一种母亲及胎儿心电信号QRS波中R波的检测定位方法.pdf

上传人:g**** 文档编号:8250915 上传时间:2020-02-25 格式:PDF 页数:18 大小:669.40KB
返回 下载 相关 举报
摘要
申请专利号:

CN201110110049.9

申请日:

20110429

公开号:

CN102178522B

公开日:

20130306

当前法律状态:

有效性:

有效

法律详情:

IPC分类号:

A61B5/0456

主分类号:

A61B5/0456

申请人:

华南理工大学

发明人:

谢胜利,蔡坤,杨开勇,蒋霈霖

地址:

510640 广东省广州市天河区五山路381号

优先权:

CN201110110049A

专利代理机构:

广州市华学知识产权代理有限公司

代理人:

罗观祥

PDF下载: PDF下载
内容摘要

本发明公开了一种母亲及胎儿心电信号QRS波中R波的检测定位方法。前端滤波:这里的预处理过程依次采用了低通、高通以及微分器滤波器;小波处理过程:根据母亲心电信号和胎儿心电信号的各自医学特征,分布的频段、幅度大小,采用小波分解过程,使母亲心电信号的R波和胎儿心电信号的R波相对更加明显;自适应阈值R波判决,Rdetect算法中采用浮动的自适应阈值,首先判决母亲心电信号的R波出现位置,接着经过前端处理,使用该算法对胎儿心电信号中QRS中R波特征点出现的位置进行定位,经后处理及信号调整,完成在混合信号上检测到母亲心电及胎儿心电的R波位置。本发明对于采集到的混合心电信号,能很好的达到分别检测的目的。

权利要求书

1.一种母亲及胎儿心电信号QRS波中R波的检测定位方法,其特征在于包括如下步骤:(1)前端滤波处理,包括低通滤波、高通滤波、数字差分处理以及平方操作;(2)小波分解,对于经过步骤(1)中前端滤波处理的混合心电信号,混合心电信号是指腹部母亲胎儿混合心电信号中的胎儿心电信号成分的特征,需要经过小波分解过程,以更加突出胎儿心电信号R波的份量;具体是:采用小波一层分解,取细节部分,便于后续胎儿心电信号QRS波中R波位置的检测;(3)对步骤(2)处理后的信号采用Rdetect算法检测出混合心电信号中母亲心电信号QRS波中R波特征点出现的位置;具体是:经过前端滤波以及小波分解后,采用Rdetect算法,其中Rdetect算法采用自适应阈值的方式,定位检测到母亲心电的R波位置,Rdetect算法参数的选择如下:初始阈值:threshold(0)=param×max{y(n)},这里param取0.7;自适应阈值:threshold(j+1)=param1×threshold(j)+param1×maxy,其中,maxy是在检测R波中,出现的幅值最大值,param1取值为0.4,j=0,1,2,…;(4)对经过上述处理的混合心电信号,即步骤(1)、(2)、(3)处理后的从腹部采集的母亲胎儿混合心电信号进行前端处理,并保留信号,即腹部母亲胎儿混合心电信号中的母亲心电信号成分的辅助信息;具体是:前端处理中,采用的方法是去除母亲R波位置处前后一定范围的数据点,并把经过这一操作的信号进行重新组合得到新的信号,在进行前 端处理的过程中,记录腹部母亲胎儿混合心电信号中的母亲心电信号成分的辅助信息,即母亲心电信号R波出现的位置点,该R波的数目以及每个R波出现位置处去除的点数;根据心电信号准周期特性,每个R波位置处去除的点数近似相等,记为POINTS,POINTS的经验值是:POINTS=round(Fs/10)其中,Fs是采样频率,round(x)表示对数值x取四舍五入的整数值;(5)采用Rdetect算法检测出经过前端处理后的信号中,胎儿心电信号QRS波中R波特征点出现的位置;具体是:采用Rdetect算法,检测出胎儿心电信号的R波位置,这里的输入信号是步骤(4)中重新组合的信号,所以经过Rdetect算法处理后,步骤(6)后处理中需要根据步骤(4)中母亲R波点的位置,加上减去的信号采样点数;(6)后处理,利用前端处理中的辅助信息,恢复信号,即依据步骤(4)所获母亲心电信号成分的辅助信息恢复混合心电信号的原始长度;(7)处理过程中,会引入延迟;根据这些延迟调整信号。 2.根据权利要求1所述的检测定位方法,其特征在于上述步骤(7)中,需要考虑之前处理过程中引入的延迟,延迟是指步骤(1)中“低通滤波、高通滤波、数字差分处理”,计算滤波处理的延迟,即对应延迟的采样点数,后续的处理步骤中,是把信号从时域变换到小波域。 

说明书

技术领域

本发明属于生物医学工程技术领域,尤其涉及一种母亲及胎儿心电信号 QRS波中R波的检测定位方法。

背景技术

心电图检测是20世纪建立起来的并广泛应用于临床诊断和检测的重大技 术才成果之一。随着科学的发展和技术的不断进步,尤其计算机技术的日益完 善,心电图检测技术的发展步入了更高的层次。QRS复合波(QRS Complex)(参 考附图1)检测是心电图(Electrocardiogram,ECG)信号分析中的一个关键问题,只 有在QRS波特征(峰值点和起始点)确定以后才能计算基线,检测P波、T波 及ST段等参数,是心电自动分析的基础。但由于心电信号在生理意义上的多样 性及人与人之间的差异性,再加上存在实时心电信号中的漂移、干扰、噪声, 所以QRS波检测也一直是心电信号实时自动分析的难点。

一般来说,与心电信号中其他波形相比,R波具有较高的幅值;另外,由对 心电信号的频谱分析可知,QRS波的中心频带在17Hz左右(该频率也被称为 QRS波的特征频率),带宽约为10Hz,而T波、P波、基线漂移等的频带均在 此频带的低端外。以上两点是QRS波区别与其他波形的显著特点。除此之外, QRS波的面积、持续期、R波的斜率也是QRS波的重要特点。基于QRS的这 些特点,目前出现了很多新的算法。例如基于人工神经网络(Artificial Neural  Network,ANN)的算法、遗传算法、滤波器组、希尔伯特变换、匹配滤波、自适 应滤波器、小波变换以及奇异值检测等算法。这些算法对于QRS波的提取,都 能有较好的效果,也被引申出很多其他的优良算法。

然而,这些算法所应用的前提是,检测单一心电信号的R波位置,或者说 检测混合心电信号中幅度大的心电信号分量的R波。而对于其他微弱的、幅度 很小的心电分量的R波,则无能为力。当然,在很多情况下,我们都只需要检 测出主要心电信号的R波位置,至于其他微弱的分量,都不是很重要。

