一体化的空气分离燃气轮机发电方法.pdf

上传人:b*** 文档编号:834627 上传时间:2018-03-15 格式:PDF 页数:38 大小:1.50MB
返回 下载 相关 举报
摘要
申请专利号:

CN94108393.4

申请日:

1994.07.16

公开号:

CN1111321A

公开日:

1995.11.08

当前法律状态:

撤回

有效性:

无权

法律详情:

专利申请的视为撤回公告日:1995.11.8||||||公开

IPC分类号:

F02C6/04; F02C6/10

主分类号:

F02C6/04; F02C6/10

申请人:

气体产品与化学公司;

发明人:

E·W·沙夫; A·R·史密夫

地址:

美国宾夕法尼亚州

优先权:

1993.07.16 US 093,195

专利代理机构:

中国专利代理(香港)有限公司

代理人:

卢新华;魏金玺

PDF下载: PDF下载
内容摘要

本发明涉及将低温空分单元与发电单元一体化方法的改进,其中改进在于:(a)从燃气轮机进料气压缩机中排出部分压缩进料气,向低温空分单元提供至少部分压缩空气;(b)利用至少部分氧的压缩热来加热水,使压缩的燃气轮机进料气饱和;(c)向燃气轮机进料气压缩机的中间段供给至少部分废氮或者向燃烧室、转接段和燃气轮机至少之一中喷射至少部分废氮作为可控惰性气体冷却剂、稀释剂或质量流量强化成分,或者利用至少部分燃气轮机进料气的固有热来加热供给气化器或部分氧化单元的部分氧气。

权利要求书

1: 一种发电方法,其中,在低温空气分离单元中,压缩空气被蒸馏成氧产品和废氮产品,其中,至少部分氧产品被压缩并与含碳燃料反应,在气化器或部分氧化单元中生成一种含有一氧化碳和氢气的合成气,其中,进料空气在燃气轮机进料气压缩机中被压缩,并随后被饱和;其中合成气与饱和压缩的燃气轮机进料空气一起在燃烧室中燃烧,生成燃烧气,该燃烧气流经转接段,接着在燃气轮机中膨胀而做功,其中,至少一部分做的功被用于驱动燃气轮机进料气压缩机,并且其中至少另一部分做的功被用于发电,其特征在于: (a)通过从燃气轮机进料空气压缩机中抽取一部分压缩的燃气轮机进料气,来向低温空气分离单元提供至少一部分压缩空气,以及 (b)利用至少一部分的氧气压缩热来加热水,以使压缩的燃气轮机进料空气饱和。
2: 权利要求1的方法,其特征还在于,向燃气轮机进料气压缩机的中间段,供给至少一部分废氮气。
3: 权利要求1的方法,其特征还在于,向由燃烧室、转接段和燃气轮机选出的至少一个设备,喷射至少部分废氮气作为可控惰性气体冷却剂、稀释剂或质量流量强化成份。
4: 权利要求2的方法,其特征还在于,向由燃烧室、转接段和燃气轮机选出的至少一个设备,喷射至少一部分的作为可控惰性气体冷却剂、稀释剂或质量流量提高成份的废氮气。
5: 权利要求1的方法,其特征还在于,把来自燃气轮机空气压缩机的压缩的、燃气轮机进料空气的排气部分的至少一部分固有热, 供应给低温空气分离单元,以用来加热将进入气化器或部分氧化单元的氧产品。
6: 权利要求2的方法,其特征还在于,把来自燃气轮机空气压缩机的压缩的、燃气轮机进料空气的排气部分的至少一部分固有热供应给低温空气分离单元,以用来加热将进入气化器或部分氧化单元的氧产品。
7: 权利要求3的方法,其特征还在于,把来自燃气轮机空气压缩机的压缩的、燃气轮机进料空气的排气部分的至少一部分固有热,供应给低温空气分离单元,以用来加热将进入气化器或部分氧化单元的氧产品。
8: 权利要求4的方法,其特征还在于,把来自燃气轮机空气压缩机的压缩的、燃气轮机进料空气的排气部分的至少一部分固有热,供应给低温空气分离单元,以用来加热将进入气化器或部分氧化单元的氧产品。
9: 权利要求1的方法,其特征还在于,从燃气轮机空气压缩机排出部分压缩的燃气轮机进料空气,并将其在一台空气分离单元的空气压缩机中作进一步压缩,然后将其供入空气分离装置作蒸馏用,而由进一步压缩所产生的压缩热则用来加热水,以使压缩的燃气轮机进料空气饱和。
10: 权利要求2的方法,其特征还在于,从燃气轮机空气压缩机排出部分压缩的燃气轮机进料空气,并将其在一台空气分离单元的空气压缩机中作进一步压缩,然后将其供入空气分离装置作蒸馏用,而由进一步压缩所产生的压缩热则用来加热水,以使压缩的燃气轮机进料空气饱和。
11: 权利要求3的方法,其特征还在于,从燃气轮机空气压缩机排出部分压缩的燃气轮机进料空气,并将其在一台空气分离单元的空气压缩机中作进一步压缩,然后将其供入空气分离装置作蒸馏用,而由进一步压缩所产生的压缩热则用来加热水,以使压缩的燃气轮机进料空气饱和。
12: 权利要求4的方法,其特征还在于,从燃气轮机空气压缩机排出部分压缩的燃气轮机进料空气,并将其在一台空气分离单元的空气压缩机中作进一步压缩,然后将其供入空气分离装置作蒸馏用,而由进一步压缩所产生的压缩热则用来加热水,以使压缩的燃气轮机进料空气饱和。
13: 权利要求5的方法,其特征还在于,从燃气轮机空气压缩机排出部分压缩的燃气轮机进料空气,并将其在一台空气分离单元的空气压缩机中作进一步压缩,然后将其供入空气分离装置作蒸馏用,而由进一步压缩所产生的压缩热则用来加热水,以使压缩的燃气轮机进料空气饱和。
14: 权利要求6的方法,其特征还在于,从燃气轮机空气压缩机排出部分压缩的燃气轮机进料空气,并将其在一台空气分离单元的空气压缩机中作进一步压缩,然后将其供入空气分离装置作蒸馏用,而由进一步压缩所产生的压缩热则用来加热水,以使压缩的燃气轮机进料空气饱和。
15: 权利要求7的方法,其特征还在于,从燃气轮机空气压缩机排出部分压缩的燃气轮机进料空气,并将其在一台空气分离单元的空气压缩机中作进一步压缩,然后将其供入空气分离装置作蒸馏用,而由进一步压缩所产生的压缩热则用来加热水,以使压缩的燃气轮机 进料空气饱和。
16: 权利要求8的方法,其特征还在于,从燃气轮机空气压缩机排出部分压缩的燃气轮机进料空气,并将其在一台空气分离单元的空气压缩机中作进一步压缩,然后将其供入空气分离装置作蒸馏用,而由进一步压缩所产生的压缩热则用来加热水,以使压缩的燃气轮机进料空气饱和。
17: 权利要求2、3或4的方法,其特征还在于压缩废氮产品。
18: 权利要求17的方法,其中,由进一步压缩废氮产品而产生的压缩热被用于加热水,以使压缩的燃气轮机进料空气饱和。
19: 权利要求1、2、3或9的方法,其中,低温空气分离单元在高压下操作。
20: 权利要求19的方法,其中,至少一部分的废氮产品在膨胀机中减压而产生功。
21: 权利要求1、2、3或9的方法,其中,从燃气轮机进料压缩机排出的部分压缩的、燃气轮机进料空气,在膨胀机膨胀而产生功,然后再被供入空气分离单元作蒸馏用。
22: 权利要求1、2、3或9的方法,其中,膨胀的燃烧气被用于产生蒸汽。

