本发明是关于加入了流动改良剂的石油和燃料油组合物。 当石油和燃料油承受低的环境温度时,尤其在北欧国家,蜡将析出并且减弱了流动性能,除非加了一种冷流改良剂。用冷过滤器堵塞点测试(CFPPT)和缓慢冷却试验(SCT)能够测定这些添加物的有效性,并且也能确定浊点的降低和蜡出现点。
我们已经找出某些流动改良剂,这些改良剂有效地改善了石油(原油或润滑油)和燃料油,如残渣燃料、中间馏分燃料和喷气燃料等的冷流动性能,或作为润滑中的脱蜡酸,改良剂能满足特殊的石油或有关的燃料油的需要。
按照本发明,原油、润滑油或燃料油组合物包含有按重量计算大比例的原油、润滑油或燃料油和按重量计算小比例的聚合物,该聚合物含有单元:
其中X是正整数,Y是0或正整数,其中总聚合物X+Y至少为2,单元(Ⅱ)与单元(Ⅰ)的比率为0至2,单元(Ⅱ)与(Ⅲ)的比率为0至2,其中:
R1和R2是相同的或不相同的C10至C30烷基,R3是H、-OOCR6、C1至C30烷基、-COOR6、-OR6、芳基或烷芳基或卤素,
R4是H或甲基,
R5是H、C1至C30烷基,或-COOR6,
R6是C1至C22烷基
每个R1、R2、R3、R4、R5和R6如果需要能被惰性地取代。
本发明还包括将这些聚合物用作原油、润滑油或燃料油的流动改良剂,或用作润滑油的脱蜡酸。
因而,这些聚合物或者是二烷基衣康酸酯或宁康酸酯的均聚合,或者是二烷基衣康酸酯或宁康酸酯与酯族烯、乙烯基醚、链烷酸的乙烯基酯、不饱和酸烷基酯,芳族烯、乙烯基卤化物或二烷基富马酸酯或马来酸酯的共聚物。
基团R1和R2能够是相同的或不同的C10至C30的烷基,虽然基团能够有分支,但是,R1和R2最好是直链的。如果带有分支,分支最好是在1位或2位上单一地甲基,这些基团的实例为癸基、十二烷基、十六烷基和二十烷基。每个R1和R2基团可以是单一的C10至C30烷基或烷基的混合物,已发现,当聚合物用于中间馏分燃料油的流动改良剂时,C12至C16烷基的混合物尤其适合。此外,用于重质燃料油和原油的聚合物的适当支链长度为C16至C22烷基,而用于润滑油的聚合物的适当支链长度为C10至C18烷基,这些较佳的支链长度对二烷基衣康酸酯或二烷基宁康酸酯的均聚物和共聚物适用。
当使用二烷基衣康酸酯或二烷基宁康酸酯的共聚物时,y是正整数。共聚用单体,即为下式的化合物:
〔单元(Ⅱ)〕
其中R3、R4和R5正如上文所定义的,为一种或许多种化合物,在所有情况下,能够使用具有此式的化合物的混合物。
当共聚用单体为脂族烯时,R3和R5为氢或相同的或不同的C1至C30烷基,最好为正烷基。因而,当R3、R4和R5均是氢时,烯烃是乙烯,并且,当R3是甲基,R4和R5是氢时,烯烃是正丙烯。当R3是烷基时,R4和R5最好是氢。其他合适的烯烃的实例为丁烯-1,丁烯-2、异丁烯、戊烯-1、己烯-1、十四烯-1、十六烯-1、十八烯-1和它们的混合物。
其余合适的共聚用单体是乙烯基酯或C2至C30链烷酸的烷基取代的乙烯基酯,例如,当R3为R6COO-,R4和R5为氢时,是乙烯基酯,和当R3是R6COO-,R4是甲基和/或R5是C1至C30烷基时,是烷基取代的乙烯基酯。非取代的乙烯基酯是较佳的,适合的实例为乙烯基乙酸酯、乙烯基丙酸酯、乙烯基丁酸酯、乙烯基癸酸酯、乙烯基十六酸酯和乙烯基硬酯酸酯。