但是,由于现在社会对母婴健康和安全的要求日益提高,胎儿监护成为了 一项很具重要意义的研究课题。胎儿心电图提供了有关胎儿健康的信息,是反 映胎儿在孕期的生长和健康状况的一项重要指标。通过对围产期的胎儿心电信 号提取和分析,可以确定胎儿心率,分析胎儿心脏功能参数,判断胎儿是否患 有窘迫、心律紊乱、酸中毒等新生儿疾病,以便及早诊断宫内缺氧及其它宫内 异常,及时采取适当治疗措施,保证孕妇和胎儿的安全。这对提高围产儿监护 质量具有非常重要的意义,从深层次,也说明了产前对胎儿进行监护是十分必 要的。

目前,获取胎儿心电的方式,有无侵入式的,还有侵入式这两种。无侵入 式方式,是通过在孕妇体表放置电极,一般是孕妇的胸部、腹部等位置,通过 电极采集得到混合的心电信号;混合的心电信号里头,主要有母亲的心电信号, 胎儿的心电信号,以及其它各类干扰噪声,这里母亲心电信号的幅度一般是胎 儿心电信号幅度的上百倍。整个过程,我们的初衷是得到胎儿心电信号的各类 信息,以作为判断胎儿健康状况的参考。而获取胎儿的QRS波也显得很是必 需。如之前所言,母亲心电信号频谱与胎儿心电信号频谱存在重叠,而且母亲 心电信号的幅度远大于胎儿心电信号幅度,如果采用之前提出的这些算法,所 能检测的是母亲的QRS波,而对于胎儿的QRS波则检测不出来。之前提到的 那些算法在这种情况下,是有很大局限性的。

发明内容

本发明的目的在于克服上述现有技术的缺点和不足,提供一种母亲及胎儿 心电信号QRS波中R波的检测定位方法,本发明针对无侵入采集得到的混合心 电信号,能同时定位检测出母亲和胎儿心电信号中的R波位置,为后续胎儿心 电信号各类信息的获取提供支持,以为更好的进行胎儿监护。

本发明通过下述技术方案实现:

一种母亲及胎儿心电信号QRS波中R波的检测定位方法,包括如下步骤:

(1)前端滤波处理,包括低通滤波、高通滤波、微分器以及平方操作;

(2)小波分解,对于经过步骤(1)中前端滤波处理的混合心电信号,根据 信号的特征,需要经过小波分解过程,以更加突出胎儿心电信号R波的份量;

(3)对步骤(2)处理后的信号采用Rdetect算法检测出混合心电信号中母 亲心电信号QRS波中R波特征点出现的位置;

(4)对经过上述处理的混合心电信号,进行前端处理,并保留信号的辅助 信息;

(5)采用Rdetect算法检测出经过前端处理后的信号中,胎儿心电信号QRS 波中R波特征点出现的位置;

(6)后处理,利用前端处理中的辅助信息,恢复信号;

(7)处理过程中,会引入延迟;根据这些延迟调整信号。

上述步骤(2)中,采用小波一层分解,取细节部分,便于后续胎儿心电信 号QRS波中R波位置的检测。

上述步骤(3)中,经过滤波以及小波分解后,采用Rdetect算法,其中Rdetect 算法采用自适应阈值的方式,定位检测到母亲心电的R波位置,Rdetect算法参 数的选择如下:

初始阈值:threshold=param×max{y(n)},这里param取0.7,也可以取0.7相 近的一些数值;

自适应阈值:threshold=param1×threshold+param1×maxy,其中,maxy是在 检测R波中,出现的幅值最大值,param1取值为0.3~0.5。

上述步骤(4)中,所述前端处理中,采用的方法是去除母亲R波位置出前 后一定范围的数据点,并把经过这一操作的信号进行重新组合得到新的信号, 在进行前端处理的过程中,记录信号的辅助信息,即母亲心电信号R波出现的 位置点,该R波的数目以及每个R波出现位置处去除的点数;根据心电信号准 周期特性,每个R波位置处去除的点数近似相等,记为POINTS,POINTS的经验 值是:

POINTS=round(Fs/10)

其中,Fs是采样频率,round(x)表示对数值x取四舍五入的整数值。

上述步骤(5)采用Rdetect算法,检测出胎儿心电信号的R波位置,这里 的输入信号是步骤(4)中重新组合的信号,所以经过Rdetect算法处理后,步 骤(6)后处理中需要根据步骤(4)中母亲R波点的位置,加上减去的信号采 样点数。

上述步骤(7)中,需要考虑之前处理过程中引入的延迟,计算滤波处理的 延迟周期,即对应延迟的采样点数,后续的处理步骤中,是把信号从时域变换 到小波域。

与现有技术相比本发明的优点和效果在于:

(1)本方法利用了心电信号的准周期特性,对于从孕妇腹部采集到的混合心 电信号,相比于其他方法,除了能够准确地定位检测出母体心电信号R波位置, 还能检测出其中幅度相对很微弱的胎儿心电信号的R波位置;

(2)本方法采用了浮动的阈值,阈值选取方式上实现简单;在检测过程中, 对于输入的混合心电信号,能立即定位到R波点的位置,不存在学习调整过程;

(3)本方法对于孕妇腹部采集到的混合心电信号,定位检测母亲与胎儿心电 中的R波位置准确率很高;

(4)本方法中的Rdetect算法实现简单,运行速度很快,便于软件和硬件实 现;

附图说明

图1是现有心电信号中的QRS波形;

图2是现有通用的QRS波检测的算法结构;

图3是本发明母亲及胎儿心电信号QRS波中R波的检测定位方法流程示 意框图;

图4是本发明使用到的低通高通滤波器的幅频与相频相应;

图5是本发明使用到的微分滤波器的幅频与相频相应;

图6是原始测试数据与滤波处理后的心电信号波形;

图7是本发明经过前端滤波处理后的数据再经过非线性滤波处理后的波 形;

图8是图7的放大波形;

图9是图7中数据经过一级小波分解后的近似部分与细节部分波形图;

图10是Rdetect算法流程框图,用于定位检测出母亲心电信号中R波的位 置;

图11是本发明胎儿心电信号R波定位的算法结构;

图12是针对Xsig(n)进行Rdetect算法处理后的波形,包括胎儿以及母亲心 电的R波定位;

图13是图12中前端处理后得到的数据波形;

图14是图12中第五路信号放大的局部波形图;

图15是经过信号调整后在原始测试数据上标记的结果图;

图16是原始测试数据放大后的波形图。

具体实施方式

下面结合具体实施例对本发明作进一步具体详细描述,但本发明的实施方式 不限于此,对于未特别注明的工艺参数,可参照常规技术进行。

实施例

图1是现有心电信号中的QRS波形;图2是现有通用的QRS波检测的算法 结构;

如图3所示,本发明母亲及胎儿心电信号QRS波中R波的检测定位方法, 包括如下步骤:

(1)前端滤波处理,包括低通滤波、高通滤波、微分器以及平方操作;

(2)小波分解,对于经过步骤(1)中前端滤波处理的混合心电信号,根据 信号的特征,需要经过小波分解过程,以更加突出胎儿心电信号R波的份量;

