制备自撑式材料的方法以及用其制造的产品.pdf

上传人:小** 文档编号:849801 上传时间:2018-03-15 格式:PDF 页数:23 大小:1.19MB
返回 下载 相关 举报
摘要
申请专利号:

CN87101720

申请日:

1987.03.06

公开号:

CN87101720A

公开日:

1988.08.31

当前法律状态:

终止

有效性:

无权

法律详情:

专利权的终止(未缴年费专利权终止)授权公告日:1992.9.2|||保护期延长|||授权|||审定||||||公开

IPC分类号:

C22C1/00; C22C1/04; C22C29/14

主分类号:

C22C1/00; C22C1/04; C22C29/14

申请人:

兰克西敦技术公司

发明人:

马克·S·纽基尔克; 迈克尔·K·阿哈亚尼安

地址:

美国德拉华州19711

优先权:

1986.03.07 US 837448

专利代理机构:

中国国际贸易促进委员会专利代理部

代理人:

陈季壮;罗英铭

PDF下载: PDF下载
内容摘要

自撑式材料是由母体金属与硼源反应性渗透所生成的复合材料制成的,复合材料包括了母体金属硼化物和金属。 待渗透的物质含有一种或多种掺有硼源的惰性填料,以便通过反应性渗透制造复合材料。这种复合材料包括金属基体和埋入填料的母体金属硼化物。改变或控制各种反应物的相对量和工艺条件,以得到含不同体积百分率的陶瓷、金属和/或孔隙的材料。

权利要求书

1: 一种制造自撑式材料的方法,它包括:(a)选择一种母体金属,(b)在基本惰性的气氛下将所说的母体金属加热到高于其熔点的温度,以形成熔融金属体,并使所说的熔融母体金属与包含硼源的块状物体接触,(c)在所说的温度下保温足够的时间,以使熔融母体金属向所说的块状物渗透并使熔融母体金属与所说的硼源反应,以形成母体金属的硼化物,(d)使所说的渗透和反应持续足够的时间,形成的自撑式材料由金属相和母体金属硼化物组成。
2: 根据权利要求1的方法,包括将所说的硼源与惰性填料掺混以形成所说的块状物,向所说的制成的埋入所说的填料的块状的物进行所说的渗透和反应,和制造一种自撑式形式的复合材料,该自撑式材料具有埋入所说填料的基体,而所说的基体包括金属相和母体金属硼化物。
3: 根据权利要求1或2的方法,其中所述的硼源的量至少是化学计算量,所说渗透和反应持续足够的时间,以基本消耗全部所说的母体金属。
4: 根据权利要求3的方法,其中所说的渗透和反应持续足够的时间以制造一种多孔体。
5: 根据权利要求1,2或3的方法,其中所述母体金属选自铝、钛、锆、硅、铪、镧、铁、钙、钒、铌、镁和铍。
6: 根据上述任一项权利要求所述的方法,其中所述母体金属是铝,所述硼源是单质硼,所说的自撑式材料包括铝和硼化铝。
7: 根据权利要求1的方法,其中所说的块状物包括所说的低密度的硼源,借此形成一种自撑式材料,其性质由所述金属相的性质控制。
8: 根据权利要求2的方法,其中所说的块状物包括所说的低密度硼源,该硼源在所说填料的各组分之间的空隙中,借此得到的所说的基体显示了由所说的金属相提供的性质。
9: 根据权利要求7或8中所说的任一种方法,其中所说的硼源是单质硼。
10: 根据权利要求1的方法,其中所说的块状物包括所说的高密度硼源,借此形成一种自撑式材料,它的性质由所说的母体金属硼化物控制。
11: 根据权利要求2的方法,其中所说的物体包括所说的高密度硼源,该硼源在所述填料各组分之间的空隙中,借此得到的所说的基体的性质由所述金属硼化物控制。
12: 根据权利要求10或11的方法,其中所述的硼源是单质硼。
13: 根据权利要求2或6的方法,其中所说的块状物体包括至少约50%(重量)的硼源;所说的母体金属硼化物至少在一维牢固地互连。
14: 根据前述任一项权利要求的方法,其中所说的物体包括可以被所说的母体金属还原的金属硼化物,所说的金属相包括从所说的金属硼化物得到的金属。
15: 根据权利要求14的方法,其中所说的母体金属是钛,所说的可还原的金属硼化物是十二硼铝。

