用于脱盐的方法及设备.pdf

上传人:a2 文档编号:811915 上传时间:2018-03-13 格式:PDF 页数:30 大小:1.56MB
返回 下载 相关 举报
摘要
申请专利号:

CN200780034561.1

申请日:

2007.08.27

公开号:

CN101516786A

公开日:

2009.08.26

当前法律状态:

驳回

有效性:

无权

法律详情:

发明专利申请公布后的驳回 IPC(主分类):C02F 1/469申请公布日:20090826|||专利申请权的转移IPC(主分类):C02F 1/469变更事项:申请人变更前权利人:西门子工业公司变更后权利人:西门子水处理技术有限责任公司变更事项:地址变更前权利人:美国乔治亚州变更后权利人:美国乔治亚州登记生效日:20140401|||著录事项变更IPC(主分类):C02F 1/469变更事项:申请人变更前:西门子水处理技术有限责任公司变更后:伊沃夸水处理技术有限责任公司变更事项:地址变更前:美国乔治亚州变更后:美国乔治亚州|||专利申请权的转移IPC(主分类):C02F 1/469变更事项:申请人变更前权利人:西门子 水处理技术公司变更后权利人:西门子水处理技术控股公司变更事项:地址变更前权利人:美国宾夕法尼亚州变更后权利人:美国宾夕法尼亚州登记生效日:20110923|||专利申请权的转移IPC(主分类):C02F 1/469变更事项:申请人变更前权利人:西门子水处理技术控股公司变更后权利人:西门子工业公司变更事项:地址变更前权利人:美国宾夕法尼亚州变更后权利人:美国乔治亚州登记生效日:20110923|||实质审查的生效|||公开

IPC分类号:

C02F1/469; C02F1/44; B01D61/02; B01D61/48

主分类号:

C02F1/469

申请人:

西门子水处理技术公司

发明人:

F·C·威尔金斯; A·D·亚; G·C·甘齐

地址:

美国宾夕法尼亚州

优先权:

2006.9.20 US 11/524,080

专利代理机构:

中国专利代理(香港)有限公司

代理人:

肖日松;曹 若

PDF下载: PDF下载
内容摘要

本发明提供了用于净化水的方法和设备。供水,例如海水可供应至诸如多微孔膜或纳米过滤膜等的过滤器中,以生产渗透液,渗透液则又可被供应至电去电离作用系统中,以生产淡水。

权利要求书

1.  一种净化水的方法,其包括:
将含有大于约1000ppm总溶解固体物的供水提供至纳米过滤装置以生产总溶解固体物有所减少的第一滤液;并
将所述第一滤液供应至电去电离作用装置以生产包含少于约1,000ppm总溶解固体物的第二滤液。

2.
  根据权利要求1所述的方法,其特征在于,所述供水是海水、半咸水或油田回收水。

3.
  根据权利要求1所述的方法,其特征在于,任何多价离子的多于约90%由所述纳米过滤装置所去除。

4.
  根据权利要求1所述的方法,其特征在于,所述纳米过滤装置在小于约600psi的上游压力下运行。

5.
  根据权利要求1所述的方法,其特征在于,所述方法还包括将所述供水中的硼含量减少至少于约0.5ppm。

6.
  根据权利要求1所述的方法,其特征在于,所述方法在小于约7千瓦时/千加仑的总耗电率下消耗能量。

7.
  根据权利要求1所述的方法,其特征在于,所述第二滤液包含少于或等于约500ppm的总溶解固体物。

8.
  一种用于将海水脱盐的设备,其包括:
纳米过滤装置;和
与所述纳米过滤装置成流体连通的电去电离作用装置。

9.
  根据权利要求8所述的设备,其特征在于,还包括位于所述纳米过滤装置的上游的预处理装置,所述预处理装置选自由滤床式过滤器、微过滤器、横流微过滤器、沉淀池和曝气装置所组成的组。

