耐磨制品 本发明涉及一种耐磨制品,且特别是例如用在飞机上的制动盘。另外,本发明还涉及制备此种制品的改进方法且特别是改进碳-碳复合盘形状物体的耐磨性的方法。
飞机制动组件是与环形旋转转子盘交织的环形定子盘同顶推装置的堆叠而成以将该定子和转子制动盘变成摩擦啮合。存在对具有改进的耐磨性表面的盘的需要。
碳的磨损机理已由下列文献提出:Aswasthi和Wood(AdvancedCeramic Materials,卷5,第5期,1998,pp449-451),Murdie等人(Carbon,29,(1991)335-342),和Hutton等人(Carbon,39,(1999)907-916)。在碳-碳摩擦表面的高耐磨率通常相关于在低制动能条件下在该表面上的耐磨颗粒的产生和消失。碳-碳中的低耐磨性通常相关于在表面上保留耐磨颗粒且是通过剪切作用改性以在高能制动条件下在摩擦表面上形成一膜层。
本发明的一个目的是提供一种诸如制动盘的物体,其具有纤维,该纤维的取向方式是使得盘具有改进的耐磨性以得到增长的制动寿命或在相同地寿命下重量变轻以及其它优势。
根据本发明,一个方面是提供一种环形物体,其包含保持在碳基质中的多个层,该多个层通常是相互平行和平行于该物体的两端面,该物体具有:一般为中心的开口、由按通常为并肩地排列的多个扇形体部分,每个该部分均具有从该部分的内周以通常平行地延伸至其外周的许多纤维。
通常地,在具有两个耐磨表面的盘中,两者将具有相同的设置,即可贯穿物体的整个厚度,但中间部分可以是不同的。
通常地,所述扇形体部分将具有环形尺寸,其使所有扇形体按在一层中相同地设置以避免相邻层的扇形体连接点成直线,由此在盘的整个厚度内螺旋铺叠。扇形体角度可是从约20°~70°的宽范围内,更优选约40°~50°,最优选48°。
通常平行的长纤维优选是通过短段纤维连接而成。引入短的连接纤维的方法包括使用倒刺针(钩针)针刺长纤维,或更优选,将短卷曲纤维的纤维毡针刺成长纤维,在该纤维毡中的短纤维通常垂直于长纤维排列。
纤维可以从稳定化或氧化形态的人造丝、聚丙烯腈;羊毛;沥青等等;它们的任一组合制成,其经热处理将制成碳纤维。在预成型体中的长纤维可以根据待成形的物体的尺寸平行排列。连接用短纤维的长度是在通常范围内。
已有几个熟知的制备复合摩擦材料的方法,特别是制备在碳基质中含有碳纤维的复合摩擦材料的方法。市售的复合体包含在沥青或树脂前体衍生出来的基质中无规裁剪的纤维,2D,3D或针刺纤维构造,或通过化学蒸汽渗透或沉积或它们的任何组合。
因此,本发明的另一个方面是提供一种制备在碳基质中保持的多个层的环形体的方法,该方法包括:
·形成一片材,其包含纵向延伸通常平行的长纤维和通过短段纤维连接这些长纤维;
·碳化片材中的纤维以形成一碳化片材;
·从该碳化片材裁剪具有外弯曲侧面和内弯曲侧面的扇形体部分,且其中长纤维通常相互平行排列并从内侧面延伸至外侧面;
·以环形方式排列扇形体部分以形成环形层;
·构造多个层以制成一预成型体;和
·通过引入含碳的蒸汽而密实化该预成型体以形成碳基质。
为了更好地理解本发明,现将仅仅参照附图通过举例的方式描述本发明。
图1是用于制备本发明的制动盘的预成型体的平面图;
图2是在图1中圆圈II的面积的放大平面图;和
图3是在制备涉及图1的预成型体的制动盘的步骤的流程图。
在该方法中,长纤维1是平行铺置并通过刺针的针刺而连接以致于一定长度的纤维被梳理成下一个以如图2中所示的短跨接纤维段2。所得的粘连片状材料3包含由横向短段纤维连接的长段纤维的网络。将该片材放置到炉中直至纤维被碳化。然后从片材上切取扇形体部分10和然后如图1中所示在圆中以弧度角α排列以形成环形形状(图1),扇形体部分由此具有内曲边10a和外曲边10b,该外曲边是具有较大的长度。各层是围绕一中心柱塞设置(未示出)以形成开口11。优选地,为了避免在复合体中具有弱的连接线,各个层的扇形体是以螺旋排列方式堆叠以使得在一个层的扇形体之间的连接处连接线是与相邻层的扇形体之间连接线径向偏置。该预成型体是由多个层制成,每个层具有通过针刺短纤维锁在一起的纵向延伸的长纤维结构,长纤维通常平行延伸至预期的磨损面上。织物的各层然后可以熟知的方式被压缩成所需的纤维体积。预成型体然后是以熟知的方式密实化。