说明书


本发明涉及一种新型的自撑式材料,及其新的制备方法。更确切地说,本发明是关于制造自撑式材料的方法,该方法是通过一种熔融的母体金属向含硼源以及可任意选择的一种或多种惰性填料的床层或物团反应性渗透,从而形成包括金属和硼化物及填料(如果使用)的复合材料。

    近年来,使用陶瓷作为结构应用已引起日益关注,而这种结构应用传统上是采用金属。这是因为陶瓷与金属相比,就特定的性质来说是优越的,例如耐腐蚀性,硬度,耐磨性,弹性模量以及耐高温性能。

    但是,将陶瓷用于上述目的,主要受制造所需陶瓷结构的可能性和成本的限制。例如,用热压、反应烧结和反应热压的方法生产硼陶瓷体是众所周知的。热压方法是,将所要求地硼化物的细粒在高温高压下压实。而反应热压法,举例来说,是将硼或金属硼化物与适宜的含金属的粉末压实,也是在高温高压下进行。美国专利3937619(发明人E.Clougherty)描述了用热压压制粉末金属与粉末二硼化物的混合物的方法制备硼化物体;美国专利4512946(发明人Mo    Brun)描述了热压含硼陶瓷粉和金属氢化物,制成硼化物复合材料。但是,这些热压方法需要特殊处理工艺和昂贵的专用设备,要生产的陶瓷部件的尺寸和形状也有限,一般来说生产率低和生产成本高。

    陶瓷材料用于结构件的第二个主要的缺点,是延性和韧性(即损伤容限或耐断裂性)差。这种特性往往会引起使用中的陶瓷突然严重损坏,即使在相当平稳的不大的拉应力下。

    有人已试图将陶瓷与金属复合,并近于解决了这个问题,一种方法是采用陶瓷与金属结合,例如,金属陶瓷或金属基体的复合材料。该方法的目标是要兼得陶瓷(如硬度)和金属(如延性)的最优良的特性。欧洲专利申请0116809揭示了一种制造陶瓷金属复合材料(金属陶瓷)的方法。根据该专利公开的内容,首先要准备由几种颗粒组分构成的疏松的反应混合物,然后该混合物在与渗入混合物中的熔融金属接触时反应。这种反应混合物可以是含二氧化钛、氧化硼和铝的混合物(具有化学计算量和颗粒状),该混合物与熔融铝接触时,反应生成二硼化钛和氧化铝,作为渗入铝的陶瓷相。从上述内容明显可知,熔融金属铝,是还原剂而不是反应生成的硼化物的产物母体。

    欧洲专利申请0113249公开了一种制备金属陶瓷的方法,该方法是:先在熔融金属相的原位形成陶瓷相的弥散颗粒,而后,在熔融状态保持足够的时间,使之形成交互生长的陶瓷网。通过在熔融金属中钛盐与硼盐反应的例子说明陶瓷相的形成。陶瓷在原位发展并成为交互生长网。但是没有发生渗透;此工艺中用的熔融金属铝仍是还原剂;且不参与反应形成硼化物,硼化物在熔融金属中形成脱溶物。该申请中的两个实施例都表明,没有生成Ti Al3、Al B2或Al B12的颗粒;相反,Ti B2的形成表明,铝不是硼化物的金属产物母体。

    美国专利3864154公开了一种靠渗透得到的陶瓷-金属体系。该体系是在真空中用熔融铝浸渍压实的Al B12得到的。要制备的其它材料包括Si B6- Al;B- Al;B4C-Al/Si;和Al B12-BAl。该专利没有提出究竟是什么样的反应,也没有提到与渗入金属反应的混合物,没有提到埋在惰性填料中的反应产物或实际的复合材料。

    尽管,这些制造金属陶瓷材料的基本思想产生过希望的后果,但总的来讲,还需要更有效更经济的方法制备这类陶瓷-金属的复合材料。

    按照本发明制造自撑式材料的方法是在有硼源的情况下(下文中有定义)利用母体金属渗透和反应过程(即反应渗透)来进行的渗入母体金属的层状或块状材料完全由硼源组成,制成的有代表性的复合材料是由母体金属硼化物和金属组成。另一方面,为了用反应渗透法生产由嵌入填料中的金属基体和母体金属硼化物组成的复合材料,待渗入的块状物可含有一种或多种掺有硼源的惰性填料。要生产含有不同体积百分数的陶瓷,金属和/或各种孔隙度的材料可改变或控制反应物的浓度和工艺条件。