(3)对步骤(2)处理后的信号采用Rdetect算法检测出混合心电信号中母 亲心电信号QRS波中R波特征点出现的位置;

(4)对经过上述处理的混合心电信号,进行前端处理,并保留信号的辅助 信息;

(5)采用Rdetect算法检测出经过前端处理后的信号中,胎儿心电信号QRS 波中R波特征点出现的位置;

(6)后处理,利用前端处理中的辅助信息,恢复信号;

(7)处理过程中,会引入延迟;根据这些延迟调整信号。

上述步骤(2)中,采用小波一层分解,取细节部分,便于后续胎儿心电信 号QRS波中R波位置的检测。

上述步骤(3)中,经过滤波以及小波分解后,采用Rdetect算法,其中Rdetect 算法采用自适应阈值的方式,定位检测到母亲心电的R波位置,Rdetect算法参 数的选择如下:

初始阈值:threshold=param×max{y(n)},这里param取0.7,也可以取0.7相 近的一些数值;

自适应阈值:threshold=param1×threshold+param1×maxy,其中,maxy是在检测R 波中,出现的幅值最大值,param1取值为0.4,也可以取与0.4很相近的其他数 值。

上述步骤(4)中,所述前端处理中,采用的方法是去除母亲R波位置出前 后一定范围的数据点,并把经过这一操作的信号进行重新组合得到新的信号; 在进行前端处理的过程中,需记录信号的辅助信息,即母亲心电信号R波出现 的位置点,该R波的数目以及每个R波出现位置处去除的点数;根据心电信号 准周期特性,每个R波位置处去除的点数近似相等,记为POINTS,POINTS的经 验值是:

POINTS=round(Fs/10)

其中,Fs是采样频率,round(x)表示对数值x取四舍五入的整数值。

上述步骤(5)采用Rdetect算法,检测出胎儿心电信号的R波位置,这里 的输入信号是步骤(4)中重新组合的信号,所以经过Rdetect算法处理后,步 骤(6)后处理中需要根据步骤(4)中母亲R波点的位置,加上减去的信号采 样点数。

上述步骤(7)中,需要考虑之前处理过程中引入的延迟,计算滤波处理的 延迟周期,即对应延迟的采样点数,后续的处理步骤中,是把信号从时域变换 到小波域。

下面结合原理具体说明本发明的母亲及胎儿心电信号QRS波中R波的检测 定位方法,

(1)对于典型的QRS波,其频谱分量一般分布在10Hz到25Hz,中心频 率大致在17Hz。因此,大多QRS检测算法都会采用滤波器预处理过程,滤除其 他信号分量,这些信号分量主要包括P波、T波、基线漂移、50Hz的电极线干 扰,以及其他非耦合噪声等。P波、T波以及基线漂移其频带分布在较低频段, 滤除它们,一般采用数字高通滤波器;而对于非耦合的噪声,对其进行抑制, 一般选用低通滤波器。高通与低通滤波器组合一起,也就形成了我们的所说的 带通滤波器,其截至频率大约为10Hz以及25Hz。

在本发明中,采用Hamilton和Tompkins在A real-time QRS Detection  Algorithm(IEEE)中提出的滤波器模型。主要有三类线性滤波器:低通、高通、 微分器。

低通滤波器的差分方程式:

y(nT)=2y(nT-T)-y(nT-2T)+x(nT)-2x(nT-6T)+x(nT-12T)   (1)

这里T是采样周期,n是整数。其系统传输函数是

H ( z ) = ( 1 - z - 6 ) 2 ( 1 - z - 1 ) 2 - - - ( 2 ) ]]>

对应的幅频响应以及相频响应如附图4(a)所示。

高通滤波器的差分方程:

y(nT)=32x(nT-16T)-[y(nT-T)+x(nT)-x(nT-32T)]         (3)

其系统传输函数为

H ( z ) = ( - 1 + 32 z - - 16 + z - 32 ) ( 1 + z - 1 ) - - - ( 4 ) ]]>

对应的幅频相频响应描绘在图4(b)中。

微分器滤波器的差分方程:

y(nT)=(2x(nT)+x(nT-T)-x(nT-3T)-2x(nT-4T))/8         (5)

对应的系统传输函数为:

H(z)=(1/8)(2+z-1-z-3-z-4)                         (6)

对应的幅频相频响应显示在图5中。这里,本发明中采用的心电数据是通过在 母亲胸部放置3根电极,在腹部放置5根电极采集得到,采样频率为250Hz,采 样时间10s(当然这些参数是可以改变的)。这里选用其中一路混合心电数据来 测试本发明的方法。图6显示了采用上述前端滤波处理后混合心电信号的波形。 Ecg是原始的混合心电数据,a是心电信号经过低通后的波形,b是经过高通处 理得到的结果,c是采用微分滤波器滤除后获得的波形。

这里前端滤波处理采用的是平方操作,对上述处理后的数据,其每一点进 行平方操作,把数据点值都变为正值,以为后续的处理。图7为平方操作后的 波形图。

(2)对图7进行放大,显示在图8中。从该图8中可以观测得到的是,主 要的分量是母亲心电,胎儿的心电很微弱。通过算法检测出母亲的R波位置是 不困难的,因为从图8可以看到,母亲R波位置上的幅度非常的之大。但目前, 我们关键的是确定胎儿的R波位置。把胎儿的R波检测看做是奇异点检测,想 到被称之为“数字显微镜”的小波分解。经过实验发现,小波分解是很恰当的。而 且实验也发现,采用db6小波,进行1级分解就可以取得很好的效果。图9为 小波分解处理后的波形。其中,a1是近似部分,而d1是细节部分。从心电信号 特征分析可知,母亲心电信号的频率比胎儿心电信号频率稍低,而且部分噪声 也分布在低频部分。图9显示,a1近似部分保留了图8中信号的大部分能量, 波形很相似,胎儿心电依然不是很明显;而相对来说,d1细节部分,胎儿心电 R波位置较明显,那些幅度较小的部位就是胎儿R波出现的位置。根据这种特 性,后续处理中,我们选用的就是细节部分d1。

(3)自适应阈值R波判决。这里需要判决母亲心电信号的R波位置,以及 胎儿心电R波的位置。目前,有较多的算法也是采用自适应阈值的方法来检测 出母亲心电信号R波的位置,但由于之前预处理阶段所采用的方法不同,这里 的阈值选择方案也相应的有些变化,

这里,针对检测母亲R波位置。如图10的算式结构。首先根据预处理后的 数据集{x(n)},选取约十分之一(这个数值可调,可以根据具体情况而变,只要 选取的数据点数不至于过小就可,这里选择:的数据点, 进行类似微分操作,

y(n)=2x(n)+x(n-1)-x(n-3)-2x(n-4)     (7)

并根据

threshold=0.7×max{y(n)}             (8)

获得初始的阈值。之后遍历数据x(n),与初始阈值进行比较;在比较的过程之中, 确定第一个R波的位置,并同时根据

threshold=0.4×threshold+0.4×maxy   (9)