另一类共聚用单体是不饱和酸的烷基酯,那就是,当R3是R6OOC-和R5是氢或C1至C30烷基时。当R4和R5是氢时,这些共聚用单体为丙烯酸的烷基酯。当R4是一甲基时,共聚用单体是异丁烯酸酯或C1至C30烷基取代的异丁烯酸酯。适合的丙烯酸烷基酯的例子为丙烯酸甲酯、丙烯酸正己酯、丙烯酸正癸酯、丙烯酸正十六酸酯、丙烯酸正十八酸酯、和丙烯酸2-甲基十六酸酯,而异丁烯酸烷基酯的适合实例为异丁烯酸丙酯、异丁烯酸正丁酯、异丁烯酸正辛酯、异丁烯酸正十四酯、异丁烯酸正十六酯和异丁烯酸正十八酯。其他实例是相应的酯,其中R5是烷基,例如,甲基、乙基、正己基、正癸基、正十四烷基和正十六烷基。
另一类合适的共聚用单体为R3和R5是R6OOC-,而为C1至C22二烷基富马酸酯或马来酸酯,烷基可以是正烷基或有分支的烷基,例如,正辛基、正癸基、正十四烷基、正十六烷基或正十八烷基。
共聚用单体的其他实例为R3是芳香基。当R4和R5是氢,R3是苯基,共聚用单体是苯乙烯,当R4和R5之一是甲基时,共聚用单体是甲基苯乙烯,也就是2-甲基苯乙烯。当R3是芳香基时,另一共聚用单体的实例是乙烯基萘。当R3是烷芳基时,另一适合的实例是取代的苯乙烯,例如,乙烯基甲苯、或4-甲基苯乙烯。
另一种适合的共聚用单体为R3是卤素,即氯,诸如乙烯基氯化物(R4和R5为氢)。
在所有情况下一些或全部的基团R1、R2、R3、R4、R5和R6当然能惰性地取代,例如,由一个或几个卤素原子,诸如氯或氟。因而,例如,共聚用单体是乙烯基三氯乙酸酯。此外,取代基可能是烷基,例如甲基。
单元(Ⅱ)与单元(Ⅰ)的比率必须是0(当聚合物是衣康酸酯或宁康酸酯均聚物时)至2(当聚合物是共聚物),但事实上,共聚用单体的比率通常为0.5至1.5,例如,约为1。
对于均聚物和共聚物,共聚物的分子量通常为1000至500000之间,例如,在2000至200000之间。
通常共聚物将仅含有单元(Ⅰ)和(Ⅱ),或单元(Ⅱ)和(Ⅲ),但并不排除其他单元。然而,事实上共聚物中单元(Ⅰ)和(Ⅱ)或单元(Ⅱ)和(Ⅲ)的重量百分比至少是80%,最好是至少90%。
通常将单体在烃溶剂的溶液中,诸如,庚烷、苯、环己烷、或白油,在20℃至150℃的温度范围内聚合制备的均聚物和共聚物,聚合反应通常用过氧化物或偶氮型催化剂加速,如过氧化苯甲酰或偶氮二异丁腈、并在惰性气体,诸如氮气或二氧化碳的气层下进行以隔绝氧气。聚合物可以在高压釜中加压条件下或在回流条件下制备。
当要制备共聚物时,聚合反应混合物中每摩尔二烷基衣康酸酯或二烷基宁康酸酯最好含有0至2摩尔共聚用单体(即乙烯基乙酸酯)。
共聚物作为流动改良剂或脱蜡酸适用于原油中,即由钻探得到未经精馏的石油。共聚物也适用于润滑油,无论是天然的或是合成的,用作流动改良剂、倾点下降剂或脱蜡酸。润滑油可以是动物的、植物的或天然的油,例如石油馏分,范围从汽油馏分或锭子油至SAE30,40或50润滑油等级、蓖麻油、鱼油或氧化天然油。
最终润滑油根据油的特殊用途可以含有其他添加剂。例如,粘度指数改良剂,诸如乙烯-丙烯共聚物可作为琥珀酸基分散剂、含金属分散添加剂和已知的二烷基-二硫代磷酸锌抗磨添加剂。