    广义上讲,本发明的方法中,包含硼源的块状物紧邻熔融金属体或金属合金或与其接触,在特定温度范围内、基本上是惰性气氛的环境下熔化。硼源可以是单质硼和/或一种相配金属的硼化物,在工艺温度条件下,这种金属硼化物可以被熔融母体金属还原。熔融金属渗入块状物并与硼源反应,形成母体金属的硼化物即反应产物。至少有一部分反应产物与金属保持接触,通过虹吸作用即毛细管作用熔融金属被吸向或送向未反应的硼源中。被输送的金属形成更多的母体金属硼化物,陶瓷-金属的复合物的形成或扩展不断地进行,直至母体金属或硼源耗尽,或者反应温度超出反应温度范围。得到的结构包括母体金属硼化物,金属和/或金属间化合物或孔隙或其组合,这几种相可以或也可不一维或多维互连。通过改变各种条件,例如硼源初始密度,硼源和母体金属的相对量,母体金属的合金化,用填料稀释硼源,温度和时间,可以控制硼化物和金属相的最终体积比和相互连接的程度。典型的块状硼源物至少是稍有气孔的,以便能把母体金属虹吸穿过反应产物。显然,存在虹吸作用或者是用于反应中的任何体积变化都不能完全封堵住孔隙,母体金属才不断地虹吸穿过孔隙,或者是由于表面能等诸因素使反应产物仍然对熔融金属有可渗透性,这些因素至少使反应产物的晶界对母体金属是可渗透的。

    另一个实施方案是通过向一种或多种含硼源的惰性填料输送熔融的母体金属生产复合材料。在这个实施方案中,硼源中掺入一种相配的填料,然后放在熔融的母体金属附近或与其接触。把这种组合体固定在分离的层状物上或层状物中。

    在工艺条件下,该层状物与熔融金属不可浸润也不与熔融金属起反应。熔融母体金属渗入硼源-填料混合物中,并与硼源反应形成母体金属硼化物。制得的自撑式陶瓷-金属复合材料一般具有致密的显微结构,它由填料和基体组成,基体包括母体金属的硼化物和金属。基体埋入填料中。进行反应渗透只需要少量的硼源。得到的基体的组成可以从主要以金属组分为主变化到生成大量的硼化物相。以金属组分为主时,显示出某些金属特性,在工艺中使用高浓度的硼源则生成能控制基体性质的硼化物相。填料可以提高复合材料的性能,降低复合材料的原材料成本或调节硼化物形成反应动力学和伴随的放热速度。

    在又一个实施方案中,待渗透的材料按所需要的最终复合材料的几何形状加工成予型坯。随后,通过熔融母体金属对预型坯的反应渗透形成复合材料。其形状就是或接近予型坯的形状。从而使最终的机加工和抛光工序的费用减至最小。

    在本说明书和所附的权利要求书中所使用的术语定义如下:

    “母体金属”指的是诸如铝那样的金属,它是多晶反应产物即母体金属硼化物的产物母体。母体金属包括金属和合金。金属可以是纯金属或比较纯的金属,市售的含有杂质和/或合金化组分中的金属。指合金时,金属产物母体是合金的主要组分。当提到特殊的金属如铝作用母体金属时,所指的金属应理解为这种定义,除非在文中另有说明。

    “硼源”指的是单质硼或一种金属硼化物。在工艺温度下它与母体金属反应形成母体金属硼化物,在工艺条件下它通常是固态,但在使用高熔点母体金属的特殊情况下,也可以是液态。

    “母体金属硼化物”意指硼源和母体金属的反应产物,包括硼与母体金属的二元化合物以及三元或多元化合物,这些化合物可以包含硼源的组分。

    参考附图说明本发明。

    图1是断面示意图,它表示按照本发明工艺放在耐火坩埚内埋在硼粉中的铝坯。

    图2是硼化铝-金属复合材料(放大400倍)的金相照片,它是按照实施例1的方法用含3%镁和10%硅的铝合金在给定的1200℃下与硼反应生成。

    图3是按实施例4的方法形成的Zr B2/Zr的放大400倍的金相照片。

    图4是Al3O2/Al复合材料的放大400倍的金相照片,该复合材料是按实施例9描述的方法使铝反应渗入Al2O3加1%(重量)硼的预形成的。

    图5是Al2O3/Al B12/Al复合材料的放大400倍的金相照片,该复合材料是按实施例9的方法向含50%(重量)Al2O3和50%(重量)硼的预型坯反应渗透铝所形成的。