10.
  根据权利要求8所述的设备,其特征在于,所述电去电离作用装置包括CEDI装置,其包括具有小于约10mm的厚度的稀释池。

11.
  一种包括多个根据权利要求8所述的设备的系统。

12.
  一种处理海水以减少总溶解固体物的方法,其包括:
使所述海水通过水处理设备,同时施加数量少于约7千瓦时/千加仑滤液的能量至所述设备;和
从所述设备中移出滤液,
其中,所述滤液包含小于约1,000ppm的总溶解固体物。

13.
  根据权利要求12所述的方法,其特征在于,所述水处理设备包括纳米过滤装置和电去电离作用装置。

14.
  根据权利要求12所述的方法,其特征在于,所述滤液含有少于约500ppm的总溶解固体物。

15.
  一种处理海水的方法,其包括:
在第一级中降低所述海水的一种或多种非单价物质的浓度;和
在第二级中降低所述海水的一种或多种单价物质的浓度以生产具有少于约1000ppm的TDS的水,
其中,所述第一和第二级在低于约7千瓦时/千加仑产品水的净能耗率下完成。

16.
  根据权利要求15所述的方法,其特征在于,所述第一级包括纳米过滤装置。

17.
  根据权利要求16所述的方法,其特征在于,所述第二级包括电去电离作用装置。

18.
  根据权利要求17所述的方法,其特征在于,将来自所述电去电离作用装置的浓缩流与所述第一级的上游的所述海水混合。

19.
  一种处理在其中含有溶解固体的水的方法,其包括:
降低所述水的单价溶解物质的浓度以生产副产品流;
降低所述水的二价溶解物质的浓度;和
在电去电离作用装置中将所述水的溶解固体的浓度降低到少于约1,000ppm。

20.
  根据权利要求19所述的方法,其特征在于,减少单价溶解物质的浓度的措施包括利用电渗析装置。

21.
  根据权利要求20所述的方法,其特征在于,减少二价溶解物质的浓度的措施包括利用阳离子交换柱。

22.
  根据权利要求21所述的方法,其特征在于,所述方法还包括以所述副产品流使所述阳离子交换柱再生。

23.
  根据权利要求15所述的方法,其特征在于,所述第一级包括压力驱动膜系统。

24.
  根据权利要求23所述的方法,其特征在于,所述压力驱动膜系统包括纳米过滤设备、微过滤设备以及超滤设备中的至少一个。

25.
  根据权利要求19所述的方法,其特征在于,降低水中二价溶解物质的浓度的步骤通过选自由纳米过滤设备、微过滤设备以及超滤设备组成的组的至少一个压力驱动设备来完成。

