用于制冷机的导电屏蔽罩 本申请是申请日为2005年03月12日、申请号为200580016858.6、发明名称为“用于制冷机的导电屏蔽罩”的中国发明专利申请的分案申请。
【技术领域】
本发明涉及用于产生均匀磁场的低温磁体装置。尤其是,本发明涉及一种围绕低温制冷机设置的屏蔽罩,以降低该低温制冷机对合成磁场稳定性的影响。
背景技术
MRI磁体系统通常包括低温磁体装置并且用于医疗诊断。MRI磁体需要稳定的均匀磁场。为了实现稳定性,通常采用在非常低的温度下工作的超导磁体系统,通常通过将该超导体浸没在低温流体(通常为液态氦)中来冷却该超导体,从而维持该温度。低温流体尤其是氦是昂贵的,并希望该磁体系统的设计和工作方式应该将该低温液体的使用量降低至最少。
该超导磁体系统通常包括一组用于产生磁场的超导体绕组、容纳该超导体绕组和低温流体的低温流体容器、完全包围该低温流体容器的一个或多个热屏蔽罩、以及完全封闭该一个或多个热屏蔽罩的真空夹套。为了进一步降低该流体容器上的热负荷并因此降低由于汽化而造成的液态冷冻剂的损失,实践中通常使用制冷机来将该热屏蔽罩冷却至低温。还已知使用制冷机来直接对该冷冻剂容器进行制冷,由此将该冷冻剂流体的消耗降低为零。在两种情况下都需要在制冷机和要冷却的物体之间实现良好的热接触。在低温下实现良好热接触是困难的,虽然使用加压接触能在热屏蔽罩温度下实现充分的热接触,但是在非常低的温度下实现所需热接触则变得非常困难。为了进行维护,该制冷机需要是可拆卸的,因此该热接触需要是可拆卸的,这对于加压接触来说是困难的。凝结提供了一种良好的热接触方式,因此,如果需要对该冷冻剂容器进行制冷,优选是使该制冷机的该容器冷却部分处于该冷冻剂气体内。这意味着该制冷机被该冷冻剂气体包围。
该磁体附近的任何磁性材料都会被该磁体周围的磁场磁化,并且其磁性会影响到该磁体中央处的成像场的均匀性和大小。对于静止的材料来说,这种干扰可通过称为“匀场(shimming)”的过程来补偿,在该过程中,在成像区域中产生附加场,其抵消了干扰场的影响。如果在磁体周围有移动的磁性材料,该匀场过程不能进行补偿,该成像场被干扰,且结果是MRI图像质量下降。很明显,希望将这种随时间变化的干扰降低至最小。磁体周围的法拉第笼(Faraday cage)可以保护其不受高频干扰,软磁钢笼可以改善笼外的低频磁性干扰影响。但是,用在超导MRI磁体系统上的一些类型制冷机可在它们的热交换器(称为回热器(regenerator))中含有磁性材料,其在制冷机的运行过程中移动。当这些制冷机用于冷却该MRI系统时,它们紧邻于该磁体,并且通常部分地处于该磁体的真空夹套的内部,并因此不能用之前所提及的传统方式来屏蔽。希望找到一种方式来降低这种干扰。
该制冷机要受到磨损,并且必须在一定时间之后进行更换,以便保持足够的性能。因此其必须与该磁体系统可拆卸地连接。
该制冷机的移动磁性材料在该磁体的磁场中进行移动,并且该移动的磁化作用使得该MRI图像质量下降。
美国专利5701744记载了一种铋合金超导屏蔽罩,其围绕稀土移位低温冷却机(rare-earthdisplacement cryocooler)设置。这样一种屏蔽罩的缺点在于该铋合金屏蔽罩自身可被永久磁化;所使用的铋合金比较昂贵,并且不具有足够的热传导性。在美国专利5701744中记载的这些屏蔽罩具有高热导性材料条,以帮助该套筒到达其工作温度。
【发明内容】