    本发明的自撑式材料是用熔融母体金属与硼源反应渗透形成的多晶陶瓷-金属复合材料,复合材料由所说的母体金属和硼源的反应产物和一种或多种未氧化的母体金属组分所组成。如果硼源中含有的金属硼化物能在反应条件下被母体金属还原,那么在复合材料金属相中可包括该硼源中被还原的金属组分。复合材料也显示出多孔性或孔隙。在工艺条件下一般是固体态的硼源,最好是细颗粒或粉末状,但高温下熔融的母体金属应使用相容的硼源。该硼源能在工艺温度范围内液化。

    需要时,可以使用基本上不可渗透的块状硼源,但所生成物的摩尔体积要比硼源的小,以便使熔融金属能迁移穿过生成物并与硼源接触。应选择在处理条件下比较惰性或不起反应的环境或气氛。例如,氩气或真空将是适宜的处理气氛。

    使用单质硼的典型方法是使粉末状硼与母体金属(例如铝)反应,形成复合材料,该复合材料包括母体金属硼化物和母体金属,例如硼化铝和铝,还可能有其它未反应的母体金属的组分。另一方面,母体金属可与起硼源作用的可还原的金属硼化物反应生成陶瓷-金属复合材料。该复合材料包括母体金属硼化物、未反应的母体金属组分、开始使用的金属硼化物中被还原的组分,还包括各种金属间化合物,它是母体金属与从开始使用的金属硼化物中还原出来的金属组分反应形成的。例如,如果用钛作为母体金属,硼化铝作为硼源,则金属相可包括钛(及任何未反应的钛的合金化组分),铝以及一种或多种铝/钛的金属间化合物(但通常不同时存在)。工艺过程中还可形成硼化钛。

    尽管后面将参考用母体金属是铝,硼源是单质硼的具体实施例来描述本发明,但这只是为了举例说明。还可使用其它母体金属,例如,硅、钛、锆铪、镧、铁、钙、钒、铌、镁和铍,以及下面所给的几种这样的母体金属的实施例。还可使用任何可还原的金属硼化物,只要它满足本发明的准则。

    附图1,10代表母体金属的产物母体,诸如铝,要制成铸锭、坯段、棒、板或其它形状。这种金属至少要部分埋在单质硼12(粒度最好大约为0.1μm~100μm)中。这种组合体或组合件的四周围惰性材料14,放在坩埚16或其它耐高温容器中。惰性材料一般采用颗粒状,与熔融金属不可浸润也不起反应。母体金属的顶面18可以露出,或者母体金属完全埋入硼源或完全用硼源围着。惰性层14也可省去。将这种组合体置于炉中,最好在惰性气氛下(例如氩),加热到高于母体金属的熔点以上,但宜低于所需母体金属硼化物的熔点,以便消除熔融金属体或熔融金属浴。当然,可采用的温度范围或较好的温度不可超过这个总的范围。温度范围在很大程度上取决于诸因素,例如母体金属组分和硼源的选择。熔融金属接触硼源,母体金属硼化物为反应产物。在不断地暴露在硼源下,剩余的熔融金属逐渐被吸向硼源,透过反应产物并被吸入硼源体内,在熔融金属与硼源的界面连续生成反应产物。用这种方法生产的陶瓷-金属复合材料包括母体金属与硼源(即:硼和/或一种或多种可还原的金属硼化物)的反应产物,和一种或多种母体金属的非氧化组分或空隙或两者都有,或析出的金属或由使用可还原的金属硼化物作为硼源而生成的金属间化合物。大量的硼源反应形成母体金属硼化物,较好的使用量至少约50%,最好的使用量至少约90%。在某些高温使用的产品中,转变成母体金属硼化物有效的转换率可能是很大的,但是因为硼化物比硼更稳定,该种硼易与产物中存在的金属诸如铝反应。形成的硼化物晶体可以互相连接也可以不互相连接产品中的金属相和任何空隙,通常至少应部分互相连接。任何孔隙的形成往往是由母体金属相部分或几乎全部耗尽而致。这有利于形成另外的反应产物(例如当有化学计量反应物或多余的硼存在时),但空隙的体积百分比将取决于一些因素,诸如温度,时间,母体金属的类型,硼源的选择以及硼源层的孔隙率。