(其中,maxy是在检测R波中,出现的幅值最大值。)更新阈值,以为后续R 波的检测。整个过程在图10中有很详细的操作流程。

以上是就母亲心电R波检测所采用的算法(这里称之为Rdetect算法),而 对于胎儿心电R波位置的定位,所采用的方法和以上的很相似,但是在检测之 前,需要进行一定的预处理。由于在图9中的d1图形中,母亲的R波位置波形 幅度明显相对于胎儿R波位置幅度大得多,而且周围的点数值也较大,这里根 据采用频率,在以上检测到的母亲R波位置的前后减去POINTS个点,其中, POINTS的经验值是

POINTS=round(Fs/10)                (10)

其中,Fs是采样频率,round(x)表示的意思是对数值x取四舍五入的整数值。再 对新的到的数据集{xn(n)},进行Rdetect算法处理,搜寻得到胎儿R波的位置点。 这里,为确保搜寻结果的正确,在减去数据点时,需要记录母亲R波位置点处 的信息,以便恢复之用。图11重复描述了整个过程。

还有非常重要的一点需要说明的是,在预处理阶段,我们使用了三类滤波 器,这三类滤波器在处理时,都会引入延迟,式(2)的低通滤波器延迟6个采 样周期,式(4)高通滤波器引入16个采样周期,而微分滤波器会引入2个采 样周期。加起来,总共24个采样周期。而在后续的R波检测过程中,使用的数 据集是滤波器处理后的数据,所以,在原始的混合心电数据上,需要把延迟考 虑进去,以准确的确定母亲以及胎儿R波的位置。

(4)实验测试结果,在图12中,第一路信号是小波分解后的细节部分的数 据d1,仍然是2500个数据点,这里把数据d1记为Xsig(n),其中n的1,2,L。第二 路是对Xsig(n)进行Rdetect算法处理得到的结果,也就是母亲心电R波位置的标 记,红×位置处标记的就是母亲心电信号R波出现的位置,在第三路中把Xsig(n) 和红×绘制到一起,从这路信号波形可以看出,标记的非常的准确。

图13是对信号Xsig(n)进行图12中所示的前端预处理后的数据波形,这里 记图13的数据为Fsig(n),n=1,2,L。图12中第4路信号是对信号Xsig(n)进行图11 所示算法处理后得到的R波位置标记图。也可以说是,对Fsig(n)进行Rdetect算 法处理,并进行图11中的后处理得到的胎儿心电信号中R波位置的标记。

图14是对图12中第五路信号放大观察的局部波形,从实验现象来看,对 胎儿心电的R波的定位,也是非常的准确的。

图15是考虑延迟后,在原始混合心电数据标记的结果。另外,试验中,我 们对其他七路采集到的混合心电信号进行了同样的操作,其实验结果列在下表1 中。从表1中可以看到,检测的效果接近100%,几乎没有遗漏的情况。

表1:8路混合心电信号的检测结果

在表1中,第1至5路信号是电极从腹部采集得到,而第6、7、8路信号 是电极贴在孕妇胸部采集得到,其中,MR表示母亲心电的R波数目,FR表示 胎儿R波的数目,TR是实际的R波数目,而DR是检测到的R波数目,errR表 示相对误差率,

errR = | DR - TR | TR × 100 % - - - ( 12 ) ]]>

图16是各路采集信号放大后的波形。从波形上也可以看出,从腹部采集的 心电数据中,胎儿的成分比较明显,而在胸部采集到的数据,几乎很难看到胎 儿的成分,这也是造成表1中6、7、8路数据误差率较大的主要原因。而第四 路信号虽说是从腹部采集的到,但是,从图16看到,噪声干扰过大,造成了误 检。

如上所述便可较好地实现本发明。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实 施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、 替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

一种母亲及胎儿心电信号QRS波中R波的检测定位方法.pdf_第1页
第1页 / 共18页
一种母亲及胎儿心电信号QRS波中R波的检测定位方法.pdf_第2页
第2页 / 共18页
一种母亲及胎儿心电信号QRS波中R波的检测定位方法.pdf_第3页
第3页 / 共18页
点击查看更多>>
资源描述

《一种母亲及胎儿心电信号QRS波中R波的检测定位方法.pdf》由会员分享,可在线阅读,更多相关《一种母亲及胎儿心电信号QRS波中R波的检测定位方法.pdf(18页珍藏版)》请在专利查询网上搜索。

1、(10)授权公告号 CN 102178522 B (45)授权公告日 2013.03.06 CN 102178522 B *CN102178522B* (21)申请号 201110110049.9 (22)申请日 2011.04.29 A61B 5/0456(2006.01) (73)专利权人 华南理工大学 地址 510640 广东省广州市天河区五山路 381 号 (72)发明人 谢胜利 蔡坤 杨开勇 蒋霈霖 (74)专利代理机构 广州市华学知识产权代理有 限公司 44245 代理人 罗观祥 CN 101554341 A,2009.10.14, 全文 . US 2010/0185108 A1,。

2、2010.07.22, 全文 . EP 1432349 B1,2006.06.21, 全文 . CN 101554325 A,2009.10.14, 全文 . WO 2009/110051 A1,2009.09.11, 全文 . JP 特开2006-204759 A,2006.08.10,全文. (54) 发明名称 一种母亲及胎儿心电信号 QRS 波中 R 波的检 测定位方法 (57) 摘要 本发明公开了一种母亲及胎儿心电信号 QRS 波中R波的检测定位方法。 前端滤波 : 这里的预处 理过程依次采用了低通、 高通以及微分器滤波器 ; 小波处理过程 : 根据母亲心电信号和胎儿心电信 号的各自医。

3、学特征, 分布的频段、 幅度大小, 采用 小波分解过程, 使母亲心电信号的 R 波和胎儿心 电信号的 R 波相对更加明显 ; 自适应阈值 R 波判 决, Rdetect 算法中采用浮动的自适应阈值, 首先 判决母亲心电信号的 R 波出现位置, 接着经过前 端处理, 使用该算法对胎儿心电信号中QRS中R波 特征点出现的位置进行定位, 经后处理及信号调 整, 完成在混合信号上检测到母亲心电及胎儿心 电的 R 波位置。本发明对于采集到的混合心电信 号, 能很好的达到分别检测的目的。 (51)Int.Cl. (56)对比文件 审查员 陈昭阳 权利要求书 1 页 说明书 7 页 附图 9 页 (19)中。

4、华人民共和国国家知识产权局 (12)发明专利 权利要求书 1 页 说明书 7 页 附图 9 页 1/1 页 2 1. 一种母亲及胎儿心电信号 QRS 波中 R 波的检测定位方法, 其特征在于包括如下步 骤 : (1) 前端滤波处理, 包括低通滤波、 高通滤波、 数字差分处理以及平方操作 ; (2) 小波分解, 对于经过步骤 (1) 中前端滤波处理的混合心电信号, 混合心电信号是指 腹部母亲胎儿混合心电信号中的胎儿心电信号成分的特征, 需要经过小波分解过程, 以更 加突出胎儿心电信号 R 波的份量 ; 具体是 : 采用小波一层分解, 取细节部分, 便于后续胎儿心电信号 QRS 波中 R 波位置的。