说明书

用于脱盐的方法及设备
1.发明领域
本发明涉及用于水净化的方法和设备,尤其是利用过滤和电去电离作用(electrodeionization)使水脱盐。
2.发明背景
世界范围内对饮用淡水、工业淡水及农业淡水的不断增长的需求导致对以海水、半咸水及其他具有升高盐度的水为源的净化方法的需求有所增长。通过去除诸如盐等的溶解固体(dissolved solid)而实现的高盐度水的净化已可通过包括蒸馏或反渗透(RO)等在内的多种方法来实现。此类方法从经预处理的海水或半咸水的供给开始,然后将其净化(即脱盐)到适宜于人类消费或其他用途的水平。尽管海水以及,很多情况下,半咸水是来源丰富的原材料,但是以目前的反渗透或蒸馏工艺将其转化为饮用水通常由于所需的能量而受到成本的抑制。
如果能够开发出对环境影响低的有效的脱盐工艺,海洋就可提供取之不尽的水源。虽然设备成本可能很高,但对高盐度的水脱盐的最大的持续费用是能耗。在能效上小的改进都会由于脱盐系统通常处理大量的水而导致显著的费用节省。
例如,由RO工艺从海水中生产饮用水所需的能量主要包括用于克服海水的渗透压的能量,以及过程期间中压力损失导致的低效率。因为RO渗透液和RO废水(供应至系统中的总水量的70%将会损失而成为废水)都须进行加压,RO的能耗远远高于脱盐所需要的最小的热动力学理论能耗。通常需要昂贵的机械压力回收装置来试图回收加压所需要的某些损失的能量。海水中通常包含约20,000-40,000ppm(mg/l)的总溶解固体物(TDS,total dissolved solids),并且半咸水源可包含从2,000ppm至多达20,000ppm的TDS。
这些溶解固体包括多种单价、二价、多化合价和/或多价盐或物质(polyvalent,and/or multivalent salts or species),其中氯化钠形成了总固体含量的75%。
虽然传统上已经使用诸如蒸馏法等蒸发方法来生产饮用水,但是这些方法通常需要比采用反渗透技术的系统甚至更多的能量。此外这些系统通常利用复杂的热回收工艺,以提高能效。由于基于RO或蒸馏技术的工艺是在高压或高温下操作的,并且由于高盐度的水具很强的腐蚀性,所以需要特殊的金属和合金来承受这种操作条件,因此,在这类工艺中增加复杂的装置以节省能源的需求进一步提高了设备的初始成本,并大大降低了设备的可靠性。
反渗透技术可有效地从海水中去除离子化合物。但是,RO系统一个严重的缺点是,RO膜有选择地拒绝非单价或多价盐的程度超过单价盐。因此,在诸如农业等的应用的净化中,大多数二价离子,如钙和镁,实际上有利于灌溉,但它们也被有选择地拒绝了,从而导致高于需要的运行压力,并增加了膜的污染(fouling)和结垢(scaling)的潜在风险,并且/或者丧失了利于作物生长的宝贵的矿物质。
在含有超过3.5%固体的海水和TDS少于1,000ppm,甚至少于500ppm的饮用水之间的渗透压上的差异决定了用来生产饮用品质的渗透液所使用高压仅仅用于克服热力学自由能势。实际上,为了通过减少需要被有效地作预备以进行处理的海水用量来降低预处理成本,海水通常在较高的水回收率下进行处理,所以,所需要的渗透压力甚至高过处理含3.5%固体的海水所需要的渗透压力。例如,出于高压操作的实际考虑,RO系统中所利用的压力常常大于800、900甚至1,000psi,并且出于高压操作、抗腐蚀性、避免能量损失以及防止由于二价选择性及硅拒绝所引起的结垢现象等实际因素,这些条件常常受到30%~40%左右的水回收率(产品水量与总水量的比率)的限制。当考虑到,将水的回收率从大约67%改变至大约33%时,对于给定的纯净水需求,将导致预处理设备的成本加倍,且总耗水量加倍,则这个限制会导致用于RO系统的所使用的水和预处理的费用大量增加。能源再利用技术和RO膜的最新进展已经将使用RO系统生产饮用水的能耗降低至约7至14千瓦时每1000加仑(14kwh/kgal)产品水。