相应地,本发明提供了如所附权利要求所限定的装置,以解决现有技术中的至少一些缺点。
本发明提供了一种导电屏蔽罩,该导电屏蔽罩设置在真空空间中并且围绕着该移动磁性部件所在的制冷机部分,从而降低了由该移动磁性部件对均匀场的磁场干扰。
【附图说明】
结合附图,通过下文对本发明一些实施例的说明,本发明的上述以及其它目的、特征和优点将更加明显。附图中:
图1示出了受益于本发明的低温磁体系统的横剖面;
图2示出了制冷机和连接装置的一部分,其适合于用在诸如图1所示的系统中,并且按照本发明进行了改进;
图3A和图3B分别示出了用于讨论本发明的理论效果的等距视图和平面图。
【具体实施方式】
图1示出了低温磁体系统地示意图,其在连接套筒5中装配有制冷机4。所示出的该具体低温磁体系统为一种MRI磁体系统。容纳有超导磁体(未示出)的液态冷冻剂容器1被一个或多个热屏蔽罩2包围,而该一个或多个热屏蔽罩2又被真空夹套3完全包围。制冷机4可拆卸地装配至该磁体系统,并由连接套筒5进行热连接和机械连接,以便通过热连接件5a来冷却该热屏蔽罩2,该热连接件5a可以是铜编织线或任意其它适当的已知热连接件。尽管本发明不要求,但是该连接套筒5的内部可以与冷冻剂容器1的内部相连通,例如通过管6来连通。那么该制冷机4则可以使得已蒸发的冷冻剂气体重新凝结,并且通过管6将其输送回到该冷冻剂容器1。在该制冷机的运行期间,某种磁性材料可以开始运动。例如,GM(Gifford-McMahon)型制冷机中的回热器材料可以如箭头7所示进行振动。
图2更详细地示出了一部分制冷机以及连接套筒。在所示实施例中,该制冷机是一种两级制冷机。该制冷机4的第一级21冷却第一级冷却级22,该冷却级22连接至该连接套筒的第一级热站23。该第一级热站23通过热连接件5a热连接至该热屏蔽罩2,由此提供了用于由制冷机对该热屏蔽罩进行冷却的热路径。该制冷机4的第二级8位于该连接套筒5的下部9中。
在两级GM型制冷机的示例中,该制冷机的第二级的回热器可含有磁性材料。在该制冷机和该磁体的运行过程中,该第二级回热器材料可以在由磁体系统产生的磁场中移动。这种材料在制冷机运行过程中的移动会在磁体系统产生的磁场中形成干扰。然后,这种干扰将破坏该系统的磁场的均匀性,并且会对由MRI系统采用该磁体形成的图像产生破坏。在不同于MRI系统的其它系统中,将会以其它方式对该磁场的均匀性造成不希望有的破坏。
按照本发明的一个实施例,导电屏蔽罩10至少基本上围绕该制冷机4的第二级8,并且在冷端部24近旁机械连接且热连接至该连接套筒5。在所示示例中,该屏蔽罩10的本体是圆筒形的,并且优选是其一端由基座11封闭,该基座11与该屏蔽罩的本体有良好的热接触。在所示示例中,该屏蔽罩包括孔,以允许管6穿过该屏蔽罩。该屏蔽罩10的本体沿着该制冷机第二级8延伸尽可能远,但是不会远至接触到该制冷机套筒的较高温度区域(诸如第一级热站23)。该屏蔽罩10可以使用螺钉12或者螺栓和螺母13(穿过或围绕该基座11的周边)来固定,或者通过其它方式来固定,以便在屏蔽罩10与该制冷机连接套筒5的冷端部24之间提供机械支撑和热接触。
在所示实施例中,该制冷机套筒填充有冷冻剂气体,并且通常与该冷冻剂容器1相连通。该屏蔽罩10位于该连接套筒5外部,并处于冷冻剂容器1和真空夹套3之间的真空中。该屏蔽罩10位于该磁体系统的真空空间内,这是因为其通常是一种导热元件又是一种导电元件。如果该屏蔽罩10布置在该制冷机连接套筒的内部,就是在所示示例中有冷冻剂气体的地方,那么该屏蔽罩10就会通过与冷冻剂气体的接触而将热量从该制冷机第二级8的上部区域(该上部区域的温度接近于第一级热级22的温度)附近传导至该制冷机第二级8的下部区域(该下部区域处于更较低的温度)。这将严重降低该制冷机的总制冷能力。
