耐有机污染物的聚合物膨润土纳米复合材料及其制备方法.pdf

上传人:磨** 文档编号:8825411 上传时间:2021-01-05 格式:PDF 页数:9 大小:335.96KB
返回 下载 相关 举报
摘要
申请专利号:

CN201510570454.7

申请日:

20150909

公开号:

CN105199288B

公开日:

20170609

当前法律状态:

有效性:

有效

法律详情:

IPC分类号:

C08L33/26,C08K3/34

主分类号:

C08L33/26,C08K3/34

申请人:

东南大学

发明人:

杜延军,沈胜强,范日东,任伟伟,梅丹兵

地址:

211189 江苏省南京市江宁区东南大学路2号

优先权:

CN201510570454A

专利代理机构:

南京瑞弘专利商标事务所(普通合伙)

代理人:

杨晓玲

PDF下载: PDF下载
内容摘要

本发明公开了一种耐有机污染物的聚合物膨润土纳米复合材料,所述的膨润土纳米复合材料包括膨润土和阳离子聚丙烯酰胺,其中,阳离子聚丙烯酰胺质量是膨润土质量的0.1~10%。该材料可有效提高膨润土化学相容性,提高耐有机物污染的能力,在上述污染液作用下仍能维持极低的渗透系数,大大提高了膨润土系隔离设施的防渗性能,延长了隔离设施的有效使用寿命,降低了工程成本。同时,还提供了该聚合物膨润土纳米复合材料的制备方法,简单易操作。

权利要求书

1.一种耐有机污染物的聚合物膨润土纳米复合材料,其特征在于,所述的聚合物膨润土纳米复合材料包括膨润土和阳离子聚丙烯酰胺,其中,阳离子聚丙烯酰胺质量是膨润土质量的0.1~10%;所述的阳离子聚丙烯酰胺的分子量为5×10~1.5×10。 2.根据权利要求1所述的耐有机污染物的聚合物膨润土纳米复合材料,其特征在于,所述的膨润土的粒径小于或等于0.15mm。 3.一种权利要求1所述的耐有机污染物的聚合物膨润土纳米复合材料的制备方法,其特征在于,该制备方法包括以下步骤:步骤10)将膨润土和水混合,进行搅拌,制得膨润土泥浆;步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液,并搅拌,形成阳离子聚丙烯酰胺和膨润土混合浆液;步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中,搅拌阳离子聚丙烯酰胺和膨润土混合浆液,使阳离子聚丙烯酰胺在膨润土层间发生纳米插层反应,形成反应后的膨润土浆液;步骤40)对反应后的膨润土浆液进行离心处理,得到离心出的固相,对固相烘干后进行研磨,制成聚合物膨润土纳米复合材料。 4.按照权利要求3所述的耐有机污染物的聚合物膨润土纳米复合材料的制备方法,其特征在于,所述的步骤10)中,膨润土和水按照质量比0.1~0.2:1进行配制;所述的膨润土与水混合之前,过200目筛,去除杂质。 5.按照权利要求3所述的耐有机污染物的聚合物膨润土纳米复合材料的制备方法,其特征在于,所述的步骤10)中,利用搅拌机对膨润土和水进行搅拌,搅拌机的转速为500~3000r/min,搅拌机的搅拌时间为5~15min。 6.按照权利要求3所述的耐有机污染物的聚合物膨润土纳米复合材料的制备方法,其特征在于,所述的步骤20)中,阳离子聚丙烯酰胺溶液中阳离子聚丙烯酰胺质量占膨润土泥浆中膨润土质量的0.1~10%。 7.按照权利要求3所述的耐有机污染物的聚合物膨润土纳米复合材料的制备方法,其特征在于,所述的步骤30)中,恒温水浴箱中的水温为55~70℃,搅拌器械的转速为200~3000r/min,搅拌时间为3~6h。 8.按照权利要求3所述的耐有机污染物的聚合物膨润土纳米复合材料的制备方法,其特征在于,所述的步骤40)中,利用离心机对反应后的膨润土浆液进行离心处理,离心机转速为2000~15000r/min,离心时间10~120min。 9.按照权利要求3所述的耐有机污染物的聚合物膨润土纳米复合材料的制备方法,其特征在于,所述的步骤40)中,利用烘箱对固相烘干,烘箱内温度为100~110℃,烘干时间为5~8h;研磨后过80~200目筛,制得聚合物膨润土纳米复合材料。

说明书

技术领域

本发明属土木工程、环境岩土工程技术领域,具体说来,涉及一种耐有机污染物的聚合物膨润土纳米复合材料及其制备方法。

背景技术

随着我国城市化进程的不断加快,大中城市产业结构也随之调整升级,原有大型重工业企业逐渐向小城市、西部地区迁移,原有工业场地存在的有机物污染问题严重制约城市的发展,垃圾填埋场渗滤液中大量存在的有机污染物降低了填埋场防渗设施的性能,极易造成污染物渗流到地下水中,威胁到人类的健康,因此有机物污染问题成为迫切需要解决的问题。

膨润土因其高膨胀性、极低渗透性被广泛应用在防污隔离设施中,包括填埋场复合粘土衬垫、膨润土改性压实粘土衬垫、土-膨润土系竖向隔离墙、核废料处置库封层等设施。然而,当膨润土在有机污染物溶液环境下,化学相容性急剧降低,大大减弱了土-膨润土系隔离墙、土工合成材料膨润土毯、膨润土改性的压实粘土衬垫等设施的化学相容性、防渗特性。膨润土在有机物污染液等作用下渗透系数急剧增大的现象是膨润土化学相容性差的主要表现之一。

发明内容

技术问题:本发明所要解决的技术问题是:提供一种耐有机污染物的聚合物膨润土纳米复合材料,该材料可有效提高膨润土化学相容性,提高耐有机物污染的能力,在有机物污染液作用下仍能维持极低的渗透系数,大大提高了膨润土系隔离设施的防渗性能,延长了隔离设施的有效使用寿命,降低了工程成本。

技术方案:为解决上述技术问题,本发明实施例采用如下技术方案:

一方面,本发明实施例提供一种耐有机污染物的聚合物膨润土纳米复合材料,所述的聚合物膨润土纳米复合材料包括膨润土和阳离子聚丙烯酰胺,其中,阳离子聚丙烯酰胺质量是膨润土质量的0.1~10%。