使用方法组合的备选技术也使将海水转化成淡水的能耗得以降低。例如,已经显示双程(two-pass)纳米过滤系统能够在约750psi的总工作压力下生产饮用水,第一级(stage)约500psi,第二级约250psi。因为能量使用涉及运行压力,所以同在大于800psi的压力下运行的典型的RO系统相比,约750psi的总的工作压力使得能效更高的系统成为可能。例如,参见美国专利US2003/0205526中Vuong所教授的方法,其通过引用而结合在本文中。
在另一用于从海水中生产淡水的方法中,纳米过滤技术用于连同RO或闪蒸技术而使用。例如,参见美国专利6508936中Hassan所教授的方法,其通过引用而结合在本文中。
发明概要
本申请的主题在某些情况下可能涉及相关的产品、对具体问题的备选方案、和/或单一系统或物品的多种不同使用。
根据本发明的一个方面,提供了一种用于净化水的方法。该方法包括采用这样的一种或多种措施(act),即,给纳米过滤装置(nanofiltration device)提供包含大于约1,000ppm的总溶解固体物的供水(feed water)以生产出总溶解固体物方面有所降低的第一滤液(filtrate),并将此第一滤液供给至电去电离作用装置(electrodeionizationdevice),以生产包含小于约1,000ppm的总溶解固体物的第二滤液。
根据本发明的另一方面,提供了一种用于使海水脱盐的设备。该设备包含纳米过滤装置和与纳米过滤装置成流体连通的电去电离作用装置。
根据本发明的又一方面,提供了一种处理海水或其他高盐度水源以减少总溶解固体物的方法。该方法包括这样的一种或多种措施,即,使原始水(source water)通过水处理设备,同时施加数量少于约7kwh/kgal滤液(7kwh/kgal of filtrate)的能量至该设备,并从设备中移出(removing)滤液,其中,该滤液包含小于约1,000ppm的总溶解固体物。
根据一个或多个实施例,本发明致力于一种处理海水的方法。该方法包含这样的措施,即,在第一级中从海水中减少一种或多种非单价物质的浓度,并在第二级中从海水中减少一种或多种单价物质的浓度,以生产具有小于约1000ppm的TDS的水。第一级和第二级是在低于约7kwh/kgal产品水的净能耗率(net energy consumption rate)下完成的。
根据一个或多个实施例,本发明致力于一种处理含有溶解固体的水的方法,该方法包含这样的措施,即,从水中减少单价溶解性物质的浓度以生产副产品流,从水中减少二价溶解性物质的浓度,并在电去电离作用装置中从水中将溶解固体的浓度减少到少于大约1,000ppm等。
附图简介
结合附图,从以下本发明的非限制性实施例的详细描述中将明晰本发明的其它优点、特征和用途,这些附图是示意性的,并非按比例绘制的。出于清晰起见,并非每个构件都被标注,同时在无须图示即可使本领域中的技术人员理解本发明的地方,并未将本发明的各个实施例的各个构件作图示。在附图中:
图1是显示了根据本发明一个或多个实施例的系统的示意图。
图2是显示了根据本发明一个或多个其它实施例的系统的示意图。
详细说明
本发明在其应用方面并不局限于以下描述中所陈述和附图中所显示的构件的布置和结构的细节。本发明能够具有其它实施例,并且能够以各种方式来实践或实现。另外本文中所用的措辞和术语用于描述性的目的,而不应被认为是限制性的。“包括”、“包含”、“具有”、“含有”、“涉及”等用语及其各种变化形式在这里意味着包括其后所列项目和其等效物,以及其它项目。在本说明书和通过引用而并入的文献包含冲突时,以本说明书为准。
饮用水通常具有少于约1000ppm的TDS含量;在某些情况下,饮用水可具有少于约500ppm的TDS含量。非饮用水的例子包括海水或咸水(salt water)、半咸水(brackish water)、灰水(gray water)、以及某工业用水。在这里提及海水时,通常适用于其他形式的非饮用水。