5、 检测 ; (3) 对步骤 (2) 处理后的信号采用 Rdetect 算法检测出混合心电信号中母亲心电信号 QRS 波中 R 波特征点出现的位置 ; 具体是 : 经过前端滤波以及小波分解后, 采用 Rdetect 算法, 其中 Rdetect 算法采用自 适应阈值的方式, 定位检测到母亲心电的 R 波位置, Rdetect 算法参数的选择如下 : 初始阈值 : threshold(0)=parammaxy(n), 这里 param 取 0.7 ; 自适应阈值 : threshold(j+1)=param1threshold(j)+param1maxy, 其中, maxy 是 在检测 R 波中,。

6、 出现的幅值最大值, param1 取值为 0.4, j=0,1,2, ; (4) 对经过上述处理的混合心电信号, 即步骤 (1) 、(2) 、(3) 处理后的从腹部采集的母 亲胎儿混合心电信号进行前端处理, 并保留信号, 即腹部母亲胎儿混合心电信号中的母亲 心电信号成分的辅助信息 ; 具体是 : 前端处理中, 采用的方法是去除母亲 R 波位置处前后一定范围的数据点, 并把 经过这一操作的信号进行重新组合得到新的信号, 在进行前 端处理的过程中, 记录腹部母 亲胎儿混合心电信号中的母亲心电信号成分的辅助信息, 即母亲心电信号 R 波出现的位置 点, 该 R 波的数目以及每个 R 波出现位置处去。

7、除的点数 ; 根据心电信号准周期特性, 每个 R 波位置处去除的点数近似相等, 记为 POINTS, POINTS 的经验值是 : POINTS=round(Fs/10) 其中, Fs 是采样频率, round(x) 表示对数值 x 取四舍五入的整数值 ; (5) 采用 Rdetect 算法检测出经过前端处理后的信号中, 胎儿心电信号 QRS 波中 R 波特 征点出现的位置 ; 具体是 : 采用 Rdetect 算法, 检测出胎儿心电信号的 R 波位置, 这里的输入信号是步骤 (4) 中重新组合的信号, 所以经过 Rdetect 算法处理后, 步骤 (6) 后处理中需要根据步骤 (4) 中母亲。

8、 R 波点的位置, 加上减去的信号采样点数 ; (6) 后处理, 利用前端处理中的辅助信息, 恢复信号, 即依据步骤 (4) 所获母亲心电信号 成分的辅助信息恢复混合心电信号的原始长度 ; (7) 处理过程中, 会引入延迟 ; 根据这些延迟调整信号。 2. 根据权利要求 1 所述的检测定位方法, 其特征在于上述步骤 (7) 中, 需要考虑之前处 理过程中引入的延迟, 延迟是指步骤 (1) 中 “低通滤波、 高通滤波、 数字差分处理” , 计算滤波 处理的延迟, 即对应延迟的采样点数, 后续的处理步骤中, 是把信号从时域变换到小波域。 权 利 要 求 书 CN 102178522 B 2 1/7。

9、 页 3 一种母亲及胎儿心电信号 QRS 波中 R 波的检测定位方法 技术领域 0001 本发明属于生物医学工程技术领域, 尤其涉及一种母亲及胎儿心电信号 QRS 波中 R 波的检测定位方法。 背景技术 0002 心电图检测是 20 世纪建立起来的并广泛应用于临床诊断和检测的重大技术才 成果之一。随着科学的发展和技术的不断进步, 尤其计算机技术的日益完善, 心电图检测 技术的发展步入了更高的层次。QRS 复合波 (QRS Complex)( 参考附图 1) 检测是心电图 (Electrocardiogram, ECG) 信号分析中的一个关键问题, 只有在 QRS 波特征 ( 峰值点和起 始点 。

10、) 确定以后才能计算基线, 检测 P 波、 T 波及 ST 段等参数, 是心电自动分析的基础。但 由于心电信号在生理意义上的多样性及人与人之间的差异性, 再加上存在实时心电信号中 的漂移、 干扰、 噪声, 所以 QRS 波检测也一直是心电信号实时自动分析的难点。 0003 一般来说, 与心电信号中其他波形相比, R 波具有较高的幅值 ; 另外, 由对心电信 号的频谱分析可知, QRS 波的中心频带在 17Hz 左右 ( 该频率也被称为 QRS 波的特征频率 ), 带宽约为 10Hz, 而 T 波、 P 波、 基线漂移等的频带均在此频带的低端外。以上两点是 QRS 波区别与其他波形的显著特点。除。

11、此之外, QRS 波的面积、 持续期、 R 波的斜率也是 QRS 波 的重要特点。基于 QRS 的这些特点, 目前出现了很多新的算法。例如基于人工神经网络 (Artificial Neural Network, ANN) 的算法、 遗传算法、 滤波器组、 希尔伯特变换、 匹配滤 波、 自适应滤波器、 小波变换以及奇异值检测等算法。这些算法对于 QRS 波的提取, 都能有 较好的效果, 也被引申出很多其他的优良算法。 0004 然而, 这些算法所应用的前提是, 检测单一心电信号的 R 波位置, 或者说检测混合 心电信号中幅度大的心电信号分量的 R 波。而对于其他微弱的、 幅度很小的心电分量的 R。

12、 波, 则无能为力。当然, 在很多情况下, 我们都只需要检测出主要心电信号的 R 波位置, 至于 其他微弱的分量, 都不是很重要。 0005 但是, 由于现在社会对母婴健康和安全的要求日益提高, 胎儿监护成为了一项很 具重要意义的研究课题。胎儿心电图提供了有关胎儿健康的信息, 是反映胎儿在孕期的生 长和健康状况的一项重要指标。通过对围产期的胎儿心电信号提取和分析, 可以确定胎儿 心率, 分析胎儿心脏功能参数, 判断胎儿是否患有窘迫、 心律紊乱、 酸中毒等新生儿疾病, 以 便及早诊断宫内缺氧及其它宫内异常, 及时采取适当治疗措施, 保证孕妇和胎儿的安全。 这 对提高围产儿监护质量具有非常重要的意。

13、义, 从深层次, 也说明了产前对胎儿进行监护是 十分必要的。 0006 目前, 获取胎儿心电的方式, 有无侵入式的, 还有侵入式这两种。 无侵入式方式, 是 通过在孕妇体表放置电极, 一般是孕妇的胸部、 腹部等位置, 通过电极采集得到混合的心电 信号 ; 混合的心电信号里头, 主要有母亲的心电信号, 胎儿的心电信号, 以及其它各类干扰 噪声, 这里母亲心电信号的幅度一般是胎儿心电信号幅度的上百倍。 整个过程, 我们的初衷 是得到胎儿心电信号的各类信息, 以作为判断胎儿健康状况的参考。而获取胎儿的 QRS 波 说 明 书 CN 102178522 B 3 2/7 页 4 也显得很是必需。 如之前。