说明书


本发明涉及一种将低温空气分离单元与发电单元一体化的改进方法,其中使用一体化的气化湿空气涡轮机(IGHAT)或是一体化的气化联合循环(IGCC)。更确切地说,本发明涉及一个整体装备,它可以降低工厂投资费用,提高能量输出,和/或在能量输出一定的条件下提高效率,并且,还可以改善这类发电方法的操作灵活性。

    为了详细说明本发明,将湿空气涡轮(HAT)循环定义为燃气涡轮发电循环,在该循环中,由膨胀机排出的废热和/或任何氧化剂压缩机中间冷却器/后冷却器的废热都被用于在氧化剂蒸汽被送入燃烧室之前用水饱和并使其过热。

    涉及一体化的气化湿空气涡轮机和一体化的气化联合循环发电方法的现有技术,在大量的科学文献和专利文献中都已被公开。

    现有技术公开了这样一个普通构思,即,从燃气轮机的空气压缩机中排出一部分压缩空气,以此提供给与其连接的空气分离单元,美国专利3,731,495公开了这样一种方法,在该方法中,空气分离单元的进气是以高压的形式,由燃气轮机空气压缩机的排气而获得,然后,经冷却和进一步压缩至150和400psia的压力,然后进入空气分离单元。同样地,美国专利4,224,045公开了这样一种方法,在该方法中,供给空气分离单元的部分或全部压缩空气,是以高压的形式,由燃气轮机空气压缩机地排气而获得,然后任选地进行冷却,并经膨胀或压缩,以高于85psia的压力向空气分离单元供气。其它文献公开了类似的方法,即,将由燃气轮机空气压缩机排气而引出的高压空气导入不同的空气分离单元循环,这些文献包括美国专利5,081,845和美国专利申请07/837,786另外,美国专利4,631,914公开了由燃气发电循环中的燃气轮机压缩机的中间阶段引出中压空气,但是,引出的空气被送到膨胀涡轮机的中间阶段用于发电,它不包括任何与空气分离系统的一体化问题。

    现有技术公开了这样一个普通构思,即,把由关联的空气分离单元出来的中压废氮气返回到燃气轮机空气压缩机中。英国专利2,067,668和美国专利4,297,842公开了这样一种方法,该方法使用常压空气分离单元排出的废氮气作为稀释剂,加到进入燃气轮机压缩机的氧化剂空气中,以降低燃气轮机燃烧室下游产生的NOx。

    涉及湿空气涡轮机和湿空气涡轮类循环的现有技术,公开了一类特别适用于本发明的发电装置。美国专利5,181,376公开了这样一种方法,该方法采用一种氧化剂空气饱和器,用来向初级燃烧室/膨胀涡轮机和一个单独的湿空气膨胀机或附加的燃烧室/膨胀涡轮机提供湿空气。美国专利4,829,763和英国专利2,153,912公开了一种较具体的湿空气涡轮循环系统,该系统是通过与气体涡轮机空气压缩机相连接的中间冷却器和后冷却器来回收氧化剂空气被压缩时产生的热,并将此热量进行循环。美国专利4,653,268和4,537,023也公开了它们的工艺系统,该系统中,压缩热由中间冷却器和后冷却器中的水回收,然后,吸收了热量的水被送到氧化剂空气饱和器中,以便向燃烧室/膨胀涡轮机提供湿空气。

    现有技术公开了这样一种构思,它既涉及对燃气轮机燃烧室、转接段和膨胀机进行冷却,而且也涉及把由空气分离单元出来的废氮气向燃烧室喷射,或将其作为燃气轮机膨胀机上游的急冷空气来使用。

    以下的现有技术公开了在燃气轮机燃烧室中及从其下游的空气分离单元出来的废氮气的应用。美国专利5,081,845公开了“从空气分离单元中分离出氮气,并且提高至少是一部分氮气的压力,使这一提高的压力大体上等于导入燃气轮机内位于燃气轮机空气压缩机排气口和膨胀机进气口之间的燃料流的压力”。美国专利4,962,646(Rathbone)公开了这样一个系统,在该系统中,“把从较高压力空气分离单元分馏塔出来的氮气流供入燃烧室的一个室中和供入涡轮机上游区域的燃烧产物中”。美国专利4,707,994公开了利用“从空气分离单元出来的氮气产品作为用于燃烧室急冷的次级冷却气”。美国专利4,557,735公开了“将废氮气输送到燃烧段”和“将废氮气先送入燃烧气中,然后再让其通过燃气轮机而膨胀”。美国专利4,019,314公开了“一种改进,它包括在废气(燃烧室排出气流)膨胀之前,将空气分离过程中产生的氮气与废气混合”,“在两个膨胀阶段之间,将氮气混合到废气中”,以及“废气在第一膨胀阶段膨胀,使其压力达到离开空气分离厂时的氮气压力”。描述废氮气类似应用的其它现有技术包括,美国专利5,080,703、5,036,672、4,697,415和4,697,413号。