相比于其中纤维均沿切向延伸的制动盘和其中预成型体中具有非径向纤维的扇形体是由具有径向纤维的扇形体替换的另一种制动盘,本发明的制动盘具有改进的耐磨性(由重量损耗确定)。
为了更好地理解本发明,下面将参照下列实施例以说明性的方式进一步描述本发明。实施例1
用于摩擦和磨损试验的制动盘是按如下所述并也参照附图制成。
按照GB2,012,671中所述,制备一种无纺织物,其包含针刺成长平行的氧化聚丙烯腈纤维的氧化聚丙烯腈纤维纤维毡的层。长纤维重量与人造纤维重量的比率是3∶1。这个织物然后是在本领域中熟知的条件下碳化以除去挥发物,剩下单位重量为400gcm-2的织物并具有约85%+碳的化学组成。
所述碳化织物山切取扇形体部分,安排切割以使得连续纤维在扇形体中如附图所示通常为径向延伸。使用48°的弧度角以避免相互层的扇形连接线的对准。扇形体是围绕中心柱塞以螺旋形式铺置以形成环形形状(图1)。继续进行铺置直至添加了足够的扇形体以当除去中心柱塞时达到20%的纤维体积且在合适的夹具中将扇形体组件压缩成预定值。该组件然后用碳渗透,通过化学蒸汽渗透至密度约1.3gcm-3,然后从压缩夹具中取出并进一步渗透直至实现超过1.8gcm-3的盘密度。渗透盘然后在惰性气氛下通过热处理至2400℃而被石墨化且然后加工成最终尺寸。
在构型为两个定子和一个转子的一套三盘上进行摩擦和磨损试验。定子盘具有约27.9厘米(11.0英寸)的外盘周边直径,约11.8厘米(4.6英寸)的内盘周边直径,和约1.14厘米(0.45英寸)的厚度。转子盘具有约30.4厘米(12.0英寸)的外盘周边直径,约14.2厘米(5.6英寸)的内盘周边直径,和约0.97厘米(0.38英寸)的厚度。两个定子围绕内周边锁合成一转矩管,该转矩管固定至测力底盘上,通过一负荷传感器测量测力底盘上的转矩并通过控制计算机记录该转矩以计算试验期间在恒定的压力条件下的摩擦系数。该单个转子是与两个定子盘交织,该转子被锁合至轮轴上以致于随着由发动机和飞轮驱动的轮轴旋转。在试验过程中,从安装在转矩管的一端上的动力活塞组件施加压力。该压力压缩各盘相互的摩擦面以产生用于制动作用的摩擦,由此通过由转子传送制动力矩至轮轴上而使轮轴和飞轮减速,直至轮轴的转动停止。
实施对制动作用进行50个测试循环的测试项目,该测试循环被设计成表示飞机服务循环。每个测试循环模仿着陆后滑行程序、供应能量着陆停止和起飞前滑行程序。3个制动盘的一组在试验之前和完成50个试验循环之后进行称重。在试验期间重量损失(表示制动盘磨损)是显示在下表中。
本发明的制动盘是相比于其中配置了不同长纤维的制动盘进行测试。在一个对比制动盘中,长纤维通常切向延伸而在另一个中,本发明的长纤维的扇形体同其中长纤维通常切向延伸的扇形体交替(参见EP-A-424988)。
表
试样 磨损试验重量损失(克)
本发明的制动盘 12.0
具有切向纤维的制动盘 63.7
具有交替扇形体的制动盘 23.9
该结果表明,本发明的制动盘产生了明显更少的重量损失。
因为具有改进的耐磨性,当用于飞机着陆时和在地面上滑行上制动飞机时,本发明的制动盘将具有更长的寿命。
虽然我们希望本发明不以任何方式受下列理论的限制,但我们的评估暗示,下列三种因素的一种或多种可引起或促进得到有益的结果。首先,纤维通常相互平行和在磨损面上径向延伸;第二,此种纤维是通过连接由梳理出的垂直于纵向径向延伸的纤维部分形成的横向连接短纤维段而聚集在一起;和第三,纤维的取向和相互连接给出一个具有可进入的开口孔隙度的结构,该孔隙捕集磨损残渣以有助于表明残渣膜的形成和保持。
虽然上面就飞机制动盘对本发明和其有益效果进行了描述,但本发明同样可适用于其它制品例如用于汽车、摩托车、火车、离合器从动盘等中的盘。
本发明是不限于所示的实施方案。例如,其它组分可以膜的形式存在。长纤维可以其它方式连接。纤维扇形体可在渗透之前通过针刺而聚集在一起以致于不需要在夹具中压缩。所述层可以在盘的一个或两个磨损表面上存在,所述盘可同不同结构的中间部分分离。所述盘可用在离合器机构中。本发明也可适用于具有增强纤维和/或除碳之外的基质(例如碳化硅或硼化硅)的复合摩擦材料。