流动改良剂还适用于燃料油,这些燃料油可以是中间馏分燃料油,即、柴油、航空油、煤油燃料油,喷气燃料、加热油等等。通常,适合的蒸馏燃料的沸点范围为120℃至500℃(ASTMD1160),较佳的沸点范围为150℃至400℃,例如,具有360℃以上相当高的终沸点(FBP)。典型的加热油规范要求10%的蒸馏点大约不高于226°,50%的蒸馏点大约不高于272℃,90%的蒸馏点至少为282℃并且不高于338℃至343℃,虽然某些规范提出的90%蒸馏点高达357℃。加热油最好是由直馏蒸馏物,如粗柴油、粗汽油等等,和裂解蒸馏物,如催化循环油料混合制成。柴油机燃料的典型规范包括最低闪点为38℃,90%蒸馏点为282℃至338℃(参阅ASTMD-396,D-975)。
通常当本发明的燃料组合物为了改善蒸馏燃料冷流动性质与其他已知添加剂相混合时,常可得到改善的结果。其他添加剂的实例为聚氧化烯酯、醚、酯/醚,酰胺/酯以及其混合物,尤其是这些添加剂含有至少一个,最好至少二个C10至C30线性饱和的分子量为100至5000,最好为200至5000的,聚亚氧烷基乙二醇的烷基基团,其上述聚亚氧烷基乙二醇的烷基含有1至4个碳原子。欧洲专利公开0,061,895A2描述了某些这种添加剂。
较佳的酯、醚或酯/醚在结构上可用下述分子式描述:
R-O-(A)-R1
其中R和R1是相同的或不同的,它们是
Ⅰ)正-烷基
Ⅱ)正-烷基
Ⅲ)正-烷基
Ⅳ)正-烷基
烷基是直链的和饱和的,含有10至30碳原子,A表示乙二醇的聚氧化烯部分,其中烷烯基团具有1至4个碳原子,如,聚甲醛、聚氧乙烯或基本上为线状的聚三甲醛;可以允许具有一定程度的低烷基支链的分支(如聚氧化丙烯乙二醇),但是乙二醇最好基本上是线状的。
通常适合的乙二醇基本上是线状的聚乙烯二醇(DEG)和聚丙烯乙二醇(PPG),具有分子量约为100至5000,最好为200至2000。含有10至30个碳原子的脂肪酸用于与乙二醇反应生成酯添加剂,最好是用C18~C24的脂肪酸,尤其是山萮酸。酯也能由聚乙氧基化的脂肪酸或聚乙氧基化的乙醇酯化制得。
本发明的燃料组合物的其它适合的添加剂为乙烯不饱和酯共聚物流动改良剂。可以与乙烯共聚的不饱和共聚用单体包括不饱和的一般式的单和双酯:
其中R8是氢或甲基,R7是-OOCR10基团,其中R10是氢或C1至C28,更一般地是C1至C17,最好是C1至C8直链或支链烷基,或R7是-COOR10,其中R16是先前定义的,但不是氢原子,而R9是氢或上文定义的-COOR10。如果R7和R9是氢,R8是-OOCR10,单体包括C1至C29,更一般地为C1至C18的一元羧酸乙烯基乙醇酯,较佳的为C2至C29,更一般地为C1至C18的一元羧酸乙烯基乙醇酯,最好为C2至C5的一元羧酸乙烯基乙醇酯。能与乙烯共聚的乙烯基酯的实例包括乙烯基乙酸酯,乙烯基丙酸酯和乙烯基丁酸酯或异丁酸酯,最好是乙烯基乙酸酯。较佳的共聚物含有10%至40%(按重量计)的乙烯基酯,更好是含有25%至35%。(按重量计)的乙烯基酯。也可以是两个共聚物的混合物,就象美国专利3961916所描述的那样,用蒸汽相渗透压测定法测定的共聚物平均分子量为1000至6000,最好为1000至4000。
本发明的燃料组合物的其他适合的添加剂是极性化合物,或者是离子的,或者是非离子的,它们在燃料中具有蜡晶体生长抑制剂的能力。我们发现含有极性氮原子的化合物,若与乙二醇酯、醚或酯/醚共同使用时尤其有效。极性化合物通常为胺盐和/或酰胺,该酰胺是由至少1摩尔的烃基取代的胺与1摩尔含有1至4个酸基团的烃基酸或其酐反应形成的;还可使用含有30至300,最好是含有50至150总碳原子数的。酯/酰胺,这些氮化合物在美国专利4211534中描述过。适合的胺通常为长链的C12-C40伯、仲、叔或季胺或其混合物,但是,较短链的胺也可能使用,假如生成的氮化合物是油溶性的,其通常含有30至300总碳原子数。较佳的氮化合物含有至少一个C8~C40的直链,最好是C14至C24的烷基部分。