    本发明的另一个方面是提供一种自撑式陶瓷-金属复合材料,该复合材料包括金属组分基体和埋有惰性填料的母体金属硼化物。该基体是通过母体金属渗透到与硼源均匀混合的层状或块状填料中形成的。填料可以是任何尺寸或任何形状,也可以任何方式根据母体金属确定位置、只要朝着反应物的发展方向和至少有一部分填料包埋母体金属,而不是有明显的妨碍或移动母体金属就行。填料可由适宜的材料组成或构成,诸如,陶瓷和/或金属纤维,金属须,颗粒,粉末,棒,线,线布,耐火布,板,薄层,网状泡沫结构,实心或空球体等。填料体可以是松散的或是粘结系列或排例,该系列具有空隙,开口,交错空隙等,使填料成为可渗入熔融母体金属的可渗透性材料。此外,填料可以是均质的或非均质的。如果需要,这些材料可以用适宜的粘结剂粘合,但该粘结剂不能干扰本发明的反应或在最终复合产物中留下任何不需要的残留副产物。对于在工艺过程与硼源或熔融金属反应过分的填料可以包涂层,使填料在工艺条件下有惰性。例如,如果把碳纤维作为填料碳纤维与作为母体金属的铝一起会与熔融铝反应,但是,如果在纤维上涂上氧化铝涂层,就能避免这种反应。

    将一种适宜的耐火容器放入一个炉中,该容器盛有母体金属和带有混合硼源的填料层或填料体,该硼源被恰当的放置,以使母体金属反应性渗透到填充物层中,并正常地生成复合材料。将该组合体升温到母体金属的熔点以上。在高温下通过虹吸作用,熔融母体金属渗透到可渗透的填料中并与硼源反应,由此生成所需要的陶瓷-金属复合材料。

    业已发现,可渗透性填料被母体金属渗透是由存在于填料中的硼源引起的。少量的硼已经显出其效力,但其最小量取决于很多因素,如硼源的类型和粒度,母体金属类型,填料类型以及工艺条件。因此,可在填料中提供浓度大范围变化的硼源,但是,硼源浓度越低,基体中金属的体积百分比就越高。当使用非常少量的硼源时,例如硼源量为硼源加填料总重量的百分之一或百分之十时,所生成的基体是互连的金属和分散在金属中的微量母体金属硼化物。在一个无硼源的控制试验中,没有形成复合材料。下面的实施例9给出了使用含有重量百分为0,1,2,5,10硼的氢化铝和铝母体金属的5次试验结果。在不存在硼源的试验中,不发生填料的反应性渗透,而且不使用特殊方法,诸如施以外部压力迫使金属进入填料是不可能有渗透的。

    在本发明的方法中,由于在填料中可以使用宽范围的硼源浓度,就有可能通过改变硼源浓度来控制或调节最终的金属-陶瓷复合材料的性质。当相对于母体金属使用量而言,仅使用少量硼源使填料体为低密度硼源时,因为基体主要是金属,因此复合体或基体的性质,特别是延性和韧性,受母体金属性能支配。当使用大量硼源时,例如当单质硼颗粒密实地与填料压紧或在填料的各组分之间占有高的空隙百分比时,复合材料体或基体的性质往往由母体金属硼化物控制,因此,复合材料体或基体可能比较硬或塑性差或韧性差。为了满足各种可能的应用对这些陶瓷-金属复合材料的要求,对最终性能进行选择是十分需要的。

    控制渗透条件可以改变复合材料的特性和性质,能被控制的变量包括硼源材料的颗粒性质和粒度,渗透温度和时间,以及与硼量和要形成的母体金属硼化物的化学计算量有关的母体金属量,所说的硼的量从硼源中得到。例如,用大的硼源颗粒和低温下最小的暴露时间的反应性渗透时,将导致硼源局部转化为母体金属硼化物。结果,未反应的硼源材料保留在显微结构中,这样,在某种场合下使用的成材就会具有需要的性能。用细小硼源颗粒时,高温和延长暴露时间(也许,甚至在渗透后保温)的渗透往往有利于基本上全部转化为母体金属硼化物。至少应有50%的硼源转化为母体金属硼化物,最好为90%以上。高温下的渗透(或一种连续的高温处理)还可导致由烧结过程引起的一些复合材料组分的致密化。另外,如前所述,现有母体金属减少的量低于形成母体金属硼化物和充填材料中形成的空隙所需要的量,可能生成一种有用途的多孔体。在这种复合材料中,多孔体的体积百分率可从大约百分之一变化到百分之二十五,有时还要高,这要取决于上述列举的几个因素或条件。