14、所言, 母亲心电信号频谱与胎儿心电信号频谱存在重叠, 而且母亲 心电信号的幅度远大于胎儿心电信号幅度, 如果采用之前提出的这些算法, 所能检测的是 母亲的 QRS 波, 而对于胎儿的 QRS 波则检测不出来。之前提到的那些算法在这种情况下, 是 有很大局限性的。 发明内容 0007 本发明的目的在于克服上述现有技术的缺点和不足, 提供一种母亲及胎儿心电信 号 QRS 波中 R 波的检测定位方法, 本发明针对无侵入采集得到的混合心电信号, 能同时定 位检测出母亲和胎儿心电信号中的 R 波位置, 为后续胎儿心电信号各类信息的获取提供支 持, 以为更好的进行胎儿监护。 0008 本发明通过下述技术方。

15、案实现 : 0009 一种母亲及胎儿心电信号 QRS 波中 R 波的检测定位方法, 包括如下步骤 : 0010 (1) 前端滤波处理, 包括低通滤波、 高通滤波、 微分器以及平方操作 ; 0011 (2) 小波分解, 对于经过步骤 (1) 中前端滤波处理的混合心电信号, 根据信号的特 征, 需要经过小波分解过程, 以更加突出胎儿心电信号 R 波的份量 ; 0012 (3) 对步骤 (2) 处理后的信号采用 Rdetect 算法检测出混合心电信号中母亲心电 信号 QRS 波中 R 波特征点出现的位置 ; 0013 (4) 对经过上述处理的混合心电信号, 进行前端处理, 并保留信号的辅助信息 ; 。

16、0014 (5) 采用 Rdetect 算法检测出经过前端处理后的信号中, 胎儿心电信号 QRS 波中 R 波特征点出现的位置 ; 0015 (6) 后处理, 利用前端处理中的辅助信息, 恢复信号 ; 0016 (7) 处理过程中, 会引入延迟 ; 根据这些延迟调整信号。 0017 上述步骤 (2) 中, 采用小波一层分解, 取细节部分, 便于后续胎儿心电信号 QRS 波 中 R 波位置的检测。 0018 上述步骤 (3) 中, 经过滤波以及小波分解后, 采用 Rdetect 算法, 其中 Rdetect 算 法采用自适应阈值的方式, 定位检测到母亲心电的 R 波位置, Rdetect 算法参。

17、数的选择如 下 : 0019 初始阈值 : threshold parammaxy(n), 这里 param 取 0.7, 也可以取 0.7 相 近的一些数值 ; 0020 自适应阈值 : threshold param1threshold+param1maxy, 其中, maxy 是在检 测 R 波中, 出现的幅值最大值, param1 取值为 0.3 0.5。 0021 上述步骤 (4) 中, 所述前端处理中, 采用的方法是去除母亲 R 波位置出前后一定 范围的数据点, 并把经过这一操作的信号进行重新组合得到新的信号, 在进行前端处理的 过程中, 记录信号的辅助信息, 即母亲心电信号 R 。

18、波出现的位置点, 该 R 波的数目以及每个 R 波出现位置处去除的点数 ; 根据心电信号准周期特性, 每个 R 波位置处去除的点数近似相 等, 记为 POINTS, POINTS 的经验值是 : 0022 POINTS round(Fs/10) 0023 其中, Fs 是采样频率, round(x) 表示对数值 x 取四舍五入的整数值。 0024 上述步骤 (5) 采用 Rdetect 算法, 检测出胎儿心电信号的 R 波位置, 这里的输入信 说 明 书 CN 102178522 B 4 3/7 页 5 号是步骤 (4) 中重新组合的信号, 所以经过 Rdetect 算法处理后, 步骤 (6)。

19、 后处理中需要根 据步骤 (4) 中母亲 R 波点的位置, 加上减去的信号采样点数。 0025 上述步骤 (7) 中, 需要考虑之前处理过程中引入的延迟, 计算滤波处理的延迟周 期, 即对应延迟的采样点数, 后续的处理步骤中, 是把信号从时域变换到小波域。 0026 与现有技术相比本发明的优点和效果在于 : 0027 (1) 本方法利用了心电信号的准周期特性, 对于从孕妇腹部采集到的混合心电信 号, 相比于其他方法, 除了能够准确地定位检测出母体心电信号 R 波位置, 还能检测出其中 幅度相对很微弱的胎儿心电信号的 R 波位置 ; 0028 (2) 本方法采用了浮动的阈值, 阈值选取方式上实现。

20、简单 ; 在检测过程中, 对于输 入的混合心电信号, 能立即定位到 R 波点的位置, 不存在学习调整过程 ; 0029 (3) 本方法对于孕妇腹部采集到的混合心电信号, 定位检测母亲与胎儿心电中的 R 波位置准确率很高 ; 0030 (4) 本方法中的 Rdetect 算法实现简单, 运行速度很快, 便于软件和硬件实现 ; 附图说明 0031 图 1 是现有心电信号中的 QRS 波形 ; 0032 图 2 是现有通用的 QRS 波检测的算法结构 ; 0033 图 3 是本发明母亲及胎儿心电信号 QRS 波中 R 波的检测定位方法流程示意框图 ; 0034 图 4 是本发明使用到的低通高通滤波器。

21、的幅频与相频相应 ; 0035 图 5 是本发明使用到的微分滤波器的幅频与相频相应 ; 0036 图 6 是原始测试数据与滤波处理后的心电信号波形 ; 0037 图 7 是本发明经过前端滤波处理后的数据再经过非线性滤波处理后的波形 ; 0038 图 8 是图 7 的放大波形 ; 0039 图 9 是图 7 中数据经过一级小波分解后的近似部分与细节部分波形图 ; 0040 图 10 是 Rdetect 算法流程框图, 用于定位检测出母亲心电信号中 R 波的位置 ; 0041 图 11 是本发明胎儿心电信号 R 波定位的算法结构 ; 0042 图 12 是针对 Xsig(n) 进行 Rdetect。

22、 算法处理后的波形, 包括胎儿以及母亲心电的 R 波定位 ; 0043 图 13 是图 12 中前端处理后得到的数据波形 ; 0044 图 14 是图 12 中第五路信号放大的局部波形图 ; 0045 图 15 是经过信号调整后在原始测试数据上标记的结果图 ; 0046 图 16 是原始测试数据放大后的波形图。 具体实施方式 0047 下面结合具体实施例对本发明作进一步具体详细描述, 但本发明的实施方式不限 于此, 对于未特别注明的工艺参数, 可参照常规技术进行。 0048 实施例 0049 图 1 是现有心电信号中的 QRS 波形 ; 图 2 是现有通用的 QRS 波检测的算法结构 ; 00。