适合的胺包括伯、仲、叔或季胺,但最好是仲胺,叔胺和季胺仅能形成铵盐。胺的实例包括十四烷胺、椰子胺、氢化动物脂胺,等等。仲胺的实例包括双十八胺、甲基-山萮胺等等,也能使用胺混合物,从天然原料衍生得到的许多胺是混合物。较佳的胺是分子式为HNR1R2的仲氢化动物脂胺,其中,R1和R2是烷基,仲氢化动物脂胺由氢化动物脂衍生得到,含有约4%C14,31%C16,59%C18。
用于制备氮化合物(和其酐)的适当的羧酸或其酐的实例包括环己烷1,2-二羧酸、环己烯二羧酸、环戊烷1,2-二羧酸、萘二羧酸等等。通常这些羧酸在环状部分含有约5~13个碳原子,较佳的酸是苯基二羧酸,如,苯二甲酸、tero-苯二甲酸和异苯二甲酸。苯二甲酸及其酐最好。最好的化合物是由1摩尔的苯二酸酐与2摩尔二氢化的动物脂胺反应形成的酰胺一胺盐。另一种最好的化合物是酰胺-胺盐脱水形成的二酰胺。
一个或几个这种共添加剂可以与本发明的添加剂一起使用。
用于混合物的添加剂的相对比例,对于1份其他添加剂,如聚氧化烯酯,醚或酯/醚,较佳地为按重量计0.05至20份衣康酸酯或宁康酸酯聚合物,最好为按重量计0.1至5份的衣康酸酯或宁康酸酯。
加入到原油、润滑油或燃料油中的聚合物(流动改良剂)的量最好为按重量计的0.0001至5%,例如,以原油,润滑油或燃料油重量为基准的0.001至0.5%(活化物质)。通常用于润滑油中的聚合物比燃料油中的多,例如,按重量计分别为0.1至1.0%与0.01至0.05%。
聚合物通常溶解于适合的溶剂中,形成20至90的浓缩物,例如,在溶剂中聚合物按重量计为30至80%。适合的溶剂包括煤油、芳香粗汽油、天然润滑油等等。
实施例
在本实施例中,制备二烷基衣康酸酯和乙烯基乙酸酯(K、L、M和N)的三个共聚物(IVA)和二烷基衣康酸酯(A、B、C和D)的三个均聚物(PI),并用冷过滤器堵塞点测试法(CFPPT)和缓慢冷却测试法(SCT)测试。
四个均聚物为正癸基衣康酸酯(A)、正十二烷基衣康酸酯(B)、正十四烷基衣康酸酯(C)和二正十六烷基衣康酸酯(D),每个均聚物的Mn′S约为30000,Mw′S约为70000。
四个共聚物为乙烯基乙酸酯,分别地为二正癸基衣康酸酯(K),二正十二烷基衣康酸酯(L),二正十四烷基衣康酸酯(M)和二正十六烷基衣康酸酯(N)、每个共聚物的Mn′S约为20000,Mw′S约为60000,用相应的聚苯乙烯标准的凝胶渗透色谱法测定,乙烯基乙酸酯与衣康酸酯的摩尔比为1.0∶1.0。
将单位在环己烷溶剂中,用催化剂,如偶氮二异丁腈、二-叔-丁基过氧化物或叔丁基过辛酸盐,并在回流条件下聚合制得三个共聚体和三个均聚体。对于共聚体,衣康酸酯和乙烯基乙酸酯的摩尔比为1∶1。
然后将共聚物和均聚物加入到具有下述特征的柴油机燃料:
D86·蒸馏(℃)
初馏点 终馏点
燃料 蜡出现点 浊点(IBP) 20 50 90 (FBP)
Ⅰ 1℃ +3℃ 184 226 272 368 398
Ⅱ -9℃ -6℃ 170 228 316 347
Ⅲ -15℃ -12℃ 159 210 316 350