本发明的某些方面涉及用于净化海水和其它非饮用水的方法和设备,其尤其利用电脱盐(electrodesalting)和电化学(electrochemical)系统,以及可与压力驱动膜系统(pressure driven membrane systems)和/或水处理系统相结合的技术。电化学技术还可以包括诸如连续去离子(deionization)、填充池电渗析(filled cell electrodialysis)、电透析(electrodiaresis)、电流反电渗析(current reversing electrodialysis)等工艺。在此处使用时,“净化”涉及减少总溶解固体物含量并可选地涉及减少原始水中的胶体含量、电离杂质和非电离杂质以及悬浮固体的浓度以达到这样的水平,即,使被净化的水变得可饮用和可被用于淡水用途,该淡水用途例如包括但不限于人类和动物的消费、灌溉和工业应用。脱盐是净化的一种,在其中,盐被从海水中去除。本发明在某些方面涉及到海水脱盐。供水或待处理的水可来源于各种水源,包括那些具有在约3,000ppm和约40,000ppm或更高的值之间的TDS含量的各种水源。供水可例如为海水、半咸水、灰水、工业废水(effluent)和油井填补(oil fill)回收水。供水可能含有高水平的单价盐,二价和多价的盐,以及有机物质。
根据一个或多个实施例,本发明致力于一种处理海水或半咸水的方法,其中,原始水包括溶质(solute)混合物,在该溶质混合物中,同二价离子和其它多价离子的浓度相比,单价离子处于更高的浓度下。提供了包括微细过滤(microfiltration)或超滤(ultrafiltration)处理的可选初始步骤以去除悬浮固体、胶体物质和/或具有升高分子量的溶质。跟随于该可选步骤之后,在此实施例中,提供了专用电脱盐处理的第一级,以便有选择地去除一部分单价离子,接着是任何中间处理步骤,其后跟着是这样的级,该级包含诸如电去电离作用的第二膜处理步骤,以提供具有所希望的最终纯度的水。整个过程能够在从30%到70%或更高的水回收率下运行。
电去电离作用(EDI)是一种利用电活性介质(electircally activemedia)以及电势(以便影响离子传输),从而从水中去除,或至少减少一种或多种离子化的或可离子化的物质的工艺。电活性介质通常可用于交替地收集和放出离子的和/或可离子化的物质,并且在某些情况下,可通过离子的或电子的置换机理而促进离子传输(其可能是连续的)。EDI装置可以包括永久电荷的电化学活性介质或暂时性电荷的电化学活性介质,并且可以成批地、间歇地、连续地、和/或甚至以反转极性的模式而运行。EDI装置可被运行以促进一个或多个专门设计以实现或提高性能的电化学反应。此外,这种电化学装置可包括电活性膜,如半透膜或选择性渗透离子交换膜或双极性膜。连续电去电离作用(CEDI)装置是本领域中的技术人员所已知的EDI装置,其以这样的方式运行,在该方式中,水的净化可持续地进行,同时,持续地补充离子交换材料。例如,参见编号为6824662、6312577、6284124、5736023和5308466的美国专利,它们都通过引用而结合在本文中。CEDI工艺可包括诸如连续去离子、填充池电渗析或电透析等工艺。在CEDI系统中,在受控的电压和盐度的条件下,水分子可被分裂以产生氢或水合氢离子或物质以及氢氧化物或氢氧离子或物质,它们可在装置中使离子交换介质再生并由此促进从其中被截留(trapped)的物质的释放。通过这种方式,可连续地净化待处理的水流,而无需离子交换树脂的化学再充装(chemical recharging)。
除了在膜间不包含电活性介质之外,电渗析(ED)装置以与CEDI相似的原理运行。由于没有电活性介质,在低盐度的供水中,由于升高的电阻,ED的运行可能受阻。同样,因为在高盐度的供水中ED的运行可能导致升高的电流消耗,因此迄今为止,ED设备在中等盐度的原始水下使用最有效。在基于ED的系统中,由于没有电活性介质,分解水的效率很低,通常避免在这种方式下运行。