    公开空气分离单元废氮气与膨胀之前的热燃烧废气的一体化问题的关键现有技术是,美国专利4,224,045和3,731,495。U.S.P.4,224,045公开了“压缩至少一部分富氮气体,……使其压力至少达到……点火压力,并将压缩的富氮气流输送到所说的动力涡轮机(燃气轮机膨胀机)上游的燃烧气流中”,和“至少部分所说的压缩富氮气流在……点火之后被喷射到燃烧气流中”。U.S.P.3,731,495公开了“通过用富氮急冷气对金属(燃烧室)的适当包覆”,加热空气分离单元的废氮气,使进入膨胀机的富氮气的温度高达1650°F”,并且“将较冷的富氮气喷射到所说的单独急冷段中的热燃烧气中,形成一种超大气压力下的中温富氮混合气”。

    以下的现有技术涉及将燃气轮机燃烧室,转接段和膨胀机冷却的方法。应当注意,燃气轮机膨胀机冷却的最简单的标准方法,是将来自燃气轮机空气压缩机的一部分压缩空气作为系统的流动冷却剂,转移到燃烧室、转接段和燃气轮机膨胀机的最一开始的少数几个级中。美国专利5,160,096公开了一种湿空气涡轮循环系统,其中湿空气被用作为燃气轮机膨胀机第一固定叶片的流动冷却剂,而潮湿化之前的压缩空气被用作为第一级转动叶片的流动冷却剂,然后再与热废气混合以供进行另一次膨胀之用。U.S.P.5,095,693公开了从燃气轮机压缩机的出口气流中分出一个支流,通过与燃料流进行间接的热交换除去支流一部分热量,然后将此支流作为降低温度的冷却剂提供给燃气轮机膨胀机。U.S.P.4,571,935公开了由高压汽轮机(通常与联合循环操作有关)抽出蒸汽,来冷却机器外壳和膨胀机中的固定叶片。U.S.P.4,571.935也公开了系统启动及单独控制燃气轮机冷却气流的好处。U.S.P.4,338,780公开了将一股水流喷射到部分燃气轮机压缩机的废气中,以此来制备一种用于燃气轮机膨胀机的转动叶片的优良流动冷却剂。U.S.P.4,314,442公开了用蒸汽冷却带有蒸汽热障膜的膨胀机的方法,用以保护热膨胀机的静叶片和使气流通过式结构的叶片转动。US 3,973,396公开了使用Hilsch管式膨胀机来冷却部分燃气轮机空气压缩机的排气,然后用一个喷射器将这种气体加入主空气冷却流中,以降低该主气流的平均温度,并提供一种优良的流动冷却剂。US 3,783,614公开了一种复杂的利用氟利昂冷却剂的封闭回路燃气轮机膨胀机冷却系统。

    最后,电力研究学会(EPRI)报告IE-7300上发表了1991年由A.D.Rao等人写的“A Comparison of Humid Air Turbine (HAT)Cycle and Combined Cycle Power Plants”,该文章公开了将从一单独的空气分离单元后冷却器回收的压缩热用于加热水,以使供给燃气轮机燃烧室的氧化剂气流饱和。

    本发明涉及一种发电工程的改进方法。该方法中,在低温空气分离单元,压缩空气被分馏成氧气和废氮气,该方法中,至少一部分的氧产品被压缩,并与含碳燃料在气化器或部分氧化单元中反应,产生一种包含一氧化碳和氢气的合成(燃料)气;该方法中,进料空气在燃气轮机进料空气压缩机中被压缩,接着至少达到部分饱和;该方法中,合成气与饱和压缩的燃气轮机进料空气在燃烧室中燃烧,产生燃烧气,该燃烧气流经转接段,并接着在燃气轮机中膨胀而产生功,其中至少一部分产生的功被用于驱动燃气轮机进料空气压缩机,其中至少另一部分产生的功被用于发电。

    这一改进的特征在于:(a)从燃气轮机进料空气压缩机中分出一部分经压缩的燃气轮机进料空气,向低温空气分离单元提供至少一部分压缩空气;以及(b)利用至少一部分的氧产品压缩热,来加热水而使压缩的燃气轮机进料空气饱和。

    这一改进的另一个特征在于,向燃气轮机进料空气压缩机的中间段提供至少一部分废氮气;或者,将至少一部分废氮气作为可控的惰性气体冷却剂、稀释剂或是提高质量流动的成分喷射到选自燃烧室、转接段和燃气轮机的至少一个设备中;或者利用至少一部分从用于向低温空气分离单元供料的燃气轮机进料空气压缩机中排出的经压缩的燃气轮机进料空气的固有热量,以加热供给气化器或部分氧化装置的那部分氧产品。

    任选地,从燃气轮机进料空气压缩机中排出的那部分经压缩的燃气轮机进料空气,在供给空气分离单元进行分馏之前,可以在空气分离单元的空气压缩机中被进一步地压缩,由这一压缩步骤产生的压缩热被用于加热水,从而使压缩的燃气轮机进料空气饱和。

    图1为现有技术的非一体化的示意图。

    图2至图8为本发明方法的几种具体实施方案的示意图。

    本发明的方法包括在空气分离单元与一体化气化湿空气涡轮机或一体化气化联合循环发电装置之间的几种一体化改进的组合方式。第一个改进包括,通过从燃气轮机空气压缩机的中间段或中间冷却段分离出一部分压缩空气,由此向空气分离单元提供至少一部分的压缩进料空气。第二个改进包括,将由空气分离单元出来的废氮气,返回到燃气轮机空气压缩机高压段的入口处。第三个改进包括,将由空气分离单元出来的废氮气,作为可控惰性冷却剂、稀释剂返回到燃气轮机燃烧室、转接段和/或膨胀机中,或用于提高流经燃气轮机发电段的质量流量。第四个改进包括,将一体化的空气分离单元的进料气的至少一部分压缩热,输送到供给气化器的高压氧中。第五个改进包括,利用氧产品、返回氮气或任何辅助空气分离单元的空气的部分压缩热来加热水,以使供给燃气轮机燃烧室的氧化剂空气或燃料气流饱和。根据每一个一体化气化发电装置的特点,采用最适合于实施的不同组合的改进方式。这五个实施方案代表了将来最有可能建成的一体化气化发电装置的构思之最佳组合。