    实施本发明的一个特别有效的方法是将硼源与所需的惰性填料一起成形为预型坯,其形状与最终复合材料零件所需几何形状相一致。可以用各式各样的常规的陶瓷体成形法制备预型坯(如单轴向压制,等压压制,粉浆浇注,沉积浇铸,带浇铸,注模法,用于纤维材料的丝状结构缠绕等),所采用的方式要取决于硼源和填料(如果有填料)的特性。在反应性渗透前,颗粒或纤维的予粘结可通过轻度烧结或各种有机或无机粘结剂获得,但粘结材料不能干扰工艺或给最终产品提供不需要的副产品。所生产的预型坯具有足够的形状完整性和压坯强度,并且应有进入熔融金属的可渗透性体孔隙率约为5~90%,最好在25~50%对于铝母体金属来说,硅,碳化钙,氧化铝和十二硼化铝是尤其适宜的预成型填料,颗粒尺寸一般大约14到1000目,但也可以使用目数不同和各种填料的掺合物。然后,预型坯以一面或多面与融母体金属接触足够时间,以完成基体向预型坯的外界面渗透。这种预成型法制成的陶瓷-金属复合体的形状与所需的最终产品的形状近似或完全一样,这样就减小或消除了昂贵的机械精加工和磨削工序。

    下面的实施例说明了本发明的反应产物和其制备的方法,然而这些实施例仅仅是说明,它们并不限制本发明的权限。

    实施例1:

    将一纯度为99.7%尺寸约为2×3/8×1/4英寸的铝棒,包埋在60目晶体硼粉中,该晶体硼粉放在耐火坩埚中。该体系放在通有200cc/分钟流速的氩气的电阻加热管式炉内,在大约5小时内加热至给定温度,在1200℃给定温度保温22小时,出炉前应冷却大约5小时。

    生成态产品的断面检验表明母体铝金属在金属棒的所有初始表面上都发生了反应,留下了一个形状几乎和原棒形状一样的孔洞。反应产物的金相试验证实是一种陶瓷-金属复合材料,并且表明了陶瓷和金属组分都是相互连接的。产物的X射线衍射分析证实存在十二硼化铝(Al B12)和铝。还有微量的氮化铝,这可能是由氩气或硼粉的微小污染产生的。

    图2是复合材料产物截面放大400倍的显微相片,表明有主相Al B12(深灰色),Al(浅灰色),以及弧立颗粒的Al N杂质。

    重复以上工序,不同的是用一根含硅10%,含镁3%的铝合金棒和另一根市售A380.1铝合金棒在各自的组合中作为母体金属。每次试验都形成包括Al B12和Al的陶瓷-金属复合材料从而可得出,用本发明的方法制成陶瓷-金属复合材料对母体金属原始组分并不特别敏感。

    实施例2:

    将纯度为99.7%直径1/2英寸,长1英寸的圆形钛棒包埋到纯度为92~95%、平均粒度为2~3微米的无晶形硼粉中,使圆形表面暴露于气氛中。放在高温氧化铝坩埚内的这一组合件在用钛棒作为直接偶合件的感应电炉中加热到大约1700℃(用光学高温计在暴露的金属表面上测出)。加热是在流速为150cc/分钟的99.5%氩气和0.5%氢气(添加氢气以去除部分微量杂质氧气的气氛下进行的。大约10~20分钟内逐渐加热到温度。到达钛金属的熔点时,反应迅速进行,并放出大量热。在开始后大约20秒内反应完成。

    制成材料的检验表明,反应从金属表面向外进入硼层,在母体金属原位上留下一个孔洞。X射线粉末衍射分析证实在生成的相连结的高多孔体中有Ti B2和少量的Ti3B4存在。用X射线衍射法或光学显微镜都未发现存在金属钛,这说明只要有充足的硼反应就能完全消耗掉原有的金属源。

    重复上述工艺,不同的是使用Ti B2粉和50%(体积)硼粉的混合物以调节反应。加热至钛的熔点时,可以看到反应以较低的速率进行(延续近一分钟),而且放热不太明显。生成的相连结的多孔材料也含有Ti B和微量Ti3B4。按此推测,所观察到的Ti B2既代表初始混合的颗粒也代表钛-硼反应产物。

    这个实施例说明,通过适当地选择材料和条件,可使形成物中含有少量金属或不含金属。

    实施例3:

    在本实施例中,将纯度98.4%的不同尺寸的硅片包埋在纯度为92~95%的无晶形硼粉中,一个面暴露在外。该无晶形硼粉盛在耐火坩埚中。按实施例2的工艺将此组合件放入感应炉中,加热到大约1500℃。加热在流速为400cc/分钟的99%氩气和1.0%氢气气氛下进行。