在CEDI和ED装置中,多个相邻的池(cell)或室(compartment)通常由选择性透过膜所分隔,这些选择性透过膜要么允许带正电的物质通过,要么允许带负电的物质通过,但通常不允许两者都通过。在这种装置中,稀释室或贫化室(depletion compartments)通常与提浓室或浓缩室(concentrating or concentration compartments)相互间隔。当水流过贫化室时,离子和其它带电物质通常在电场(例如直流电场)的影响下被吸入提浓室。带正电的物质被吸向阴极,阴极通常位于稀释室和提浓室的堆组(stack)的一端;带负电的物质相类似地被吸向这种装置的阳极,阳极通常位于这些舱室的堆组的另一端。电极通常容纳在电解液室内,其通常部分地从与贫化室和/或提浓室的流体连通相隔离开。一旦处于提浓室中,带电物质则被至少部分地限定了该浓缩室的选择性透过膜的屏障所截留。例如,通过阳离子选择性膜,通常可防止阴离子进一步向着阳极而迁移出提浓室外。一旦被捕获在提浓室中,被截留的带电物质就可在浓缩流(concentrate stream)中被去除。
在CEDI和ED装置中,通常通过应用于电极(阳极或正极,以及阴极或负极)的电压源和电流源给这些池施加DC电场。电压源和电流源(统称“电源”)本身可由多种手段而被供电,例如AC电源,或例如源于太阳能、风能或潮汐能的电源。在电极/液体界面上,发生了电化学半电池反应(electrochemical half cell reactions),其启动和/或促进了离子穿过膜和室的迁移。在容纳电极组件的专用室中,通过盐的浓度,可将电极/界面处发生的特定电化学反应控制至一定程度。例如,至阳极电解液室的富含氯化钠的供应物将趋于产生氯气和氢离子,至阴极电解液室的这种供应物将趋于产生氢气和氢氧离子(hydroxideion)。一般来说,在阳极室所产生的氢离子将与自由阴离子,如氯离子相关联,以便保持电荷中性,并生成盐酸溶液,并且类似地,在阴极室所产生的氢氧离子将与自由阳离子,如钠相关联,以便保持电荷中性,从而生成氢氧化钠溶液。根据本发明的其它实施例,电极室的反应产物,如产生的氯气和氢氧化钠,可以根据需要在工艺中用于消毒目的、用于膜的清洁和除污(defouling)的目的以及调整pH值的目的。
根据本发明的某些实施例,可使用处理系统中的多个级来净化水或至少减少其中的溶解固体的浓度。例如,可在多个级中净化待处理的水,使得各个级有选择地去除一种或多种类型的溶解固体,从而产生净化的,例如,脱盐的或甚至可饮用的水。在某些情况下,一个或多个级可包括一个或多个单元操作(unit operations),其选择性地保留这样的溶解物质的类型,该溶解物质的类型可随后在一个或多个后续的级或下游级中利用一个或多个其它单元操作而被去除。因此,在本发明的净化系统的某些实施例中,第一级可以去除或至少减少一种类型的溶解物质的浓度。在其它实施例中,第一级可以去除或减少除一种之外的所有类型的溶解物质的浓度。任何未从水中去除的残留的物质可在后续的一个或多个级中被去除或被降低浓度。
本发明的某些实施例涉及这样的方面,其有利地利用来自于一个或多个级的副产品,以执行其它一个或多个级的再生或再充装。来自本发明系统的一个或多个级中的可排出流或副产品流可具有高浓度的、从待处理的水中被去除的第一溶解物质。在这种流中的第一溶解物质的存在可促进一个或多个其它净化级中的单元操作的再生。例如,电渗析级可以去除海水中的单价物质或减少其浓度。例如,表1提供了主要的典型溶质的浓度,其组成了典型海水中所包含的盐。基于这些成分,并假设在第一级中去除大约80%的总的TDS(总溶解固体物),该第一级以67%的水回收率运行,包括单价选择性的阴离子和阳离子交换膜,自该级排出的贫化流和提浓流(depleting andconcentrating stream)的溶质组成可作为膜选择性(selectivity)系数的函数而被确定。膜选择性系数可以定义为