    图1表示出常规的,带一单独空气分离单元的一体化气化湿空气涡轮机发电装置。图1的方法为本发明的HAT基本方案。

    图1中示出空气分离单元1和一体化的湿空气涡轮循环100。如上所述,空气分离单元1和一体化的湿空气涡轮循环100相互之间不是一个整体,它们是独立运行的。

    参看图1的空气分离单元1,管线10中的进料气在压缩机12中被压缩。这一压缩的进料气需进行纯化,以除去其中的杂质,例如水、二氧化碳和烃类,然后将其供给低温蒸馏塔系统14,从而制得至少一种氧产品和一个氮产品。这一低温蒸馏塔系统可以是任何类型的,即,单塔式或多塔式,常压式或高压式。另外,这一低温蒸馏塔系统还可以是制备氩物品的。在本申请中,如图所示的那样,氮产品通过管线16被排出,并作为废气排空。氧产品通过管线18被分出,并在压缩机20中被压缩,使其压力达到气化器中所要求的压力。为了除去压缩热,冷却水通过管线24供给压缩机20的中间冷却器或后冷却器。变热了的冷却水由管线26排出。

    对于一体化的湿空气涡轮循环100,在管线110中的进料气在低压空气压缩机112中被压缩,并在中间冷却器114中被冷却,并然后在高压空气压缩机116中被进一步地压缩,接着分成两部分,第一部分为管线120中的压缩空气,第二部分为管线118中的压缩空气。管线120中的第一压缩空气部分在后冷却器122中被二次冷却,然后在饱和器126中被水饱和。管线128中被饱和并被压缩的第一进料空气部分,在换热器130中被需要冷却的烟道气进一步加热。然后,管线132中的这一加热饱和并压缩了的第一进料气部分在燃烧室134中,与通过管线150进来的燃料气一起燃烧,该燃料气也已事先被换热器130加热。管线136中的燃烧产物在膨胀机138中膨胀而产生轴功,该轴功被依次用于驱动压缩机112和116,并利用发电机160发电。管线118中的第二压缩空气部分被用作为涡轮机的冷却气。这一涡轮机冷却气可以在各个入口处进料,例如,通过管线133进入燃烧室134、通过管线135进入转接段、通过管线137进入膨胀机138或是它们的任何组合。在管线140中,来自膨胀机138的废气在作为烟道气由管线144排出之前,在换热器130和节热器(热交换器)142中被冷却。

    另外,对于一体化的湿空气涡轮循环系统100,补给水由管线40进入到中间冷却器114中后面的冷却器中,然后与通过管线50的从气化器除气器中出来的水混合。这一混合水流在节热器142中被加热,然后被送入饱和器126的上部。在饱和器126中,热水与管线124中的干燥空气相接触,由此生成管线128中的饱和空气,最后进入燃烧室134。饱和器126中的一部分多余水份被用于回收来自管线110的压缩进料空气流的压缩热。这一压缩热借助于中间冷却器114和后冷却器122而被回收。另外,用于使管线124中干燥的压缩空气饱和所需的任何附加热都是在煤气化器的水加热器70中产生的。如图所示,水通过管线54,从饱和器126的底部排出,并且分成三个支流。管线56中的第一支流被送入第二个后冷却器122,并在其中被加热。管线74中的第二支流被送入第一个中间冷却器114,并在其中被加热,然后经过管线76与管线58中的从第二个后冷却器122中出来的热水混合。管线60中的这一混合的热水流被送入第一个后冷却器122,并在其中被加热。管线68中的第三支流与在管线78和管线80中的至少部分中间水流一起在加热器70中被加热。管线72中的加热了的水与管线62中的热水混合,并由管线64送入饱和器126的上部。最后,管线80中一部分较低的中间水流通过管线82,与由管线50流出的来自气化器鼓风机的水混合。

    图2演示了应用下述构思的本发明的实施方案,这一构思即从燃气轮机空气压缩机的中间冷却段中取出进入低压空气分离单元的部分或全部的压缩空气,并将来自氧产品压缩的部分废热返回到饱和器。参考图2,压缩机112的部分压缩空气通过管线210排出。这一部分可以从以下三处中的一处排出,这三处为,中间冷却器114之前、中间冷却器114之中和中间冷却器114之后。较好的位置为图中的实线所示,即中间冷却器114之后。实际的位置应使具体系统的整体达到最佳化。

    另外,管线24和224中的软化补给水,通过与空气分离单元1的各股气流进行热交换而被加热,所说的空气分离单元1包括在管线22中输送的压缩氧气流;因此,将气流进行中间冷却和任选的进行二次冷却,以除去压缩热。热的补给水由管线226被送入饱和器126,用作为使涡轮机空气湿化所需的补给水的一部分。其他位置也可用来汇集从空气分离单元1中出来的热水;然而实际的位置应能使整体达到最佳化。图2的其余部分保留了图1中未更改的部分。图中所示的相同气流和工艺设备使用相同的编号数字。

    如所看到的,图2显示出,由燃气轮机空气压缩机中间冷却段排出压缩空气,该压缩空气全部被送入低压空气分离单元,但也可以将来自这一来源的压缩空气仅部分地供给空气分离单元,以达到最佳匹配的燃气轮机负载能力。管线210中的空气整合气流的较好条件为,压力在50~150psia范围内,温度大约为所提供的补给水或冷却水的温度。

    图2显示出,所有氧气在压缩时的中间冷却,都是由流向饱和器126的软化补给水来完成的。当需要对过多的软化补给水提供加热能力时,可以仅将一部分氧产品的压缩热送往更昂贵的软化补给水处,剩余的热量则被送往正常的冷却水处。作为一种选择,这一融合热水可被送往节热器142中或送往煤气化器的水加热系统70中,在将其进一步加热后,再送往氧化剂空气饱和器中。

    这一实施方案的另一种布置方式示于图3。这一方案显示出,在管线210中的空气整合气流和管线22中的送入气化器的高压氧之间,另外增加了热交换器212。该选择方案采用的构思是,把一体化气体分离单元的进料空气的一部分压缩热,转送给供应气化器的高压氧进料气中。如上所述,管线210中的空气整合气流可以从燃气轮机空气压缩机的中部或中间冷却段的任意位置(图中用虚线表示)排出,以便达到系统最佳的冷却和加热。