Ⅳ -10℃ -10℃ 168 231 325 350
Ⅴ -1.5℃ 3℃ 184 223 267 367 398
Ⅵ -3.5℃ 0℃ 166 211 251 334 376
每个共聚物和均聚物以不同的重量比率(活性物质),与(A)和(B)的3∶1重量比混合物混合,(A)为乙烯-乙烯基乙酸酯共聚物,其含有乙烯基乙酸酯的重量含量(用500兆赫,核磁共振)为36%,平均分子量2000,每100亚甲基支链分支甲基的程度(用500兆赫,核磁共振为4);(B)为乙烯-乙烯基乙酸乙酯共聚物,其含有乙烯基乙酸酯的重量含量(用500兆赫,核磁共振)为17%,平均分子量为3500,每100亚甲基支链分支甲基的程度(用500兆赫,核磁共振)为8。将这些六种混合物各自加入柴油机燃料中,浓度(活性物质)为总混合物的300ppm(0.03重量%)。
由CFPPT和SCT方法测定得到的结论示于下表,测试细节在下文中说明。
冷过滤器堵塞点测试法(CFPPT)
混合物的冷流动性能由冷过滤器堵塞点测试法(CFPPT)测定,测试按照“石油工业杂志”第52卷,总第510期,1966年6月,第173~185页描述的过程进行。简单地说,40ml被测的样品油由保持在约-34℃的浴槽冷却,周期(从高于浊点2℃开始温度每下降一摄氏度),周期性地测定冷却的油流过细的网筛的能力。冷流动性能由一装置测定,该装置包括一个量管,其下终端连接着处于被测油表面层之下的倒置漏斗,用350目的网筛绷紧地罩在漏斗口上,其面积约为0.45平方英吋。每个周期性测试首先在量管上端形成真空,在这当中,油通过网筛向上吸入量管,直到指示20ml油的标记,温度每下降1度测试重复进行,直到在60秒钟内油不能充满量管为止。测试结果以△CFPPT(℃)表示,即为未处理燃料的中断温度(CFPP。)和用衣康酸酯聚合物处理的燃料的中断温度(CFPP1)之差,即△CFPP=CFPP0-CFPP1。
程序冷却测试法(SCT)
缓慢流动测试法与贮存的加热油的泵送有关,所描述的含有添加剂的燃料的冷流动性质由下文的SCT测定。300ml燃料从其浊点以上至少5℃的温度以每小时1℃线性地冷却至测试温度,然后使温度恒定。二小时后,在测试温度下,用吸管吸去约20ml表面层,以避免测试受异常大的蜡结晶体的影响,在冷却时,在油/空气界面上形成大的蜡结晶体。经缓慢搅拌分散沉降在底面的蜡,然后,插入CFPPT过滤装置。打开开关,产生500mm汞柱的真空,当200ml燃料经过滤器进入有刻度的吸收器后,关闭开关。如果在10秒钟内通过一定目数大小的过滤器收集的油为200mml,则记录PASS,如果流速太慢,则表示过滤器已经堵塞。
记录在测试温度下通过的目数。
浊点下降
通常需要降低蒸馏燃料的浊点(Ip-219或ASTM-D2500),本发明的添加剂在降低蒸馏燃料浊点中的有效性由标准浊点测试法(Ip-219或ASTM-D2500)测试,其他更精确的结晶开始的测定方法是蜡出现点(WAP)测试法(ASTMD·3117-72)和蜡出现温度(WAT)、由差异扫描量热法用Mettler TA2000B差异扫描量热计测定。在测试中,25ml燃料样品自高于预定的燃料浊点至少30℃的温度开始,以每分钟2℃的速率冷却,测定所观察的结晶开始,而不需校正热滞后(大约为2℃),由差异扫描量热计以蜡出现温度显示。测试结果用WAT(℃)表示,其为基本的未处理燃料的WAT(WAT0)和由添加剂处理的燃料的WAT(WAT1)的差值,即.WAT=WAT0-WAT1。