作为一种优选例,所述的阳离子聚丙烯酰胺的的分子量为5×106~1.5×107。

作为一种优选例,所述的膨润土的粒径小于或等于0.15mm。

另一方面,本发明实施例提供一种耐有机污染物的聚合物膨润土纳米复合材料的制备方法,该制备方法包括以下步骤:

步骤10)将膨润土和水混合,进行搅拌,制得膨润土泥浆;

步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液,并搅拌,形成阳离子聚丙烯酰胺和膨润土混合浆液;

步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中,搅拌阳离子聚丙烯酰胺和膨润土混合浆液,使阳离子聚丙烯酰胺在膨润土层间发生纳米插层反应,形成反应后的膨润土浆液;

步骤40)对反应后的膨润土浆液进行离心处理,得到离心出的固相,对固相烘干后进行研磨,制成聚合物膨润土纳米复合材料。

作为一种优选例,所述的步骤10)中,膨润土和水按照质量比0.1~0.2:1进行配制;所述的膨润土与水混合之前,过200目筛,去除杂质。

作为一种优选例,所述的步骤10)中,利用搅拌机对膨润土和水进行搅拌,搅拌机的转速为500~3000r/min,搅拌机的搅拌时间为5~15min。

作为一种优选例,所述的步骤20)中,阳离子聚丙烯酰胺溶液中阳离子聚丙烯酰胺质量占膨润土泥浆中膨润土质量的0.1~10%。

作为一种优选例,所述的步骤30)中,恒温水浴箱中的水温为55~70℃,搅拌器械的转速为200~3000r/min,搅拌时间为3~6h。

作为一种优选例,所述的步骤40)中,利用离心机对反应后的膨润土浆液进行离心处理,离心机转速为2000~15000r/min,离心时间10~120min。

作为一种优选例,所述的步骤40)中,利用烘箱对固相烘干,烘箱内温度为100~110℃,烘干时间为5~8h;研磨后过80~200目筛,制得聚合物膨润土纳米复合材料。

有益效果:与现有技术相比,本发明实施例具有以下有益效果:本发明实施例提供的聚合物膨润土纳米复合材料,在有机物污染液等作用下仍能维持极低的渗透系数,大大提高了膨润土系隔离设施的防渗效果,提高膨润土系隔离设施的有效使用寿命,降低工程成本。同时,本发明实施例提供的制备方法简单易操作,对生产设备无特殊要求。另外,制备聚合物膨润土纳米复合材料的主要成分之一阳离子聚丙烯酰胺多用作净水材料,无毒无害,生产原料来源广泛,属环境友好型材料。膨润土同样多用作净水材料、防污设施材料,同样无毒无害,同时能吸附有害物质,属于环境友好型材料。本发明实施例的聚合物膨润土纳米复合材料符合可持续发展的战略方针。因此,本发明实施例的聚合物膨润土纳米复合材料具有广阔的应用前景及环境保护意义。

具体实施方式

下面通过实施例,对本发明的技术方案进行详细的描述。

本发明实施例提供一种耐有机污染物的聚合物膨润土纳米复合材料,包括膨润土和阳离子聚丙烯酰胺,其中,阳离子聚丙烯酰胺质量是膨润土质量的0.1~10%。

作为优选,该聚合物膨润土纳米复合材料中,阳离子聚丙烯酰胺的分子量为5×106~1.5×107。阳离子聚丙烯酰胺分子量大于106时,才呈现絮凝性,可与带负电荷的有机污染物离子发生结合,达到吸附净化有机污染的作用。此外,随分子量增大,阳离子聚丙烯酰胺价格越高,因此考虑到工程应用与推广,本发明优选分子量为5×106~1.5×107的阳离子聚丙烯酰胺。此分子量范围内的阳离子聚丙烯酰胺与膨润土结合后,才能充分发挥二者协同作用,膨润土提供优异的防渗性能,插入膨润土层间的阳离子聚丙烯酰胺吸附有机污染物。由于插层作用,阳离子聚丙烯酰胺不易被水流冲刷洗脱,因此可维持低渗透系数、提高化学相容性。作为优选,膨润土的粒径小于或等于0.15mm。

上述耐有机污染物的聚合物膨润土纳米复合材料的制备方法,包括以下步骤:

步骤10)将膨润土和水混合,用搅拌机进行搅拌,制得膨润土泥浆。

在步骤10)中,作为优选,膨润土和水按照质量比0.1~0.2:1进行配制。膨润土与水混合之前,过200目筛,去除杂质。膨润土过200目筛,使其粒径不大于0.15mm。搅拌机的转速为500~3000r/min,搅拌机的搅拌时间为5~15min。

步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液,并搅拌,形成阳离子聚丙烯酰胺和膨润土混合浆液。

在步骤20)中,作为优选,阳离子聚丙烯酰胺溶液中阳离子聚丙烯酰胺质量占膨润土泥浆中膨润土质量的0.1~10%。将阳离子聚丙烯酰胺制成溶液,然后与膨润土泥浆混合。聚丙烯酰胺絮凝剂不能直接投加到污水中。使用前必须先将它溶解于水,用其水溶液去处理污水。

步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中,搅拌阳离子聚丙烯酰胺和膨润土混合浆液,使阳离子聚丙烯酰胺在膨润土层间发生纳米插层反应,形成反应后的膨润土浆液;

在步骤30)中,作为优选,恒温水浴箱中的水温为55~70℃,搅拌器械的转速为200~3000r/min,搅拌时间为3~6h。

步骤40)对反应后的膨润土浆液进行离心处理,得到离心出的固相,对固相烘干后进行研磨,制成聚合物膨润土纳米复合材料。

在步骤40)中,作为优选,利用离心机对反应后的膨润土浆液进行离心处理,离心机转速为2000~15000r/min,离心时间10~120min。利用烘箱对固相烘干,烘箱内温度为100~110℃,烘干时间为5~8h;研磨后过80~200目筛,制得聚合物膨润土纳米复合材料。