    图4示出本发明的第二个实施方案,再次使用这样的构思,即,从主燃气轮机空气压缩机的中间冷却段中,抽取部分或全部低压压缩空气进料,供入低压空气分离单元中,并且将一部分的氧产品压缩的废热返回到氧化剂饱和器。但是,与图2和图3所示的系统不同,这一实施方案使用了一个泵送液氧(LOX)循环,这一循环要求供给空气分离单元那部分的气体的压力高于约100psia。

    图4示出,所有供给空气分离单元1的低压压缩空气进料,通过管线210,从燃气轮机压缩机中间冷却器中被排出,并且所有供给空气分离单元的高压空气,通过管线310,从后冷却器122的出口排出。值得特别注意的是,也可以仅从这些来源提供部分空气分离单元压缩空气进料,以此来与燃气轮机的最佳负载能力相适应。管线210中较低压力的空气整合气流的较好条件为,压力在50~150psia的范围,温度约等于所提供的补给水或冷却水的温度。在第一个实施方案的情况下,可以在燃气轮机空气压缩机的中部或中间冷却段的任何一处(图中用虚线表示)排出低压空气整合气流,以达到系统的最佳冷却。管线310中的较高压力空气整合气流的较好条件为,压力约高于100psia,温度约等于补给水或冷却水的温度。同样地,对于这一实施方案,可以从燃气轮机空气压缩机的后冷却段的任何一处(图中用虚线表示)排出高压空气整合气流,以达到系统的最佳二次冷却。也可以把与高压整合空气相关联的水进料冷却器312转移到膨胀机314下游的某一位置,或将其全部拆去,以便更好地产生额外的功,或者如果需要的话,向高压空气整合气流中提供更多的冷却能力。膨胀机314的需要将由为管线120中的燃气轮机的压缩进料空气和管线316中的空气分离单元进料空气选择的最佳压力来决定。这一最佳压力是IGHAT或IGCC方法的一个特征。

    图4也示出,所有的氧产品压缩的中间冷却均由导入饱和器126的软化补给水来完成。在需要超量补给水加热能力的情况下,可以仅将部分的氧气压缩热送往更昂贵的软化补给水处,剩余的热量则被送往正常的冷却水处。作为一种选择,这一整合热水可被引导到节热器142或煤气化器的水加热系统70,用于进入饱和器126之前的进一步加热。

    图4示出空气分离整合单元的两个不同的空气压力水平。更先进的低温空气分离循环需要三个或更多个不同的空气压缩水平,以达到最佳的一体化。

    第二个实施方案的另一种布置方式示于图5。与图3一样,图5示出位于高压空气整合气流和供给气化器的高压氧气之间的额外的热交换(热交换器311)。这一选择应用了这样一个构思,即,将整合空气分离单元进料气的部分压缩热,输送到供给气化器的高压氧进料中。

    图6示出本发明的第三个实施方案,它采用的构思是,从主燃气轮机空气压缩机的中间冷却段中抽取部分或全部压缩空气进料气,供入提高压力的空气分离单元(EPASU),并且将部分或全部由空气分离单元出来的废氮,返回到燃气轮机空气压缩机高压段的进料气中,以及将部分氧产品压缩废热和附加的空气分离单元空气压缩的废热,返回到氧化剂饱和器中。与图2至图5所显示出的系统不同,该实施方案中的空气分离单元1采用了一个提高压力的循环,该循环需要以高于中间冷却段压力的压力供给空气分离单元。

    图6中,较高压力的进料气是由增压压缩机412进一步压缩管线410中来自燃气轮机冷却段的空气整合气流而提供的。虽然图中显示出供给空气分离单元的全部空气,是从燃气轮机压缩机中间冷却器中排出,但是也可以仅从这一来源提供部分空气分离单元的空气进料,以便与燃气轮机空气压缩机的最佳负载能力相适应。在第一个和第二个实施方案的情况下,可以在燃气轮机空气压缩机的中部或中间冷却段的任何一处排出低压空气整合气流,以便达到系统的最佳中间冷却效果。图6示出管线16中的全部废氮气,由空气分离单元返回到燃气轮机压缩机中间冷却段。也可以仅将一部分的空气分离单元废氮气返回到燃气轮机空气压缩机,以与燃气轮机的最佳负载能力相适应。值得注意的是,最好是将氮气返回到低压空气整合气流排出气的下游的初级压缩空气流中,以维持空气分离单元进料气中的氧浓度。管线16中的废氮气返回气流的较佳条件为,压力和温度都等于由最后的燃气轮机中间冷却器流出的中间冷却空气的压力和温度。

    另外,图6示出所有的氧气压缩的中间冷却和增压空气压缩机的后冷却,都是由导入饱和器126的软化补给水来完成的。在需要超量补给水加热能力的情况下,可以仅将部分氧产品压缩热送往更昂贵的软化补给水处,剩余的热量则被送往正常的冷却水处。作为一个选择,这一整合热水可被导入节热器或煤气化器的水加热系统,用于进入氧化剂饱和器之前的进一步加热。

    在早期的实施方案中,对第三个实施方案的选择包括这样一个构思即,将一体化空气分离单元进料气的部分压缩热,转送给供应气化器的高压氧气中。在这一实施方案中,如果空气整合气流从中间冷却前的燃气轮机段排出的话,则最好是采用一个附加的氧气热交换器(图中没表示出来),它紧靠任何的空气融合气流增压压缩机的下游或增压压缩机的上游。

    图7显示出本发明的第四个实施方案,该方案采用的构思是,将空气分离单元出来的部分或全部废氮气,作为可控的惰性气体冷却剂返回到燃气轮机的燃烧室、转接段、和/或膨胀机,并且将氧产品压缩的一部分废热返回到氧化剂空气饱和器。这一实施方案也运用一种技术来从燃气轮机空气压缩机的最高压力段的排气中抽取部分或全部的压缩空气来供给到提高压力的空气分离单元中。与图6的系统类似,空气分离单元1采用了提高压力的循环。取决于燃气轮机空气压缩机的实际设计,空气分离单元可能要求进料空气的压力低于燃气轮机压缩机116卸压的压力。

    如果需要,这一较低压力的进料气流可通过将管线510中的由燃气轮机后冷却段出来的空气整合气流在膨胀机314中膨胀而获得。图7示出所有供应给空气分离单元的压缩空气都来自燃气轮机压缩机后冷却器。尽管如此,也可以由这一来源向空气分离单元只供应部分压缩空气。在第二个实施方案的情况下,可以在燃气轮机空气压缩机的后冷却段的任意位置(图中以虚线表示)排出高压空气整合气流,以此达到系统的最佳二次冷却。也可以将供给与高压空气整合气相联的冷却器的水,转移到紧靠膨胀机的下游或将其完全除去,以便于最佳地产生额外功,或是在需要的时候,向高压空气整合气流提供更多的冷却。