表1
添加剂 处理量(ppm) CFPPT(℃) SCT(目数) WAT(℃)
(-8℃)
A 175 0 100
300 1 100 0.0
A+X 35/140 14 250
60/240 19 250
B 175 1 100
300 2 100 0.0
B+X 35/140 15 250
60/240 18 250
C 175 4 100
300 9 100 1.5
C+X 35/140 20 350
60/240 22 350
D 175 2 60
300 6 60 5.4
D+X 35/140 12 100
60/240 12 150
表Ⅰ(续)
添加剂 处理量(ppm) CFppT(℃) SCT(目数) WAT(℃)
(-8℃)
K 175 1 120
300 2 150 0.1
K+X 35/140 2 250
60/240 5 250
L 175 1 150
300 1 200 0.1
L+X 35/140 3 350
60/240 5 350
M 175 2 250
300 4 350 1.6
M+X 35/140 19 150
60/240 20 200
N 175 1 60
300 4 60 4.4
N+X 35/140 13 120
60/240 15 150
X 175 3 100
300 4 150 -0.4
None - - 40
从表1能够看出,通过使用A、B、C、K、L和M及与X相结合的添加剂得到的结果比完全没有添加剂或仅使用X的结果好。
在其他的实例中,聚合物Y为富马酸酯-乙烯基乙酸酯共聚物,其在环己烷溶剂中由二正十六烷基富马酸酯和乙烯基乙酸酯制得,催化剂为叔丁基过辛酸盐。
在燃料V中添加剂的试验结果列于表2至表4。
表2
添加剂 处理量(ppm) DSC CFPP(℃)
WAY(℃)
K 500 -2.3 -3,
K+X 500/200 +0.1 -6,
L 500 -2.5 -3,
L+X 500/200 +0.3 -9,
M 500 -2.3 -9,
M+X 500/200 -1.2 -17,
N 500 -3.9, -7,
N+X 500/200 -1.9 -9,
A 500 0.0 -3,
A+X 500/200 +0.5 -6,
B 500 +0.4 -3,
B+X 500/200 +0.6 -16,
C 500 -1.2 -7,
C+X 500/200 -0.5 -18,
D 500 -4.6 -7,
D+X 500/200 -4.0 -9,
Base -0.6 -3,
X 200 +0.5 -15,
WATS由10μl样品以10℃的冷却速率用Dupont 990DSC测定
CFPP下降=CFPPx+衣康酸酯聚合物-CFPPx
表3
添加剂 处理量(ppm) WAT WAT
(在燃料V中)(℃) (在燃料Ⅳ中)(℃)
N 500 3.3 3.5
D 500 4.0 4.1
Y 500 3.0 3.1
表4 WAT(℃)
添加剂 处理量(ppm) 燃料Ⅱ Ⅲ Ⅳ
M 500 1.5 2.5 3.5
1000 2.0 4.0 4.0
C 500 1.0 2.0 3.0
1000 2.0 3.5 3.0
B 500 0.0 -0.5 1.5
1000 0.0 0.5 1.0