在可选实施例中,该连接套筒5可与该冷冻剂容器1密封隔离,该制冷机可以处于该套筒内的真空空间内。在这样的实施例中,该屏蔽罩10也布置在该制冷机连接套筒的内部,并紧邻该制冷机的第二级。
图3A-图3B示出了按照本发明一个实施例改进后,由于磁性材料14(例如在制冷机4的回热器内)的存在和运动所造成的该磁场系统的场扭曲。仅示出了最大扭曲的磁场线。所示的这种扭曲是针对一种可局部提高磁场强度的磁性材料14,但是用在回热器中的其它类型磁性材料可以是能降低局部磁场强度的类型。本发明可以应用于具有任何一类磁性材料的实施例。
该磁性材料14处于导电屏蔽罩10内,并且产生对局部磁场的扭曲。该场扭曲与该屏蔽罩10的壁在所指示的区域15中交叉。不希望受任何具体理论的限制,本发明人认为,下面的解释给出了对本发明的工作的准确理解。由于该磁性材料在制冷机的运行过程中移动,如箭头7所示,磁场的扭曲进行移动,与屏蔽罩10的壁相交的磁通量分布发生变化。众所周知,如果与一导体相交的磁通量发生变化,就会逆着磁通量的变化而产生涡流。这些逆着磁通量变化而产生的涡流的总效果是:如果该屏蔽罩10的导电性大,那么当该回热器移动时,该屏蔽罩10内部的磁场变化在该屏蔽罩外部上大大降低。相应地,该屏蔽罩10降低了该移动磁性材料14对该系统的磁场的影响。
该导电屏蔽罩对周期性时变磁场(诸如由本发明所提供的磁场)的磁屏蔽效果取决于该屏蔽罩的电阻率ρ和厚度以及随时间变化的频率f。该“趋肤深度”δ为δ=[ρ/πfμ0]0.5,在该“趋肤深度”δ处,该变化的强度下降为其在表面处的值的1/e。该制冷机的频率f通常为1-2Hz。在室温下,C101铜的电阻率为17.9×10-9Ω-m,1200铝的电阻率为28.6×10-9Ω-m。真空磁导率μ0=4π×10-7H/m。在室温以及2Hz处,对于铜和铝的趋肤深度分别是0.048m和0.060m。
众所周知,导电体(诸如铜和铝)的电阻率ρ随温度降低而下降;电阻率的下降随着导电体的纯度和软度的提高而提高。对于纯度为99.9995%的精细退火铝来说,如果温度降低至4.2K,电阻率降低的因子高达5000,而2Hz处的趋肤深度下降至0.85mm。例如,由8mm厚的这种铝制成的屏蔽罩在外部通过因子e-9=1/12000来降低该磁场变化。为了用最小材料厚度的屏蔽罩10获得最佳的屏蔽效果,因此,重要的是确保与该制冷机连接套筒5的最低温度部分24的充分热接触以及该屏蔽罩的高纯度材料。
在实践中,预计这种屏蔽不会如上文所计算的那样有效果,这是因为该屏蔽罩具有有限的长度。要理解,尽管使用铝作为一个示例,但是也可以使用具有类似电特性的其它材料,例如铜。
参见图3A和图3B,磁通量的变化是在区域15中,并与箭头Bo所示的外场方向对准,并且将在这些区域中产生涡流。因此,在垂直于磁场方向的方向上沿着屏蔽罩10的长度对该屏蔽罩10进行切割可能对该屏蔽特性没有多少影响,如图3B中的16处所示。相比于将一单件式屏蔽罩装配到该制冷机连接套筒的周围,通过以两个或更多个部件来提供该屏蔽罩,围绕该制冷机连接套筒5来组装该屏蔽罩则就非常简单了。