在上述聚合物膨润土纳米复合材料中,阳离子聚丙烯酰胺通过插层反应插入到膨润土层间,形成的聚合物膨润土纳米复合材料,解决了传统膨润土在所述有机污染物溶液中化学相容性降低、渗透系数增大等多方面问题。当聚合物膨润土纳米复合材料遇到有机污染物电离出的阳离子时,膨润土双电层厚度减小后,孔隙通道变大,但由于阳离子聚丙烯酰胺的存在,堵住了大部分孔隙通道,使渗透通道变得曲折,因此维持了低渗透系数、提高了化学相容性。此外,阳离子聚丙烯酰胺还与带负电荷的有机质阴离子结合,通过其所含的正电荷基团对有机物溶液中的负电荷有机质胶体电性中和作用及高分子优异的架桥凝聚功能,促使胶体颗粒聚集成大块絮状物,从而达到了去除有机污染物的效果。最后,插层反应使得阳离子聚丙烯酰胺不易被流体洗脱,使得聚合物膨润土纳米复合材料性能更加稳定。

纳米复合材料合成反应发生在纳米级别,由阳离子聚丙烯酰胺和钠化膨润土经溶液插层制备而成。本发明实施例所制得的聚合物膨润土纳米复合材料,具有有机污染物溶液的良好特性,在有机污染物污染场地、垃圾填埋场(垃圾填埋场渗滤液中含有大量有机质)衬垫中可维持极低的渗透系数,大大提高了膨润土的化学相容性,弥补了商用钠化膨润土在污染场地中隔离设施中防渗性能急剧下降的不足。

下面通过试验验证上述实施例的聚合物膨润土纳米复合材料所具有良好性能。

实施例1

步骤10)将钙基膨润土过200目筛,膨润土和水混合,膨润土和水按照质量比0.1:1进行配制,用搅拌机进行搅拌,搅拌机的转速为2000r/min,搅拌时间为10min,制得膨润土泥浆。

步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液,并搅拌,阳离子聚丙烯酰胺质量占膨润土泥浆中膨润土质量的0.1%,形成阳离子聚丙烯酰胺和膨润土混合浆液。其中,阳离子聚丙烯酰胺的分子量为5×106。

步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中,恒温水浴箱中的水温为55℃,按照转速为200r/min搅拌阳离子聚丙烯酰胺和膨润土混合浆液,搅拌时间为4h,使阳离子聚丙烯酰胺在膨润土层间发生纳米插层反应,形成反应后的膨润土浆液。

步骤40)对反应后的膨润土浆液进行离心处理,离心机转速为2000r/min,离心时间120min,得到离心出的固相,对固相烘干,烘箱内温度为110℃,烘干时间为5h,然后进行研磨,研磨后过200目筛,制成聚合物膨润土纳米复合材料。

实施例2

步骤10)将钙基膨润土过200目筛,膨润土和水混合,膨润土和水按照质量比0.2:1进行配制,用搅拌机进行搅拌,搅拌机的转速为500r/min,搅拌时间为15min,制得膨润土泥浆。

步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液,并搅拌,阳离子聚丙烯酰胺质量占膨润土泥浆中膨润土质量的1%,形成阳离子聚丙烯酰胺和膨润土混合浆液。其中,阳离子聚丙烯酰胺的分子量为8×106。

步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中,恒温水浴箱中的水温为60℃,按照转速为1200r/min搅拌阳离子聚丙烯酰胺和膨润土混合浆液,搅拌时间为3h,使阳离子聚丙烯酰胺在膨润土层间发生纳米插层反应,形成反应后的膨润土浆液。

步骤40)对反应后的膨润土浆液进行离心处理,离心机转速为10000r/min,离心时间60min,得到离心出的固相,对固相烘干,烘箱内温度为100℃,烘干时间为8h,然后进行研磨,研磨后过100目筛,制成聚合物膨润土纳米复合材料。

实施例3

步骤10)将钙基膨润土过200目筛,膨润土和水混合,膨润土和水按照质量比0.15:1进行配制,用搅拌机进行搅拌,搅拌机的转速为1000r/min,搅拌时间为8min,制得膨润土泥浆。

步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液,并搅拌,阳离子聚丙烯酰胺质量占膨润土泥浆中膨润土质量的4%,形成阳离子聚丙烯酰胺和膨润土混合浆液。其中,阳离子聚丙烯酰胺的分子量为1×107。

步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中,恒温水浴箱中的水温为70℃,按照转速为800r/min搅拌阳离子聚丙烯酰胺和膨润土混合浆液,搅拌时间为5h,使阳离子聚丙烯酰胺在膨润土层间发生纳米插层反应,形成反应后的膨润土浆液。

步骤40)对反应后的膨润土浆液进行离心处理,离心机转速为7000r/min,离心时间40min,得到离心出的固相,对固相烘干,烘箱内温度为105℃,烘干时间为6.5h,然后进行研磨,研磨后过150目筛,制成聚合物膨润土纳米复合材料。

实施例4

步骤10)将钠化膨润土过200目筛,钠化膨润土和水混合,钠化膨润土和水按照质量比0.18:1进行配制,用搅拌机进行搅拌,搅拌机的转速为3000r/min,搅拌时间为5min,制得膨润土泥浆。

步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液,并搅拌,阳离子聚丙烯酰胺质量占膨润土泥浆中膨润土质量的6%,形成阳离子聚丙烯酰胺和膨润土混合浆液。其中,阳离子聚丙烯酰胺的分子量为1.2×107。

步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中,恒温水浴箱中的水温为63℃,按照转速为2200r/min搅拌阳离子聚丙烯酰胺和膨润土混合浆液,搅拌时间为4.5h,使阳离子聚丙烯酰胺在钠化膨润土层间发生纳米插层反应,形成反应后的膨润土浆液。

步骤40)对反应后的膨润土浆液进行离心处理,离心机转速为15000r/min,离心时间90min,得到离心出的固相,对固相烘干,烘箱内温度为103℃,烘干时间为7h,然后进行研磨,研磨后过150目筛,制成聚合物膨润土纳米复合材料。

实施例5

步骤10)将钠化膨润土过200目筛,钠化膨润土和水混合,钠化膨润土和水按照质量比0.12:1进行配制,用搅拌机进行搅拌,搅拌机的转速为2200r/min,搅拌时间为7min,制得膨润土泥浆。