    到达硅的熔点时,发生速度的放热反应,生成了在原来硅片位置上有一个中孔的复合材料体。反应产物的X射线粉末衍射分析证明有Si B6(两种多晶物)和Si的基体。产物检验表明,它是一个相连接的明显多孔的硬质体。

    实施例4:

    重复实施例2的工艺,不同的是使用纯度为99.7%的锆金属棒取代钛金属棒,并且在含99%氩气和1%氢气的气氛下加热至大约1900℃。同样可以看到在温度到达锆的熔点时,发生迅速的放热反应,同时生成一个中空的高孔隙度的物体,由X射线粉末衍射分析确定,其中含Zr B2以及微量的Zr。

    为了减缓反应,使用包括Zr B2粉(粒度-100,+200目)和50%(体积)硼颗粒的层,重复上述工艺,发现反应进行得很慢,生成了在Zr基体中含Zr B2颗粒的中空体(包括最初加到层上的颗粒也包括由锆-硼反应得到的颗粒)。这种材料的显微结构示于图3,并且用X射线粉末衍射法证实了所要鉴定的相。

    实施例5:

    将钛棒置于含83.6%(重量)氮化钛粉(粒度为-325目)和16.4%(重量)的晶态硼的混合物层中,重复实施例2的工艺。在流速为200cc/分钟的99%氩气和1%氢气中,此体系逐渐加热至大约1800~2000℃。

    温度到达钛的熔点之上,与硼颗粒发生反应,反应产物向层床内生长,包围了氮化钛颗粒。产物的X射线粉末衍射分析表明,存在主相Ti B2,Ti N和Ti B,微量的Ti2N和显然是与氧化铝坩埚反应生成的Ti2O杂质。

    实施例6:

    将一钛金属圆坯(长3/4英寸,直径5/8英寸埋在十二硼铝颗粒(粒度3~8μm)层中。在含99%氩气和1%氢气,流速为300cc/分钟的惰性气氛中,按实施例2的工艺将这一体系加热至1800~2000℃的反应温度。

    到达钛熔点以上,与十二硼铝发生反应,在反应产物生成时形成复合材料,此复合材料包括一种二硼化钛基体,包埋有钛母体金属与十二硼化铝反应生成的铝金属杂质。对样品进行X射线粉末衍射分析,表明也存在微量的Ti3B4和Ti B。

    实施例7:

    为了证明使用预型坯获得具有特定的最终几何体的陶瓷-金属复合材料零件,制备两种予型坯,它是将颗粒与5%(重量)的有机粘结剂(微Avicel晶纤维素pH-105,一种FMC公司的产品)混合,并用40,000psi的压力压成预型盘(直径11/4英寸,厚度3/8英寸)。使用两种不同粒度的无晶形硼粉:(a)平均粒度为2-3微米(b)粒度为-325目。纯度为99.7%的铝盘(直径为1英寸,厚度为3/8英寸)作为母体金属。每个组合件包括一个硼的预型盘,这个盘位于铝盘的下面,除顶面外四周用放在耐火坩埚内的粒度为24目氧化铝颗粒(Norton公司38    Alundum)反应层围起来。这些组合件在流速为200cc/分钟的纯氩气气氛的马弗炉内加热15小时至给定温度,1100℃保温48小时,冷却10小时。

    反应后,样品的检验表明母体金属铝已渗入预型盘中,与硼反应生成一种包括Al B12(有两种同形体)、Al和微量Al N杂质的陶瓷-金属复合材料,正如X射线衍射所证实的。复合材料盘保持了原预型坯的几何形状,最后产物的尺寸非常接近预型坯的初始尺寸。在各种情况下,一些多余的金属保留在与母体金属铝接触的一边,可以用比较小的力从陶瓷-金属复合材料上剥开。

    为了进行机械测试,通过锯和磨光小试验棒制备陶瓷-金属复合材料的弯曲试验样品,结果表明,由2~3μm和-325目晶形硼颗粒制成的两个盘的抗弯强度分别为28,000psi和17,500psi。两个样品都表明,在断裂前有相当明显的变形,反应出了复合材料内部铝组分的延展性。

    实施例8:

    作为预型坯法的另一示例,将Ti B2颗粒(-100/+270目)与无晶形硼颗粒(-325目)以62.5%/37.5%(重量)的比率分别混合。按实施例7的工艺,使用3000psi压力将这些粉末压成4×4×1/2英寸的预型坯。予型坯与2×4×1/2英寸的母体铝棒(合金1100,标称纯度99%)组合,铝棒装在氧化铝层内的予型坯之下。按实施例7的工艺加热15小时。