其中v是离子物质i的摩尔浓度,Δv是该离子物质的摩尔浓度的变化。表2提供了自第一级分离设备排出的离子提浓流和离子贫化流中残余的溶质的计算值,该第一级分离设备包括选择性分别为1(非选择性)、5和10的单价选择性阴离子和阳离子膜。表2中的数据推导用于含大约20,000ppm TDS的产品水,并假定约67%的回收率。
表1海水典型组成

  物质  浓度  Ppm  氯化物  19,000  硫酸盐  2,700  溴化物  65  硅酸盐  3  碘化物  0.06  磷酸盐  0.07  钠  16,500  镁  1,350  钙  400  钾  380  锂  0.17  硼  4.6  锶  8  钼  0.01  锰  0.002  铝  0.01  镉  0.00011

  铬  0.00005  钴  0.0004  铜  0.003  铁  0.06  铅  0.00003  镍  0.007  硒  0.00009  银  0.0003  锌  0.01

表2使用软化的海水进入2级ED装置的贫化流和提浓流特性

从表2可以看出,对于包含单选择性膜(monoselective membranes)的装置,相较于使用、包含非选择性膜的装置而言,造成装置提浓室污染和结垢的溶质,例如钙、镁和硫酸盐等,在提浓流中被保持在相对较低的浓度水平上。使用单选择性膜装置的结果是,可以增加水回收率,而不会造成盐沉淀(precipitation)和导致性能降低,或堵塞脱盐装置。单价选择性可未必不成比例地降低提浓流中的碳酸氢盐(bicarbonate)水平,但诸如碳酸氢钙等的碳酸氢盐化合物的沉淀的可能性仍然由于提浓流中的钙的水平的不成比例的降低(例如,相对于钠)而减少。此外,如将更详细讨论的那样,来自使用高盐度氯化钠作为电解液的酸性电解液产物可用作反应物供应至浓缩流,以调整和降低浓缩流的pH值,并由此抑制浓缩流中的任何残留的碳酸氢钙形成结垢的可能性(通过将碳酸氢盐平衡偏移远离碳酸盐形式)。
副产品流(例如,单选择性ED级的浓缩流)将具有高浓度的诸如氯化钠等的这样的物质,该物质可随后被用于促进离子交换单元操作的再生,该离子交换单元操作可随后被用于有选择地从待处理的水中去除溶解的二价物质或减少其浓度。此外,在此,包括其它类型单元操作的更多的级其用于进一步使部分或全部贫化流中的残留物质和/或痕量杂质(trace impurities)被去除或被降低浓度,以使得,第一级的贫化流排放物中残余的有问题成分在最终使用前被有选择地去除(例如,在被用作农业灌溉用水前,通过选择性离子交换而去除硼);或者,在被供应到整个系统的第二膜级之前被有选择地去除(例如通过化学可再生阳离子交换来去除钙和镁,以避免第二级膜中的结垢和堵塞)。
通过将可选的离子交换单元放置在第一单选择性去除级的下游,则在关于离子交换单元的操作方面,存在有额外的工艺优势。如果原始水中的整体盐度较高,则离子交换器,例如用于从原始水中去除钙和镁的阳离子交换器,在其脱盐能力方面效率会低得多。因此,通过在第一盐去除级下游运行离子交换器(此处,较之原始水,盐的大部分已经被去除),离子交换器将更有效地运行,并以更少的再生的化学需求而生产质量更好的流出物。
此外,在包括各类操作的单元的更多级被使用以进一步从水流中去除残留物质或降低其浓度的情况下,从那里而来的任何副产品流同样可被利用以促进其它级中的一个或多个其它单元操作的再生。
本发明的其它方面可以被认为是致力于减少与待处理的水的净化相关的整体副产物或废物的排放负担。事实上,来自于一个或多个级或单元操作的副产物流可被引导至一个或多个上游级或下游级或操作单元,并与待处理的水相结合,并且/或者被用以促进这种操作单元的运行。