步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液,并搅拌,阳离子聚丙烯酰胺质量占膨润土泥浆中膨润土质量的8%,形成阳离子聚丙烯酰胺和膨润土混合浆液。其中,阳离子聚丙烯酰胺的分子量为1.2×107。

步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中,恒温水浴箱中的水温为57℃,按照转速为3000r/min搅拌阳离子聚丙烯酰胺和膨润土混合浆液,搅拌时间为3.5h,使阳离子聚丙烯酰胺在钠化膨润土层间发生纳米插层反应,形成反应后的膨润土浆液。

步骤40)对反应后的膨润土浆液进行离心处理,离心机转速为13000r/min,离心时间30min,得到离心出的固相,对固相烘干,烘箱内温度为110℃,烘干时间为5.5h,然后进行研磨,研磨后过200目筛,制成聚合物膨润土纳米复合材料。

实施例6

步骤10)将钠化膨润土过200目筛,钠化膨润土和水混合,钠化膨润土和水按照质量比0.14:1进行配制,用搅拌机进行搅拌,搅拌机的转速为1500r/min,搅拌时间为12min,制得膨润土泥浆。

步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液,并搅拌,阳离子聚丙烯酰胺质量占膨润土泥浆中膨润土质量10%,形成阳离子聚丙烯酰胺和膨润土混合浆液。其中,阳离子聚丙烯酰胺的分子量为1.5×107。

步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中,恒温水浴箱中的水温为70℃,按照转速为2800r/min搅拌阳离子聚丙烯酰胺和膨润土混合浆液,搅拌时间为6h,使阳离子聚丙烯酰胺在钠化膨润土层间发生纳米插层反应,形成反应后的膨润土浆液。

步骤40)对反应后的膨润土浆液进行离心处理,离心机转速为5000r/min,离心时间10min,得到离心出的固相,对固相烘干,烘箱内温度为101℃,烘干时间为6h,然后进行研磨,研磨后过80目筛,制成聚合物膨润土纳米复合材料。

上述实施例1至3中采用的膨润土为钙基膨润土,其具体物理性质指标见表1。

实施例4至6采用的钠化膨润土与对比例相同。钙基膨润土和钠化膨润土仅仅是例举。钠化膨润土具体物理性质指标见表1。

对比例

采用钠化膨润土。

表1 钙基膨润土和钠化膨润土物理性质指标

物理性质指标 钙基膨润土 钠化膨润土 粒度 过200目筛 过200目筛 细粒含量/% 100 100 黏粒含量/% 55 65 比重 2.63 2.66 液限/% 269.4 397 塑限/% 34.0 54 土的分类 CH CH 比表面积/m2·g-1 252 390 pH(水) 10.33 9.47 pH(CaCl2) 9.75 9.15 白度 55-65 60-70 膨胀指数/ml·2g-1 14 26 表观粘度/mPa·s 14.5 16

渗透系数测试:

试验中的渗滤液取自南京市某垃圾填埋场,化学需氧量(COD)浓度为6000mg/L,NH3-N为2000~2100mg/L;TFe为41.2~43.0mg/L;TCr为3.69~3.75mg/L;Zn2+为5.45~5.70mg/L;Cu2+为2.20~2.30mg/L;pH为6.82~7.06。

对上述实施例和对比例制备的材料进行渗透系数测试。

渗透系数测试采用中华人民共和国行业标准JTG E40—2007《公路土工试验规程JTG》中的T 0130-2007变水头渗透试验,变水头渗透试验适用于粘土、粘性土,可准确、简便地测试出粘性土渗透系数。试验中的溶液取自南京市某垃圾填埋场渗滤液,化学需氧量(COD)浓度为6000mg/L,NH3-N为2000~2100mg/L;TFe为41.2~43.0mg/L;TCr为3.69~3.75mg/L;Zn2+为5.45~5.70mg/L;Cu2+为2.20~2.30mg/L;pH为6.82~7.06。测试结果如表2所示。

表2

通过表2可以看出:不同掺量、不同分子量阳离子聚丙烯酰胺制备的聚合物膨润土纳米复合材料在有机污染物溶液均可维持较低渗透系数,低于国家垃圾填埋场衬垫等防渗设施的规定限值(1×10-9m/s)。而对比例钠化膨润土在所述溶液中渗透系数大幅提升。这说明聚合物膨润土纳米复合材料化学相容性相对于钠化膨润土得到大幅提升,防渗性能大大增强。

需要理解到的是:以上所述仅是本发明的优选实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

耐有机污染物的聚合物膨润土纳米复合材料及其制备方法.pdf_第1页
第1页 / 共9页
耐有机污染物的聚合物膨润土纳米复合材料及其制备方法.pdf_第2页
第2页 / 共9页
耐有机污染物的聚合物膨润土纳米复合材料及其制备方法.pdf_第3页
第3页 / 共9页
点击查看更多>>
资源描述

《耐有机污染物的聚合物膨润土纳米复合材料及其制备方法.pdf》由会员分享,可在线阅读,更多相关《耐有机污染物的聚合物膨润土纳米复合材料及其制备方法.pdf(9页珍藏版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利 (10)授权公告号 (45)授权公告日 (21)申请号 201510570454.7 (22)申请日 2015.09.09 (65)同一申请的已公布的文献号 申请公布号 CN 105199288 A (43)申请公布日 2015.12.30 (73)专利权人 东南大学 地址 211189 江苏省南京市江宁区东南大 学路2号 (72)发明人 杜延军沈胜强范日东任伟伟 梅丹兵 (74)专利代理机构 南京瑞弘专利商标事务所 (普通合伙) 32249 代理人 杨晓玲 (51)Int.Cl. C08L 33/26(2006.01) C08K 3/3。

2、4(2006.01) (56)对比文件 CN 101134609 A,2008.03.05, US 2013/0035425 A1,2013.02.07, CN 103464123 A,2013.12.25, 审查员 周勇 (54)发明名称 耐有机污染物的聚合物膨润土纳米复合材 料及其制备方法 (57)摘要 本发明公开了一种耐有机污染物的聚合物 膨润土纳米复合材料, 所述的膨润土纳米复合材 料包括膨润土和阳离子聚丙烯酰胺, 其中, 阳离 子聚丙烯酰胺质量是膨润土质量的0.110%。 该 材料可有效提高膨润土化学相容性, 提高耐有机 物污染的能力, 在上述污染液作用下仍能维持极 低的渗透系数, 。