    制成的复合材料的形状和尺寸与预型坯非常接近。X射线衍射发现复合材料含有Ti B2和铝。用光学或扫描电子显微镜都可检验出存在另外的相,经验明是剩余的无晶形硼(X射线衍射法不能检验)和Al B12。本实施例与实施例7相比说明,加热时间越短,铝-硼反应的反应程度越低。

    从按实施例7的工艺制成复合材料上切下的四个样品的抗弯强度试验给出的平均值为21,200psi(±1000psi),比前例材料的韧性明显的大。估计在现有情况下,这种材料的高的可变形性是由铝含量较高,从而成型压力较低,所以原予型坯的密度较低造成的。

    实施例9:

    为了说明用低浓度硼的有效性,用加入重量百分比为0,1,2,5和10的无晶形硼与氧化铝填料制成预型盘。在制备盘时,用适当组分百分比的氧化铝(38铝氧粉,粒度220目)和无晶形硼(2~3μm)与5%(重量)的有机粘结剂(Avicel    p    H-105)混合,然后压制成直径为1    1/4时,厚度为5/16英寸的圆盘。将这些盘包埋在氧化铝颗粒(38氧化铝,90目)的耐火层中,该层中有纯度99.7%的圆柱形铝坯(厚1/2英寸,直径1英寸),耐火层放在每个预型盘上,使盘的圆面相接触。上述体系在流速为200cc/分钟的纯氩气中,加热17小时至给定温度1200℃。

    在每个含有硼的填料盘的体系中,熔融铝渗入填料盘,从而包埋了氧化铝颗粒形成基本上是铝金属基体但含有一些反应产物颗粒的复合材料。在填料盘不含硼的体系中,熔融铝体未渗入填料。被渗透的复合材料准确地保持了预型坯的几何形状和尺寸。

    图4是一种用含有1%硼的预型坯制成的复合材料样品横截面的显微相片,表示含有Al2O3和微量Al B12反应物的铝基体复合材料的形成物。为了便于比较,图5表明了一种用类似的方法制成的复合材料,不同的是原预型坯含有50%(重量)的无晶形(-325目)的硼。正如从予型坯的不同组成予料的那样,得到的复合材料含有更多的Al B12(用X射线衍射法确定)和少量的氧化铝、铝。

    实施例10:

    将一根纯镧棒(尺寸为3/4英寸长,1/2英寸宽,1/4英寸厚,10.8克重)包埋在纯度为98~99%,重量为24.5克的晶态硼粉(-325目)中,使3/4    X1/2英寸的表面暴露在外。围绕镧棒的硼粉量按化学计算量计超过由镧金属棒与硼粉反应生成的六硼化镧中的量。上述体系放在氧化铝坩埚内,在以金属棒作为偶合器的感应电炉内加热至大约1800℃(在暴露出的镧的表面上用光学高温计测量)。在流速为200cc/分钟纯氩气的气氛下进行加热。大约在30分钟内加热到指定温度。到达镧金属的熔点时,可看到反应。由于使用的是光学高温技术测量金属露出部分的温度,因此金属棒内部和/或位于反应部位的温度可能要比用光测仪观察的温度高。

    熔化的镧金属径向地渗入硼层,从而生成了在原来镧棒的位置上有个孔洞的陶瓷体。此陶瓷体是相连的和多孔的。材料X射线粉末衍射分析证明陶瓷结构为六硼化镧。

制备自撑式材料的方法以及用其制造的产品.pdf_第1页
第1页 / 共23页
制备自撑式材料的方法以及用其制造的产品.pdf_第2页
第2页 / 共23页
制备自撑式材料的方法以及用其制造的产品.pdf_第3页
第3页 / 共23页
点击查看更多>>
资源描述

《制备自撑式材料的方法以及用其制造的产品.pdf》由会员分享,可在线阅读,更多相关《制备自撑式材料的方法以及用其制造的产品.pdf(23页珍藏版)》请在专利查询网上搜索。

自撑式材料是由母体金属与硼源反应性渗透所生成的复合材料制成的,复合材料包括了母体金属硼化物和金属。 待渗透的物质含有一种或多种掺有硼源的惰性填料,以便通过反应性渗透制造复合材料。这种复合材料包括金属基体和埋入填料的母体金属硼化物。改变或控制各种反应物的相对量和工艺条件,以得到含不同体积百分率的陶瓷、金属和/或孔隙的材料。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 冶金;黑色或有色金属合金;合金或有色金属的处理


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1