    如图8所示,还可以使用这样一个构思,即,从燃气轮机压缩机的中部或中间冷却段中排出压缩的进料气,所说的燃气轮机由压缩机412来提供辅助的增压压缩,以使空气分离单元整体最适合于燃气轮机的负载能力。空气整合气流的较好条件与所讨论的第三个实施方案的条件相同。与第三个实施方案类似,可以在燃气轮机空气压缩机的中部或中间冷却段的任何位置(图中以虚线表示)排出低压空气整合气流,以便达到系统的最佳中间冷却。

    图7和图8都另外示出管线16中的从空气分离单元出来的全部废氮气,分别由管线420、422和424被返回到燃气轮机燃烧室、转接段、和/或膨胀机冷却气流中。也可以仅将一部分的空气分离单元的废氮气(以适当的压力)返回到燃气轮机燃烧室、转接段和膨胀机,以最大限度地满足它们的冷却要求。如果不需要或不优选用氮气来冷却,那末,可将氮气返回到这些位置的任意点,以给燃气轮机的发电系统提供额外的质量流量,和/或将其作为稀释剂而返回到燃烧室或供入的燃料中,从而降低火焰的温度并由此限制NOx的形成。

    另外,图7和图8示出,所有的氧气压缩机20的中间冷却和/或增压压缩机412的后冷却,均由被送入饱和器120和/或节热器142中的软化补给水来完成。在需要超量补给水加热能力的情况下,可以仅将一部分的氧气压缩热导入更昂贵的软化补给水中,剩余的热量则被送往正常的冷却水处。另外,可以将部分或全部氮气返回气流的压缩热送到软化补给水中。作为一种选择,这一整合热水可以导入煤气化器的水加热系统70,以便在进入饱和器126之前进一步加热。

    在早期的实施方案中,这一实施方案的选择包括这样一种构思,即,将一体化空气分离单元空气的压缩热的一部分转送到气化器的高压氧气进料中。在如图7所示的实施方案中,该选择方案最好在紧接于燃气轮机压缩机的高压空气整合气排出口的下游,使用一个附加的氧气热交换器(未示出)。在如图8所示的实施方案中,该选择方案最好在紧接于任何空气整合气流增压压缩机的下游,或者,如果该空气的整合气流从燃气轮机的中间冷却段前面的位置排出,就在该压缩机的上游,使用一个附加的氧气热交换器(未示出)。另一种选择允许涡轮机冷却氮气的部分附加压缩热输送到氧气流中。这将通过在氧气压缩机和氮气压缩机二者的下游设置一台热交换器来完成。

    正如上文对4个实施方案所讨论的那样,与现有技术相比,本发明具有显著的进步,因为本发明具有降低投资费用,提高能量输出和/或以固定能量输出而获得较高生产效率。本发明改进了一体化的气化湿空气涡轮机(一体化气化湿空气涡轮机)或联合循环(一体化气化联合循环)发电厂的操作适应性。本发明与现有技术所公开的以往各种方法的不同之处在于,在空气分离单元和一体化气化湿空气涡轮机或一体化气化联合循环发电厂之间的4种关键的一体化构思的各种组合方式。第一个构思是从燃气轮机空气压缩机的中部或中间冷却段抽出部分或全部压缩空气用于供给空气分离单元。第二个构思是将空气分离单元排出的废氮气以中压返回到燃气轮机空气压缩机高压段的进料气中。第三个构思是将空气分离单元排出的废氮气,作为可控的惰性冷却剂,返回到燃气轮机燃烧室、转接段、和/或膨胀机中。第四个构思是将整合的空气分离单元空气进料的部分压缩热,转送给供应气化器的高压氧气。第五个构思是,将氧气、返回氮气或任何附加的空气分离单元气的部分压缩热用于加热水,以使供给燃气轮机燃烧室的氧化剂空气或燃料流饱和。取决于每个一体化气化发电装置的特点,这些构思的不同组合对现有工艺来说具有非常大的进步。

    虽然先前描述的低温空气分离单元都利用了氧气压缩机,但也可以采用依靠液氧泵来达到其最终输送压力的工艺循环。在这些情况下,空气或氮气的压缩液体将被用于使泵送的氧气化。用于这些液体的压缩机将被并入燃气轮机循环中作为氧气或增压空气压缩机来描述。

    在本发明中详细地描述的有关一体化的气化湿空气涡轮机一空气分离单元整体装备的4个实施方案已通过计算机模拟进行评价并同时确定了它们与现有技术相比的优点。用于进行模拟的工厂规模的设备是由A.D.Rao和W.H.Day在1991和1992年召开的EPRI Conferences on Gasification Power Plants第10届和第11届年会上公开的一体化气化湿空气涡轮机系统,它在90°F环境温度下的额定功率输出为230MW。相应氧气厂的生产规模为按1400吨/天(以纯氧计)的产率生产95%的纯氧。表1概括了用计算机对现有技术的湿空气涡轮机(Ⅰ列和Ⅲ列)和所提出的一体化气化湿空气涡轮机一空气分离单元的整体装备(Ⅱ列和Ⅳ-Ⅵ列)进行模拟而获得的结果。

    第一个实施方案(第Ⅱ栏)采用的构思是,从主燃气轮机空气压缩机的中间冷却段,抽取全部或部分压缩空气进料,供应到低压空气分离单元中,并将氧气的部分压缩废热返回到氧化剂饱和器中。图2中示出的实施方案与现有技术的一体化气化湿空气涡轮机相比是非常好的,该现有技术带有一单独的低压空气分离单元(见表1第1栏)。本发明的优点是减少或省去空气分离单元主空气压缩机,并相应地节约高达$7,000,000的投资费用,以及在基本上相同的热耗的条件下将工厂的发电能力提高了多达3.1MW。另外,与现有技术相比,本发明允许空气分离装置在更为理想的50-150psia的空气进料压力下操作而不需附加的膨胀或压缩,而现有技术的空气分离单元的进气则需从燃气轮机空气压缩机的高压排气中抽取。另外,取决于中间冷却系统的具体情况,通过调整空气分离单元空气进料点相对于中间冷却器的位置,可以将冷却的任务较交给空气分离单元,条件是该中间冷却器要有附加的设计或具有操作上的灵活性。这些改进所需的投资相对来说是很低的,也就是说,相对于基本情况而言,燃气轮机空气压缩机的低压级可能要求增加能力,而燃气轮机压缩机中间冷却器可能要求更大的面积,而燃料流量增加1.6%。图3中示出的选择是将一体化空气分离单元空气进料的压缩热的一部分,输送给供给气化器的高压氧进料中,这样氧就能够以更高的温度进入气化器,从而改善了气化器的性能。综合在气化器操作方面的这种改进,是可以把较少的压缩热转送给氧化剂空气饱和器,但由于这种改进可以把热量更直接地输送入工艺过程中,该选择方案可产生附加的净利益。