3、大大提高了膨润土系隔离设施的 防渗性能, 延长了隔离设施的有效使用寿命, 降 低了工程成本。 同时, 还提供了该聚合物膨润土 纳米复合材料的制备方法, 简单易操作。 权利要求书1页 说明书7页 CN 105199288 B 2017.06.09 CN 105199288 B 1.一种耐有机污染物的聚合物膨润土纳米复合材料, 其特征在于, 所述的聚合物膨润 土纳米复合材料包括膨润土和阳离子聚丙烯酰胺, 其中, 阳离子聚丙烯酰胺质量是膨润土 质量的0.110; 所述的阳离子聚丙烯酰胺的分子量为51061.5107。 2.根据权利要求1所述的耐有机污染物的聚合物膨润土纳米复合材料, 其特征在于, 所。

4、 述的膨润土的粒径小于或等于0.15mm。 3.一种权利要求1所述的耐有机污染物的聚合物膨润土纳米复合材料的制备方法, 其 特征在于, 该制备方法包括以下步骤: 步骤10)将膨润土和水混合, 进行搅拌, 制得膨润土泥浆; 步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液, 并搅拌, 形成阳离子聚丙烯酰胺 和膨润土混合浆液; 步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中, 搅拌阳离子聚丙 烯酰胺和膨润土混合浆液, 使阳离子聚丙烯酰胺在膨润土层间发生纳米插层反应, 形成反 应后的膨润土浆液; 步骤40)对反应后的膨润土浆液进行离心处理, 得到离心出的固相, 对固相烘干后进行 研磨,。

5、 制成聚合物膨润土纳米复合材料。 4.按照权利要求3所述的耐有机污染物的聚合物膨润土纳米复合材料的制备方法, 其 特征在于, 所述的步骤10)中, 膨润土和水按照质量比0.10.2:1进行配制; 所述的膨润土 与水混合之前, 过200目筛, 去除杂质。 5.按照权利要求3所述的耐有机污染物的聚合物膨润土纳米复合材料的制备方法, 其 特征在于, 所述的步骤10)中, 利用搅拌机对膨润土和水进行搅拌, 搅拌机的转速为500 3000r/min, 搅拌机的搅拌时间为515min。 6.按照权利要求3所述的耐有机污染物的聚合物膨润土纳米复合材料的制备方法, 其 特征在于, 所述的步骤20)中, 阳离子。

6、聚丙烯酰胺溶液中阳离子聚丙烯酰胺质量占膨润土泥 浆中膨润土质量的0.110。 7.按照权利要求3所述的耐有机污染物的聚合物膨润土纳米复合材料的制备方法, 其 特征在于, 所述的步骤30)中, 恒温水浴箱中的水温为5570, 搅拌器械的转速为200 3000r/min, 搅拌时间为36h。 8.按照权利要求3所述的耐有机污染物的聚合物膨润土纳米复合材料的制备方法, 其 特征在于, 所述的步骤40)中, 利用离心机对反应后的膨润土浆液进行离心处理, 离心机转 速为200015000r/min, 离心时间10120min。 9.按照权利要求3所述的耐有机污染物的聚合物膨润土纳米复合材料的制备方法, 。

7、其 特征在于, 所述的步骤40)中, 利用烘箱对固相烘干, 烘箱内温度为100110, 烘干时间为 58h; 研磨后过80200目筛, 制得聚合物膨润土纳米复合材料。 权利要求书 1/1 页 2 CN 105199288 B 2 耐有机污染物的聚合物膨润土纳米复合材料及其制备方法 技术领域 0001 本发明属土木工程、 环境岩土工程技术领域, 具体说来, 涉及一种耐有机污染物的 聚合物膨润土纳米复合材料及其制备方法。 背景技术 0002 随着我国城市化进程的不断加快, 大中城市产业结构也随之调整升级, 原有大型 重工业企业逐渐向小城市、 西部地区迁移, 原有工业场地存在的有机物污染问题严重制约。

8、 城市的发展, 垃圾填埋场渗滤液中大量存在的有机污染物降低了填埋场防渗设施的性能, 极易造成污染物渗流到地下水中, 威胁到人类的健康, 因此有机物污染问题成为迫切需要 解决的问题。 0003 膨润土因其高膨胀性、 极低渗透性被广泛应用在防污隔离设施中, 包括填埋场复 合粘土衬垫、 膨润土改性压实粘土衬垫、 土-膨润土系竖向隔离墙、 核废料处置库封层等设 施。 然而, 当膨润土在有机污染物溶液环境下, 化学相容性急剧降低, 大大减弱了土-膨润土 系隔离墙、 土工合成材料膨润土毯、 膨润土改性的压实粘土衬垫等设施的化学相容性、 防渗 特性。 膨润土在有机物污染液等作用下渗透系数急剧增大的现象是膨润。

9、土化学相容性差的 主要表现之一。 发明内容 0004 技术问题: 本发明所要解决的技术问题是: 提供一种耐有机污染物的聚合物膨润 土纳米复合材料, 该材料可有效提高膨润土化学相容性, 提高耐有机物污染的能力, 在有机 物污染液作用下仍能维持极低的渗透系数, 大大提高了膨润土系隔离设施的防渗性能, 延 长了隔离设施的有效使用寿命, 降低了工程成本。 0005 技术方案: 为解决上述技术问题, 本发明实施例采用如下技术方案: 0006 一方面, 本发明实施例提供一种耐有机污染物的聚合物膨润土纳米复合材料, 所 述的聚合物膨润土纳米复合材料包括膨润土和阳离子聚丙烯酰胺, 其中, 阳离子聚丙烯酰 胺质。

10、量是膨润土质量的0.110。 0007 作为一种优选例, 所述的阳离子聚丙烯酰胺的的分子量为51061.5107。 0008 作为一种优选例, 所述的膨润土的粒径小于或等于0.15mm。 0009 另一方面, 本发明实施例提供一种耐有机污染物的聚合物膨润土纳米复合材料的 制备方法, 该制备方法包括以下步骤: 0010 步骤10)将膨润土和水混合, 进行搅拌, 制得膨润土泥浆; 0011 步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液, 并搅拌, 形成阳离子聚丙烯 酰胺和膨润土混合浆液; 0012 步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中, 搅拌阳离子 聚丙烯酰胺和膨润土混。

