt,g/hr)传递给最终限制应用模块52。现在返回到图8,使能逻辑模块24亦确定是否尿素剂量给予应当完全基于SCR催化剂温度(SCR_TexOpt,C)来进行。返回到图4,使能逻辑模块24的主要输出是剂量给予使能标志(DosingEnb)和间歇剂量给予使能标志(IntDosingEnb)。
在间歇剂量给予模块510中,间歇剂量给予量(QUreaSolnInt)得以计算。现在转到图9,在间歇剂量给予模块50中所进行的间歇计算使用来自一个表(IntDosingQ)或来自乘数表(InDosingQ_Mult)的基础查询过度尿素设置点量乘以标准量(QUreaSolnStd)以及基础工作时间,并基于所述设置点量来计算不工作时间。然后计时器算法根据所计算的工作和不工作时间将一位转变为On-1和Off-1,并且该位被乘以过度尿素剂量给予量。返回到图4,间歇剂量给予模块50的主要输出是间歇剂量给予量(QUreaSolnInt,g/hr)。
在最终限制应用模块52中,基于剂量给予系统最大和最小流量信息来进行对尿素量的最终限制,并且尿素设置点量被传递回到MAIN,其中(QUreaSolnOutFinal,g/hr)被发送到剂量给予系统(通过硬件级I/O到CAN总线)。(QUreaSolnOutFinal,g/hr)的计算在图10中详细说明,其中最终限制应用模块52基于最小和最大剂量给予系统容量来限制输入量。
返回到图4,存在其它辅助模块以支持算法和测试,包括浓度计算模块22、效率计算模块54和重置积分模块58。转到图11,例如在浓度计算模块22中,NO/NO2分数和瞬时及累计NH3/NOx摩尔比得以计算。而且,转到图12,效率计算模块54由前和后SCR催化剂NOx传感器计算瞬时和累计NOx转换效率。接下来转到图13A,CAN模块56进一步从剂量给予系统采集CAN总线信息,并且调整(scale)所采集的信息。更进一步,图13B示出重置积分模块58的操作。
根据本发明的SCR还原剂剂量给予控制的结果在图2和3中被图表化。例如,剂量给予/无剂量给予线38描绘了FTP75操作范围40。在所需还原剂量降到可由恒定剂量给予来提供的最小值以下时,通过使用间歇剂量给予如在36处来扩展该范围。而且,NOx传感器剂量给予控制被图表化于42,其中利用引擎输出NOx来调整尿素量。此外,间歇和恒定剂量给予一起被图表化于44,其中根据上部曲线,在模式之间进行切换。应当容易理解的是,在一些实施例中可排他地使用间歇剂量给予,但在需要大还原剂流量时,无注入的持续时间可减小至零。
根据本发明的NOx反馈控制允许尿素剂量给予系统在所有引擎和催化剂操作条件下供给正确的尿素量。而且,对不常见的引擎操作条件可自动加以适应,如EGR故障和颗粒过滤器再生。结果,在大多数情况下可使尾管氨最小。此外,剂量给予量自适应于引擎校准,这方便了引擎校准过程。
间歇剂量给予策略亦扩展尿素剂量给予系统的容量以维持低NOx期间的NH3/NOx比,这是通过利用沸石催化剂NH3存储特性来实现的。其亦允许使用较高浓度的溶液来覆盖低速轻负载(低NOx)和高速高负载(高NOx)条件两者。
可以设想可以添加附加的算法以允许使用实时转换器效率计算或允许车载诊断(OBD)功能性(使用2个NOx传感器)和历史操作信息来根据长期学习的系统行为来修正设置点剂量给予量。亦可以设想修改当前优选实施例的系统和方法以适应其它还原剂,如纯无水氨、氨水、或能够精确计量的任何形式的氨。应当容易理解的是,在排气系统中,尿素通过分解反应改变为NH3。然而,有2摩尔的NH3可用于每摩尔的尿素,而不是仅1摩尔用于纯氨。这样,依赖于是否存在NH3或尿素以及物质的浓度,所述计算略微变化。
根据以上描述,本领域的技术人员现在可以理解,可以以各种形式来实施本发明的广泛教导。因此,尽管已经结合其特定实例描述了本发明,本发明的真实范围不应被如此限制,因为根据对附图、说明书和所附权利要求的学习,其它修改对于熟练的专业人员将变得显而易见。

用于控制向SCR催化剂的尿素供给的系统.pdf_第1页
第1页 / 共25页
用于控制向SCR催化剂的尿素供给的系统.pdf_第2页
第2页 / 共25页
用于控制向SCR催化剂的尿素供给的系统.pdf_第3页
第3页 / 共25页
点击查看更多>>
资源描述

《用于控制向SCR催化剂的尿素供给的系统.pdf》由会员分享,可在线阅读,更多相关《用于控制向SCR催化剂的尿素供给的系统.pdf(25页珍藏版)》请在专利查询网上搜索。

一种还原剂剂量给予控制系统,用于在机动车辆的选择性催化还原(SCR)系统中使用,包括:输入,其接收来自提供给所述SCR系统的NOx传感器的NOx反馈信号。基础剂量给予模块基于NOx反馈信号来计算在SCR系统的SCR催化剂之前注入的所需还原剂的量。所述SCR催化剂具有氨存储特性。输出基于所需的还原剂的量向还原剂计量机构发信号以周期性地或连续地注入过量的还原剂。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 机械工程;照明;加热;武器;爆破 > 一般机器或发动机;一般的发动机装置;蒸汽机


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1