    第二个实施方案(第Ⅳ栏)也应用了这种构思,即从主燃气轮机空气压缩机的中间冷却段,抽取全部或部分的低压压缩空气进料供给低压空气分离单元,并将一部分来自氧产品压缩的废热返回给氧化剂饱和器。示于图4的实施方案也是从燃气轮机空气压缩机的高压段的排气中,抽取所有的高压空气来供给与工艺循环的泵送液氧(LOX)部分相连接的高压空气进料中。第二实施方案与现有技术的一体化气化湿空气涡轮机相比是非常好的,该现有技术带一单独的低压泵送液氧(LOX)空气分离单元(第Ⅲ栏)。本发明的优点是减少或省去空气分离单元的主空气压缩机,并因此节省的有关投资费高达$8,000,000,并且以略高的热耗将发电厂的发电功率提高1.7MW。另外,与现有技术相比,象在第一个实施方案中一样,本发明允许空气分离工厂在更理想的50~150psia的空气进料压力下操作,而不需附加的膨胀或压缩,而现有技术的空气分离单元的进料则需从燃气轮机空气压缩机的高压排气中抽取。另外,取决于中间冷却系统和后冷却系统的具体情况,通过调整空气分离单元空气进料点相对于中间冷却器和后冷却器的位置,可以将冷却的任务转交给空气分离单元,条件是该中间冷却器和后冷却器要有附加的设计或具有操作上的灵活性。这些改进所需的投资相对来说是很低的,相对于基本情况而言,燃气轮机空气压缩机可能要求增加能力,而燃气轮机压缩机中间冷却器和后冷却器可能要求更大的面积,如果高压燃气轮机空气压缩机排气压力显著地高于空气分离单元高压进料气的压力,那么可能需要一个附加的空气膨胀机,而且燃料流量需增加2.3%。图5中示出的选择是将一体化的空气分离单元空气进料的压缩热的一部分,输送给供给气化器的高压氧气中,这样氧就能够以更高的温度进入气化器,从而改善了气化器的性能。如上所述,综合在气化器操作方面的这种改进,是可以把较少的压缩热转送给氧化剂空气饱和器,但由于这种改进可以把热量更直接地输送入工艺过程中,因此该选择方案可产生附加的净利益。

    第三个实施方案(第Ⅴ栏)采用的构思是,从主燃气轮机空气压缩机的中间冷却段抽取全部或部分的压缩空气进料,并将其供入提高了压力的空气分离单元中,另外将部分或全部来自空气分离单元的废氮,返回到燃气轮机空气压缩机高压段的空气进料气中,以及将氧产品压缩时的废热返回氧化剂空气饱和器中。图6中示出的这一实施方案与现有技术的一体化气化湿空气涡轮机相比是非常好的,该现有技术带有一单独的低压空气分离单元(第Ⅰ栏)。本发明的优点是可以减少或省去空气分离单元主空气压缩机,并因此节省投资费~$7,000,000,显著地减小了氧气压缩机的尺寸,并且以略高的热耗,将发电厂的发电能力提高3.5MW。这一实施方案的优点是,可以把空气分离单元排出的中压氮产品的压缩能量返回到燃气轮机系统,而不用任何的辅助压缩设备,这一点与前文提到的现有技术不同,该现有技术是将高循环空气分离单元的氮气,返回到燃料流中或直接返回到燃烧室。另外,氮气能够以比所要加入的空气流的温度低或高的温度被返回。该方案的附加好处是可以改善后续的燃气轮机压缩级的进料条件的控制。例如,当环境温度对提高压缩效率来说是很高时,可以把低于空气流温度的氮气返回,以便使燃气轮机的高压段增压。另外,根据中间冷却系统的具体情况,通过调整空气分离单元空气进料点和氮气返回点相对于中间冷却器的位置,而可将冷却任务转交给空气分离单元,条件是中间冷却器必须有附加的设计或具有操作上的灵活性。这些改进所需的费用是相对地很少的,也就是相对于基本情况来说,燃气轮机空气压缩机的低压段可能要求增加很少一点能力,燃气轮机压缩机中间冷却器可能要求增加很少一点面积,并且要求一台用于空气分离单元的附加的空气增压器,以及燃料流量需增加0.8%。这一选择方案是将一体化的空气分离单元空气进料气的压缩热的一部分,转送给供给气化器的高压氧进料中,这样氧就能以更高的温度进入气化器,从而改善了气化器的性能。如上所述,综合在气化器操作方面的这种改进,是可以把较少的压缩热转送给氧化剂空气饱和器,但由于这种改进可以把热量更直接地输送入工艺过程中,因此该选择方案可产生附加的净利益。另外,还应指出,在该实施方案中,氧化剂空气的氧含量可从约20%的过量减少到约10%的过量,这一情况可能影响燃烧室的设计。