11、合浆液, 使阳离子聚丙烯酰胺在膨润土层间发生纳米插层反应, 形 成反应后的膨润土浆液; 说明书 1/7 页 3 CN 105199288 B 3 0013 步骤40)对反应后的膨润土浆液进行离心处理, 得到离心出的固相, 对固相烘干后 进行研磨, 制成聚合物膨润土纳米复合材料。 0014 作为一种优选例, 所述的步骤10)中, 膨润土和水按照质量比0.10.2:1进行配 制; 所述的膨润土与水混合之前, 过200目筛, 去除杂质。 0015 作为一种优选例, 所述的步骤10)中, 利用搅拌机对膨润土和水进行搅拌, 搅拌机 的转速为5003000r/min, 搅拌机的搅拌时间为515min。 0。

12、016 作为一种优选例, 所述的步骤20)中, 阳离子聚丙烯酰胺溶液中阳离子聚丙烯酰胺 质量占膨润土泥浆中膨润土质量的0.110。 0017 作为一种优选例, 所述的步骤30)中, 恒温水浴箱中的水温为5570, 搅拌器械 的转速为2003000r/min, 搅拌时间为36h。 0018 作为一种优选例, 所述的步骤40)中, 利用离心机对反应后的膨润土浆液进行离心 处理, 离心机转速为200015000r/min, 离心时间10120min。 0019 作为一种优选例, 所述的步骤40)中, 利用烘箱对固相烘干, 烘箱内温度为100 110, 烘干时间为58h; 研磨后过80200目筛, 制。

13、得聚合物膨润土纳米复合材料。 0020 有益效果: 与现有技术相比, 本发明实施例具有以下有益效果: 本发明实施例提供 的聚合物膨润土纳米复合材料, 在有机物污染液等作用下仍能维持极低的渗透系数, 大大 提高了膨润土系隔离设施的防渗效果, 提高膨润土系隔离设施的有效使用寿命, 降低工程 成本。 同时, 本发明实施例提供的制备方法简单易操作, 对生产设备无特殊要求。 另外, 制备 聚合物膨润土纳米复合材料的主要成分之一阳离子聚丙烯酰胺多用作净水材料, 无毒无 害, 生产原料来源广泛, 属环境友好型材料。 膨润土同样多用作净水材料、 防污设施材料, 同 样无毒无害, 同时能吸附有害物质, 属于环境。

14、友好型材料。 本发明实施例的聚合物膨润土纳 米复合材料符合可持续发展的战略方针。 因此, 本发明实施例的聚合物膨润土纳米复合材 料具有广阔的应用前景及环境保护意义。 具体实施方式 0021 下面通过实施例, 对本发明的技术方案进行详细的描述。 0022 本发明实施例提供一种耐有机污染物的聚合物膨润土纳米复合材料, 包括膨润土 和阳离子聚丙烯酰胺, 其中, 阳离子聚丙烯酰胺质量是膨润土质量的0.110。 0023 作为优选, 该聚合物膨润土纳米复合材料中, 阳离子聚丙烯酰胺的分子量为5 1061.5107。 阳离子聚丙烯酰胺分子量大于106时, 才呈现絮凝性, 可与带负电荷的有机 污染物离子发生。

15、结合, 达到吸附净化有机污染的作用。 此外, 随分子量增大, 阳离子聚丙烯 酰胺价格越高, 因此考虑到工程应用与推广, 本发明优选分子量为51061.5107的阳离 子聚丙烯酰胺。 此分子量范围内的阳离子聚丙烯酰胺与膨润土结合后, 才能充分发挥二者 协同作用, 膨润土提供优异的防渗性能, 插入膨润土层间的阳离子聚丙烯酰胺吸附有机污 染物。 由于插层作用, 阳离子聚丙烯酰胺不易被水流冲刷洗脱, 因此可维持低渗透系数、 提 高化学相容性。 作为优选, 膨润土的粒径小于或等于0.15mm。 0024 上述耐有机污染物的聚合物膨润土纳米复合材料的制备方法, 包括以下步骤: 0025 步骤10)将膨润土。

16、和水混合, 用搅拌机进行搅拌, 制得膨润土泥浆。 0026 在步骤10)中, 作为优选, 膨润土和水按照质量比0.10.2:1进行配制。 膨润土与 说明书 2/7 页 4 CN 105199288 B 4 水混合之前, 过200目筛, 去除杂质。 膨润土过200目筛, 使其粒径不大于0.15mm。 搅拌机的转 速为5003000r/min, 搅拌机的搅拌时间为515min。 0027 步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液, 并搅拌, 形成阳离子聚丙烯 酰胺和膨润土混合浆液。 0028 在步骤20)中, 作为优选, 阳离子聚丙烯酰胺溶液中阳离子聚丙烯酰胺质量占膨润 土泥浆中膨润土质量。

17、的0.110。 将阳离子聚丙烯酰胺制成溶液, 然后与膨润土泥浆混 合。 聚丙烯酰胺絮凝剂不能直接投加到污水中。 使用前必须先将它溶解于水, 用其水溶液去 处理污水。 0029 步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中, 搅拌阳离子 聚丙烯酰胺和膨润土混合浆液, 使阳离子聚丙烯酰胺在膨润土层间发生纳米插层反应, 形 成反应后的膨润土浆液; 0030 在步骤30)中, 作为优选, 恒温水浴箱中的水温为5570, 搅拌器械的转速为200 3000r/min, 搅拌时间为36h。 0031 步骤40)对反应后的膨润土浆液进行离心处理, 得到离心出的固相, 对固相烘干后 进行研磨, 。