23、50 如图 3 所示, 本发明母亲及胎儿心电信号 QRS 波中 R 波的检测定位方法, 包括如下 说 明 书 CN 102178522 B 5 4/7 页 6 步骤 : 0051 (1) 前端滤波处理, 包括低通滤波、 高通滤波、 微分器以及平方操作 ; 0052 (2) 小波分解, 对于经过步骤 (1) 中前端滤波处理的混合心电信号, 根据信号的特 征, 需要经过小波分解过程, 以更加突出胎儿心电信号 R 波的份量 ; 0053 (3) 对步骤 (2) 处理后的信号采用 Rdetect 算法检测出混合心电信号中母亲心电 信号 QRS 波中 R 波特征点出现的位置 ; 0054 (4) 对经过。

24、上述处理的混合心电信号, 进行前端处理, 并保留信号的辅助信息 ; 0055 (5) 采用 Rdetect 算法检测出经过前端处理后的信号中, 胎儿心电信号 QRS 波中 R 波特征点出现的位置 ; 0056 (6) 后处理, 利用前端处理中的辅助信息, 恢复信号 ; 0057 (7) 处理过程中, 会引入延迟 ; 根据这些延迟调整信号。 0058 上述步骤 (2) 中, 采用小波一层分解, 取细节部分, 便于后续胎儿心电信号 QRS 波 中 R 波位置的检测。 0059 上述步骤 (3) 中, 经过滤波以及小波分解后, 采用 Rdetect 算法, 其中 Rdetect 算 法采用自适应阈值。

25、的方式, 定位检测到母亲心电的 R 波位置, Rdetect 算法参数的选择如 下 : 0060 初始阈值 : threshold parammaxy(n), 这里 param 取 0.7, 也可以取 0.7 相 近的一些数值 ; 0061 自适应阈值 : threshold param1threshold+param1maxy, 其中, maxy 是在检 测 R 波中, 出现的幅值最大值, param1 取值为 0.4, 也可以取与 0.4 很相近的其他数值。 0062 上述步骤(4)中, 所述前端处理中, 采用的方法是去除母亲R波位置出前后一定范 围的数据点, 并把经过这一操作的信号进行重。

26、新组合得到新的信号 ; 在进行前端处理的过 程中, 需记录信号的辅助信息, 即母亲心电信号 R 波出现的位置点, 该 R 波的数目以及每个 R 波出现位置处去除的点数 ; 根据心电信号准周期特性, 每个 R 波位置处去除的点数近似相 等, 记为 POINTS, POINTS 的经验值是 : 0063 POINTS round(Fs/10) 0064 其中, Fs 是采样频率, round(x) 表示对数值 x 取四舍五入的整数值。 0065 上述步骤 (5) 采用 Rdetect 算法, 检测出胎儿心电信号的 R 波位置, 这里的输入信 号是步骤 (4) 中重新组合的信号, 所以经过 Rdet。

27、ect 算法处理后, 步骤 (6) 后处理中需要根 据步骤 (4) 中母亲 R 波点的位置, 加上减去的信号采样点数。 0066 上述步骤 (7) 中, 需要考虑之前处理过程中引入的延迟, 计算滤波处理的延迟周 期, 即对应延迟的采样点数, 后续的处理步骤中, 是把信号从时域变换到小波域。 0067 下面结合原理具体说明本发明的母亲及胎儿心电信号QRS波中R波的检测定位方 法, 0068 (1) 对于典型的 QRS 波, 其频谱分量一般分布在 10Hz 到 25Hz, 中心频率大致在 17Hz。因此, 大多 QRS 检测算法都会采用滤波器预处理过程, 滤除其他信号分量, 这些信号 分量主要包括。

28、 P 波、 T 波、 基线漂移、 50Hz 的电极线干扰, 以及其他非耦合噪声等。P 波、 T 波 以及基线漂移其频带分布在较低频段, 滤除它们, 一般采用数字高通滤波器 ; 而对于非耦合 的噪声, 对其进行抑制, 一般选用低通滤波器。高通与低通滤波器组合一起, 也就形成了我 说 明 书 CN 102178522 B 6 5/7 页 7 们的所说的带通滤波器, 其截至频率大约为 10Hz 以及 25Hz。 0069 在 本 发 明 中,采 用 Hamilton 和 Tompkins 在 A real-time QRS Detection Algorithm(IEEE) 中提出的滤波器模型。主要。

29、有三类线性滤波器 : 低通、 高通、 微分器。 0070 低通滤波器的差分方程式 : 0071 y(nT) 2y(nT-T)-y(nT-2T)+x(nT)-2x(nT-6T)+x(nT-12T) (1) 0072 这里 T 是采样周期, n 是整数。其系统传输函数是 0073 0074 对应的幅频响应以及相频响应如附图 4(a) 所示。 0075 高通滤波器的差分方程 : 0076 y(nT) 32x(nT-16T)-y(nT-T)+x(nT)-x(nT-32T) (3) 0077 其系统传输函数为 0078 0079 对应的幅频相频响应描绘在图 4(b) 中。 0080 微分器滤波器的差分方。

30、程 : 0081 y(nT) (2x(nT)+x(nT-T)-x(nT-3T)-2x(nT-4T)/8 (5) 0082 对应的系统传输函数为 : 0083 H(z) (1/8)(2+z-1-z-3-z-4) (6) 0084 对应的幅频相频响应显示在图 5 中。这里, 本发明中采用的心电数据是通过在母 亲胸部放置 3 根电极, 在腹部放置 5 根电极采集得到, 采样频率为 250Hz, 采样时间 10s( 当 然这些参数是可以改变的 )。这里选用其中一路混合心电数据来测试本发明的方法。图 6 显示了采用上述前端滤波处理后混合心电信号的波形。Ecg 是原始的混合心电数据, a 是心 电信号经过。

31、低通后的波形, b 是经过高通处理得到的结果, c 是采用微分滤波器滤除后获得 的波形。 0085 这里前端滤波处理采用的是平方操作, 对上述处理后的数据, 其每一点进行平方 操作, 把数据点值都变为正值, 以为后续的处理。图 7 为平方操作后的波形图。 0086 (2) 对图 7 进行放大, 显示在图 8 中。从该图 8 中可以观测得到的是, 主要的分量 是母亲心电, 胎儿的心电很微弱。通过算法检测出母亲的 R 波位置是不困难的, 因为从图 8 可以看到, 母亲R波位置上的幅度非常的之大。 但目前, 我们关键的是确定胎儿的R波位置。 把胎儿的 R 波检测看做是奇异点检测, 想到被称之为 “数。

32、字显微镜” 的小波分解。经过实验 发现, 小波分解是很恰当的。 而且实验也发现, 采用db6小波, 进行1级分解就可以取得很好 的效果。图 9 为小波分解处理后的波形。其中, a1 是近似部分, 而 d1 是细节部分。从心电 信号特征分析可知, 母亲心电信号的频率比胎儿心电信号频率稍低, 而且部分噪声也分布 在低频部分。图 9 显示, a1 近似部分保留了图 8 中信号的大部分能量, 波形很相似, 胎儿心 电依然不是很明显 ; 而相对来说, d1 细节部分, 胎儿心电 R 波位置较明显, 那些幅度较小的 说 明 书 CN 102178522 B 7 6/7 页 8 部位就是胎儿 R 波出现的位。