    第四个实施方案(第Ⅵ栏)的构思是,将从空气分离单元排出的全部或部分的废氮气,作为可控的惰性冷却剂返回到转接段和/或燃气轮机膨胀机,并将氧气压缩废热的一部分返回到氧化剂空气饱和器中。这一实施方案也是从主燃气轮机空气压缩机的高压段(但不需要从最高压力段)的排气中,抽取全部或部分的压缩空气,来供应到提高了压力的空气分离单元中。与现有技术的一体化气化湿空气涡轮机相比,图7中示出的这一实施方案是非常好的,所说现有技术带有一单独的低压空气分离单元(第1栏)。本发明的优点是可以减少或省去空气分离单元主空气压缩机,并因此节省相关投资费约$7,000,000,显著地减小了氧气压缩机的尺寸,并且,以略高的热耗将发电厂发电能力提高7.0MW。而且,燃气轮机转接段和/或膨胀机的冷却将由独立可控的惰性冷却剂气流来完成,而不再采用大多数现有技术中所使用的空气流。这将提供更大的操作灵活性,也将允许显著地提高燃烧温度。这种通过提高燃烧温度来实现增加的效率,这未在装置的效率和生产能力设计中得到考虑,因此实际的利益将大于表1中的数据所反映的数值。另外,对这种可能性尚未确认,即氮气冷却剂可能以比燃气轮机空气压缩机输出更低的压力输送到涡轮机级中,这一点与现有技术将氮返回到燃料流或燃烧室的情况是不同的。因此,表1中所列的效益甚至是较保守的。图8中所示的是该实施方案的变化方案,该方案采用的构思也是,从燃气轮机空气压缩机的中间段或中间冷却段,抽取空气来供给空气分离单元,所说的空气压缩机还可能带有一个附加的增压压缩机,以保证有适当的进气压力输入空气分离单元。在该方案中,一个附加的好处是,根据中间冷却系统的具体情况,通过调整空气分离单元空气进气点相对于冷却器的位置,可使冷却任务转交给空气分离单元,条件是该中间冷却器要有附加的设计或具有操作上的灵活性。这些改进所需的费用包括,相对于基本情况来说,燃气轮机空气压缩机可能要求增加能力。燃气轮机压缩机中间冷却器和后冷却器可能要求较大面积,而如果高压燃气轮机空气压缩机的排气压力明显地高于空气分离单元的高压空气进料压力的话,对于图7的实施方案还可能要求一个附加的空气膨胀机,另外需要一台附加的氮气压缩机,燃料流量要提高4.2%。选择的方案是将一体化空气分离单元空气进料的部分压缩热传送给待供入气化器的高压氧进料中。因此氧就能以较高的温度进入气化器,这样就可以改善气化器的性能。如上所述,综合在气化器操作方面的这种改进,是可以把较少的压缩热输送给氧化剂空气饱和器,但由于这一改进可以把热量更直接地输送入工艺流程中,因此该选择可以产生附加的净效益。由于该选择方案是将附加的压缩热从涡轮机冷却氮转送给氧气流,故还可以获得更多的效益。首先,氧能够以较高的温度进入气化器,这样就改善了气化器的性能。其次,涡轮机冷却氮的一部分或全部能以较低的温度供应到燃气轮机的燃烧室、转接段或膨胀机中的任一处,这也可以改善其性能。

    第五个实施方案与前面的实施方案不同,它涉及一种一体化气化联合循环系统,该方案的构思是,从空气分离单元将废氮的一部分或全部作为可控的惰性冷却剂返回至转接段和/或燃气轮机的膨胀机。该实施方案也是从主燃气轮机空气压缩机的高压段(但不需要在最高压力段)的排气中,抽取全部或部分的压缩空气进料来供应给已提高压力的空气分离单元。与现有技术的一体化气化联合循环相比,这一方案(未示出)是非常好的,所说现有技术的联合循环带有一个一体化的提高压力的空气分离单元,它将氮返回到燃烧室的燃料流中。主要的效益和优点没有进行定量的描述,但其结果可使得燃气轮机的转接段和/或膨胀机的冷却,可由独立的可控惰性冷却剂气流来完成,而不需使用现有技术中所用的空气流。这种独立可控性将允许在操作上的更大灵活性,而且很有可能允许大大地提高燃烧温度。燃烧温度的提高则又可大大地提高工厂的生产效率和生产能力。另外,氮冷却剂还能以比燃气轮机燃烧室燃料压力低得多的压力输送至涡轮机各级,因此,氮的压缩费用和操作费用也都可大大地降低。相对于现有技术来说,这些实施方案所需的费用包括,为了抑制NOX的产生,需要使用来自热回收蒸汽发生器的补充蒸汽来喷入燃烧室中。选择的方案是从涡轮机冷却氮中把附加的部分压缩热转送给氧气流,这样可获得附加效益。首先,氧能以较高的温度供入气化器,这样可以改善气化器的性能。其次,涡轮机冷却氮的一部分或全部能以较低的温度供往燃气轮机的燃烧室、转接段或膨胀机中的任一处,这也可以改善其性能。

    总之,把在本发明中提出的几种新构思进行适当结合所产生的具体效益,要决定于所要考虑的具体的发电系统。然而,从本发明在上文所公开的大多数实施方案来看,很清楚,相对于现有技术来说,在工厂的生产能力、效率、操作灵活性和投资费用来说,本发明具有显著的进步。

    最后,在一体化设备的实际最佳设计中,空气或氮气流的一部分或全部的汇合地点在实际上发生于主要设备内部,例如,从燃气轮机空气压缩机中抽取空气,能以低于压缩机单元排气最终压力的压力,从压缩机内部的中间位置来抽取。

    本发明已参考几个具体实施方案进行了描述。但这些实施方案不能看成对本发明的限制。本发明的范围和精神实质应根据所附的权利要求书来确定。

一体化的空气分离燃气轮机发电方法.pdf_第1页
第1页 / 共38页
一体化的空气分离燃气轮机发电方法.pdf_第2页
第2页 / 共38页
一体化的空气分离燃气轮机发电方法.pdf_第3页
第3页 / 共38页
点击查看更多>>
资源描述

《一体化的空气分离燃气轮机发电方法.pdf》由会员分享,可在线阅读,更多相关《一体化的空气分离燃气轮机发电方法.pdf(38页珍藏版)》请在专利查询网上搜索。

本发明涉及将低温空分单元与发电单元一体化方法的改进,其中改进在于:(a)从燃气轮机进料气压缩机中排出部分压缩进料气,向低温空分单元提供至少部分压缩空气;(b)利用至少部分氧的压缩热来加热水,使压缩的燃气轮机进料气饱和;(c)向燃气轮机进料气压缩机的中间段供给至少部分废氮或者向燃烧室、转接段和燃气轮机至少之一中喷射至少部分废氮作为可控惰性气体冷却剂、稀释剂或质量流量强化成分,或者利用至少部分燃气轮机。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 机械工程;照明;加热;武器;爆破 > 燃烧发动机;热气或燃烧生成物的发动机装置


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1