18、制成聚合物膨润土纳米复合材料。 0032 在步骤40)中, 作为优选, 利用离心机对反应后的膨润土浆液进行离心处理, 离心 机转速为200015000r/min, 离心时间10120min。 利用烘箱对固相烘干, 烘箱内温度为 100110, 烘干时间为58h; 研磨后过80200目筛, 制得聚合物膨润土纳米复合材料。 0033 在上述聚合物膨润土纳米复合材料中, 阳离子聚丙烯酰胺通过插层反应插入到膨 润土层间, 形成的聚合物膨润土纳米复合材料, 解决了传统膨润土在所述有机污染物溶液 中化学相容性降低、 渗透系数增大等多方面问题。 当聚合物膨润土纳米复合材料遇到有机 污染物电离出的阳离子时, 。

19、膨润土双电层厚度减小后, 孔隙通道变大, 但由于阳离子聚丙烯 酰胺的存在, 堵住了大部分孔隙通道, 使渗透通道变得曲折, 因此维持了低渗透系数、 提高 了化学相容性。 此外, 阳离子聚丙烯酰胺还与带负电荷的有机质阴离子结合, 通过其所含的 正电荷基团对有机物溶液中的负电荷有机质胶体电性中和作用及高分子优异的架桥凝聚 功能, 促使胶体颗粒聚集成大块絮状物, 从而达到了去除有机污染物的效果。 最后, 插层反 应使得阳离子聚丙烯酰胺不易被流体洗脱, 使得聚合物膨润土纳米复合材料性能更加稳 定。 0034 纳米复合材料合成反应发生在纳米级别, 由阳离子聚丙烯酰胺和钠化膨润土经溶 液插层制备而成。 本发。

20、明实施例所制得的聚合物膨润土纳米复合材料, 具有有机污染物溶 液的良好特性, 在有机污染物污染场地、 垃圾填埋场(垃圾填埋场渗滤液中含有大量有机 质)衬垫中可维持极低的渗透系数, 大大提高了膨润土的化学相容性, 弥补了商用钠化膨润 土在污染场地中隔离设施中防渗性能急剧下降的不足。 0035 下面通过试验验证上述实施例的聚合物膨润土纳米复合材料所具有良好性能。 0036 实施例1 0037 步骤10)将钙基膨润土过200目筛, 膨润土和水混合, 膨润土和水按照质量比0.1:1 进行配制, 用搅拌机进行搅拌, 搅拌机的转速为2000r/min, 搅拌时间为10min, 制得膨润土 泥浆。 0038。

21、 步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液, 并搅拌, 阳离子聚丙烯酰胺 说明书 3/7 页 5 CN 105199288 B 5 质量占膨润土泥浆中膨润土质量的0.1, 形成阳离子聚丙烯酰胺和膨润土混合浆液。 其 中, 阳离子聚丙烯酰胺的分子量为5106。 0039 步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中, 恒温水浴箱 中的水温为55, 按照转速为200r/min搅拌阳离子聚丙烯酰胺和膨润土混合浆液, 搅拌时 间为4h, 使阳离子聚丙烯酰胺在膨润土层间发生纳米插层反应, 形成反应后的膨润土浆液。 0040 步骤40)对反应后的膨润土浆液进行离心处理, 离心机转速。

22、为2000r/min, 离心时 间120min, 得到离心出的固相, 对固相烘干, 烘箱内温度为110, 烘干时间为5h, 然后进行 研磨, 研磨后过200目筛, 制成聚合物膨润土纳米复合材料。 0041 实施例2 0042 步骤10)将钙基膨润土过200目筛, 膨润土和水混合, 膨润土和水按照质量比0.2:1 进行配制, 用搅拌机进行搅拌, 搅拌机的转速为500r/min, 搅拌时间为15min, 制得膨润土泥 浆。 0043 步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液, 并搅拌, 阳离子聚丙烯酰胺 质量占膨润土泥浆中膨润土质量的1, 形成阳离子聚丙烯酰胺和膨润土混合浆液。 其中, 阳。

23、离子聚丙烯酰胺的分子量为8106。 0044 步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中, 恒温水浴箱 中的水温为60, 按照转速为1200r/min搅拌阳离子聚丙烯酰胺和膨润土混合浆液, 搅拌时 间为3h, 使阳离子聚丙烯酰胺在膨润土层间发生纳米插层反应, 形成反应后的膨润土浆液。 0045 步骤40)对反应后的膨润土浆液进行离心处理, 离心机转速为10000r/min, 离心时 间60min, 得到离心出的固相, 对固相烘干, 烘箱内温度为100, 烘干时间为8h, 然后进行研 磨, 研磨后过100目筛, 制成聚合物膨润土纳米复合材料。 0046 实施例3 0047 步骤。

24、10)将钙基膨润土过200目筛, 膨润土和水混合, 膨润土和水按照质量比0.15: 1进行配制, 用搅拌机进行搅拌, 搅拌机的转速为1000r/min, 搅拌时间为8min, 制得膨润土 泥浆。 0048 步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液, 并搅拌, 阳离子聚丙烯酰胺 质量占膨润土泥浆中膨润土质量的4, 形成阳离子聚丙烯酰胺和膨润土混合浆液。 其中, 阳离子聚丙烯酰胺的分子量为1107。 0049 步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中, 恒温水浴箱 中的水温为70, 按照转速为800r/min搅拌阳离子聚丙烯酰胺和膨润土混合浆液, 搅拌时 间为5h, 使。

25、阳离子聚丙烯酰胺在膨润土层间发生纳米插层反应, 形成反应后的膨润土浆液。 0050 步骤40)对反应后的膨润土浆液进行离心处理, 离心机转速为7000r/min, 离心时 间40min, 得到离心出的固相, 对固相烘干, 烘箱内温度为105, 烘干时间为6.5h, 然后进行 研磨, 研磨后过150目筛, 制成聚合物膨润土纳米复合材料。 0051 实施例4 0052 步骤10)将钠化膨润土过200目筛, 钠化膨润土和水混合, 钠化膨润土和水按照质 量比0.18:1进行配制, 用搅拌机进行搅拌, 搅拌机的转速为3000r/min, 搅拌时间为5min, 制 得膨润土泥浆。 0053 步骤20)向膨。