33、置。根据这种特性, 后续处理中, 我们选用的就是细节部分 d1。 0087 (3)自适应阈值R波判决。 这里需要判决母亲心电信号的R波位置, 以及胎儿心电 R波的位置。 目前, 有较多的算法也是采用自适应阈值的方法来检测出母亲心电信号R波的 位置, 但由于之前预处理阶段所采用的方法不同, 这里的阈值选择方案也相应的有些变化, 0088 这里, 针对检测母亲 R 波位置。如图 10 的算式结构。首先根据预处理后的数据集 x(n), 选取约十分之一 ( 这个数值可调, 可以根据具体情况而变, 只要选取的数据点数不 至于过小就可, 这里选择 :的数据点, 进行类似微分操作, 0089 y(n) 2x。

34、(n)+x(n-1)-x(n-3)-2x(n-4) (7) 0090 并根据 0091 threshold 0.7maxy(n) (8) 0092 获得初始的阈值。之后遍历数据 x(n), 与初始阈值进行比较 ; 在比较的过程之中, 确定第一个 R 波的位置, 并同时根据 0093 threshold 0.4threshold+0.4maxy (9) 0094 ( 其中, maxy 是在检测 R 波中, 出现的幅值最大值。) 更新阈值, 以为后续 R 波的 检测。整个过程在图 10 中有很详细的操作流程。 0095 以上是就母亲心电R波检测所采用的算法(这里称之为Rdetect算法), 而对于。

35、胎 儿心电 R 波位置的定位, 所采用的方法和以上的很相似, 但是在检测之前, 需要进行一定的 预处理。由于在图 9 中的 d1 图形中, 母亲的 R 波位置波形幅度明显相对于胎儿 R 波位置幅 度大得多, 而且周围的点数值也较大, 这里根据采用频率, 在以上检测到的母亲 R 波位置的 前后减去 POINTS 个点, 其中, POINTS 的经验值是 0096 POINTS round(Fs/10) (10) 0097 其中, Fs 是采样频率, round(x) 表示的意思是对数值 x 取四舍五入的整数值。再 对新的到的数据集 xn(n), 进行 Rdetect 算法处理, 搜寻得到胎儿 R。

36、 波的位置点。这里, 为确保搜寻结果的正确, 在减去数据点时, 需要记录母亲 R 波位置点处的信息, 以便恢复之 用。图 11 重复描述了整个过程。 0098 还有非常重要的一点需要说明的是, 在预处理阶段, 我们使用了三类滤波器, 这三 类滤波器在处理时, 都会引入延迟, 式 (2) 的低通滤波器延迟 6 个采样周期, 式 (4) 高通滤 波器引入16个采样周期, 而微分滤波器会引入2个采样周期。 加起来, 总共24个采样周期。 而在后续的 R 波检测过程中, 使用的数据集是滤波器处理后的数据, 所以, 在原始的混合心 电数据上, 需要把延迟考虑进去, 以准确的确定母亲以及胎儿 R 波的位置。

37、。 0099 (4)实验测试结果, 在图12中, 第一路信号是小波分解后的细节部分的数据d1, 仍 然是 2500 个数据点, 这里把数据 d1 记为 Xsig(n), 其中 n 的 1, 2, L。第二路是对 Xsig(n) 进行 Rdetect 算法处理得到的结果, 也就是母亲心电 R 波位置的标记, 红 位置处标记的 就是母亲心电信号 R 波出现的位置, 在第三路中把 Xsig(n) 和红 绘制到一起, 从这路信 号波形可以看出, 标记的非常的准确。 0100 图 13 是对信号 Xsig(n) 进行图 12 中所示的前端预处理后的数据波形, 这里记图 13 的数据为 Fsig(n), 。

38、n 1, 2, L。图 12 中第 4 路信号是对信号 Xsig(n) 进行图 11 所示算 法处理后得到的 R 波位置标记图。也可以说是, 对 Fsig(n) 进行 Rdetect 算法处理, 并进行 说 明 书 CN 102178522 B 8 7/7 页 9 图 11 中的后处理得到的胎儿心电信号中 R 波位置的标记。 0101 图14是对图12中第五路信号放大观察的局部波形, 从实验现象来看, 对胎儿心电 的 R 波的定位, 也是非常的准确的。 0102 图 15 是考虑延迟后, 在原始混合心电数据标记的结果。另外, 试验中, 我们对其他 七路采集到的混合心电信号进行了同样的操作, 其。

39、实验结果列在下表 1 中。从表 1 中可以 看到, 检测的效果接近 100, 几乎没有遗漏的情况。 0103 0104 表 1 : 8 路混合心电信号的检测结果 0105 在表 1 中, 第 1 至 5 路信号是电极从腹部采集得到, 而第 6、 7、 8 路信号是电极贴在 孕妇胸部采集得到, 其中, MR 表示母亲心电的 R 波数目, FR 表示胎儿 R 波的数目, TR 是实际 的 R 波数目, 而 DR 是检测到的 R 波数目, errR 表示相对误差率, 0106 0107 图 16 是各路采集信号放大后的波形。从波形上也可以看出, 从腹部采集的心电数 据中, 胎儿的成分比较明显, 而在。

40、胸部采集到的数据, 几乎很难看到胎儿的成分, 这也是造 成表 1 中 6、 7、 8 路数据误差率较大的主要原因。而第四路信号虽说是从腹部采集的到, 但 是, 从图 16 看到, 噪声干扰过大, 造成了误检。 0108 如上所述便可较好地实现本发明。 0109 上述实施例为本发明较佳的实施方式, 但本发明的实施方式并不受上述实施例的 限制, 其他的任何未背离本发明的精神实质与原理下所作的改变、 修饰、 替代、 组合、 简化, 均应为等效的置换方式, 都包含在本发明的保护范围之内。 说 明 书 CN 102178522 B 9 1/9 页 10 图 1 图 2 图 3 说 明 书 附 图 CN 。

41、102178522 B 10 2/9 页 11 图 4 图 5 说 明 书 附 图 CN 102178522 B 11 3/9 页 12 图 6 图 7 图 8 说 明 书 附 图 CN 102178522 B 12 4/9 页 13 图 9 说 明 书 附 图 CN 102178522 B 13 5/9 页 14 图 10 说 明 书 附 图 CN 102178522 B 14 6/9 页 15 图 11 说 明 书 附 图 CN 102178522 B 15 7/9 页 16 图 12 图 13 图 14 说 明 书 附 图 CN 102178522 B 16 8/9 页 17 图 15 说 明 书 附 图 CN 102178522 B 17 9/9 页 18 图 16 说 明 书 附 图 CN 102178522 B 18 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人类生活必需 > 医学或兽医学;卫生学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1