26、润土泥浆中添加阳离子聚丙烯酰胺溶液, 并搅拌, 阳离子聚丙烯酰胺 说明书 4/7 页 6 CN 105199288 B 6 质量占膨润土泥浆中膨润土质量的6, 形成阳离子聚丙烯酰胺和膨润土混合浆液。 其中, 阳离子聚丙烯酰胺的分子量为1.2107。 0054 步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中, 恒温水浴箱 中的水温为63, 按照转速为2200r/min搅拌阳离子聚丙烯酰胺和膨润土混合浆液, 搅拌时 间为4.5h, 使阳离子聚丙烯酰胺在钠化膨润土层间发生纳米插层反应, 形成反应后的膨润 土浆液。 0055 步骤40)对反应后的膨润土浆液进行离心处理, 离心机转速为15。

27、000r/min, 离心时 间90min, 得到离心出的固相, 对固相烘干, 烘箱内温度为103, 烘干时间为7h, 然后进行研 磨, 研磨后过150目筛, 制成聚合物膨润土纳米复合材料。 0056 实施例5 0057 步骤10)将钠化膨润土过200目筛, 钠化膨润土和水混合, 钠化膨润土和水按照质 量比0.12:1进行配制, 用搅拌机进行搅拌, 搅拌机的转速为2200r/min, 搅拌时间为7min, 制 得膨润土泥浆。 0058 步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液, 并搅拌, 阳离子聚丙烯酰胺 质量占膨润土泥浆中膨润土质量的8, 形成阳离子聚丙烯酰胺和膨润土混合浆液。 其中,。

28、 阳离子聚丙烯酰胺的分子量为1.2107。 0059 步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中, 恒温水浴箱 中的水温为57, 按照转速为3000r/min搅拌阳离子聚丙烯酰胺和膨润土混合浆液, 搅拌时 间为3.5h, 使阳离子聚丙烯酰胺在钠化膨润土层间发生纳米插层反应, 形成反应后的膨润 土浆液。 0060 步骤40)对反应后的膨润土浆液进行离心处理, 离心机转速为13000r/min, 离心时 间30min, 得到离心出的固相, 对固相烘干, 烘箱内温度为110, 烘干时间为5.5h, 然后进行 研磨, 研磨后过200目筛, 制成聚合物膨润土纳米复合材料。 0061 实。

29、施例6 0062 步骤10)将钠化膨润土过200目筛, 钠化膨润土和水混合, 钠化膨润土和水按照质 量比0.14:1进行配制, 用搅拌机进行搅拌, 搅拌机的转速为1500r/min, 搅拌时间为12min, 制得膨润土泥浆。 0063 步骤20)向膨润土泥浆中添加阳离子聚丙烯酰胺溶液, 并搅拌, 阳离子聚丙烯酰胺 质量占膨润土泥浆中膨润土质量10, 形成阳离子聚丙烯酰胺和膨润土混合浆液。 其中, 阳 离子聚丙烯酰胺的分子量为1.5107。 0064 步骤30)将阳离子聚丙烯酰胺和膨润土混合浆液置于恒温水浴箱中, 恒温水浴箱 中的水温为70, 按照转速为2800r/min搅拌阳离子聚丙烯酰胺和膨。

30、润土混合浆液, 搅拌时 间为6h, 使阳离子聚丙烯酰胺在钠化膨润土层间发生纳米插层反应, 形成反应后的膨润土 浆液。 0065 步骤40)对反应后的膨润土浆液进行离心处理, 离心机转速为5000r/min, 离心时 间10min, 得到离心出的固相, 对固相烘干, 烘箱内温度为101, 烘干时间为6h, 然后进行研 磨, 研磨后过80目筛, 制成聚合物膨润土纳米复合材料。 0066 上述实施例1至3中采用的膨润土为钙基膨润土, 其具体物理性质指标见表1。 0067 实施例4至6采用的钠化膨润土与对比例相同。 钙基膨润土和钠化膨润土仅仅是例 说明书 5/7 页 7 CN 105199288 B 。

31、7 举。 钠化膨润土具体物理性质指标见表1。 0068 对比例 0069 采用钠化膨润土。 0070 表1 钙基膨润土和钠化膨润土物理性质指标 0071 物理性质指标钙基膨润土钠化膨润土 粒度过200目筛过200目筛 细粒含量/100100 黏粒含量/5565 比重2.632.66 液限/269.4397 塑限/34.054 土的分类CHCH 比表面积/m2g-1252390 pH(水)10.339.47 pH(CaCl2)9.759.15 白度55-6560-70 膨胀指数/ml2g-11426 表观粘度/mPas14.516 0072 渗透系数测试: 0073 试验中的渗滤液取自南京市某垃。

32、圾填埋场, 化学需氧量(COD)浓度为6000mg/L, NH3-N为20002100mg/L; TFe为41.243.0mg/L; TCr为3.693.75mg/L; Zn2+为5.45 5.70mg/L; Cu2+为2.202.30mg/L; pH为6.827.06。 0074 对上述实施例和对比例制备的材料进行渗透系数测试。 0075 渗透系数测试采用中华人民共和国行业标准JTG E402007 公路土工试验规程 JTG 中的T 0130-2007变水头渗透试验, 变水头渗透试验适用于粘土、 粘性土, 可准确、 简便 地测试出粘性土渗透系数。 试验中的溶液取自南京市某垃圾填埋场渗滤液, 。

33、化学需氧量 (COD)浓度为6000mg/L, NH3-N为20002100mg/L; TFe为41.243.0mg/L; TCr为3.69 3.75mg/L; Zn2+为5.455.70mg/L; Cu2+为2.202.30mg/L; pH为6.827.06。 测试结果如表 2所示。 0076 表2 0077 0078 通过表2可以看出: 不同掺量、 不同分子量阳离子聚丙烯酰胺制备的聚合物膨润土 纳米复合材料在有机污染物溶液均可维持较低渗透系数, 低于国家垃圾填埋场衬垫等防渗 说明书 6/7 页 8 CN 105199288 B 8 设施的规定限值(110-9m/s)。 而对比例钠化膨润土在所述溶液中渗透系数大幅提升。 这说 明聚合物膨润土纳米复合材料化学相容性相对于钠化膨润土得到大幅提升, 防渗性能大大 增强。 0079 需要理解到的是: 以上所述仅是本发明的优选实施方式, 对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润 饰也应视为本发明的保护范围。 说明书 7/7 页 9 CN 105199288 B 9 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 >


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1