根据本发明的一个或多个方面,EDI系统和技术(包括CEDI系统),可与一种或多种技术相结合,以净化非饮用水(如,具有大于约5,000ppm的TDS的水)从而生产饮用水。根据本发明的一个或多个实施例,一个或多个级包含压力驱动的分离技术,如过滤,以从非饮用水源中去除水中的部分TDS,并且包含一种或多种电驱动的分离技术,例如电去电离作用,以去除第一已过滤的水中的TDS的另外的部分,从而最终生产出饮用水。在某些情况下,压力驱动的分离技术,可被建立在纳米过滤(NF)系统和技术之上。根据其它实施例,电力驱动的分离技术,例如,但不限于电渗析或电透析,可与例如过滤和/或EDI系统和技术一起被使用以将水净化,例如,脱盐。本发明的其它实施例设想利用这些系统和技术的组合。因而,举例而言,电去电离作用系统可以与这样的两个或多个系统一起被使用——它们以组合的方式优选地去除一种或多种类型的溶解固体。事实上,根据本发明一个或多个实施例,电去电离作用级可以与电渗析级和/或离子交换级一起被使用。
纳米过滤技术可用于去除比超滤(UF)技术可去除的物质更小的物质,但通常不能去除所有可由RO技术去除的物质。在排斥或有选择地分离溶解物质时,纳米过滤可包含位阻效应和电效应两者。因而,举例来说,纳米过滤还可以去除不带电的有机分子或减少其浓度,例如,具有大于约150道尔顿、或在某些情况下、大于约300道尔顿的分子量的有机分子。二价离子和/或多价离子通常以大于约90%的比率而被去除。然而,在某些情况下,以大于约95%的比率而被去除;并且在有些应用中,超过98%的多价物质可通过这种选择性技术而被去除。但是,纳米过滤系统在去除单价离子时的效率通常比去除二价离子或非单价离子时要低,例如,仅能去除存在于待处理的供水中的单价离子的不到约10%,不到约25%,不到约50%,不到约75%或不到约90%。纳米过滤膜可由多种材料制成,包括,例如聚酰胺材料。例如,参见美国专利6723241和6508936,以及美国专利公开2003/0205526,其都通过引用而结合在本文中。
如所述,在某些情况下,纳米过滤系统及其技术可能无法有效地或至少在所希望的和/或经济上可行的程度上去除单价离子。然而,海水通常具有这样的TDS含量,它的大约四分之三呈单价盐的形式。表1列出了海水中各种物质(但非所有物质)的典型浓度。
利用纳米过滤膜来处理水时所需要的相关的运行压力可显著低于使水通过RO膜所需要的运行压力,在那里,单价盐对供水和渗透液之间的渗透压的差异贡献极大。根据应用,供水可在纳米过滤装置中在小于约600psi的运行压力下被净化,在某些情况下,在小于约500psi的运行压力下,或在其它情况下,在小于或等于约400psi的运行压力下被净化。由那里得出的渗透液通常在机物质浓度以及二价和非单价离子浓度方面被降低大于约90%,同时保留了多于10%的单价离子成分。根据具体的配置和供水,多于约25%的单价离子被保留或收回(retrieved);在某些应用中,超过约50%的单价离子被收回;且在其它应用中,单价离子成分的超过约75%被收回。因此,具有海水、半咸水或具有类似成分的供水的纳米过滤装置可提供这样的滤液,该滤液在二价和非单价离子成分和/或有机成分方面被显著地减少,但可能保留了初始的单价离子成分(如氯化钠)的大部分。同供水相比,滤液可能表现出大于或等于约30%的TDS的减少(在某些情况下,高达并包括约95%)。然而,在大多数情况下,海水的单程纳米过滤液并不适用于人类的消耗或要求淡水的应用中的使用,并且可能需要更多的处理以使水变得合适。
根据本发明的一系列实施例,产物,例如来自于纳米过滤级的滤液,被供应至电去电离作用级(如CEDI装置)。二价和多价阳离子,如镁离子和钙离子(它们通常对水的硬度贡献很大),可在很大的程度上在纳米过滤级中,或在位于单价选择性ED级下游的中间离子交换软化器中被去除。电去电离作用装置又可去除单价阳离子和/或阴离子,如氯化钠,且进一步地,在较低的功耗下在缺乏二价离子的供水上运行。因此,可通过使包含主要为单价盐的TDS的供水经过一个或多个电去电离作用装置和一个或多个纳米过滤装置来高效地净化该水。可以采用在各个级中的一次或多次经过(one or more passes),并且,可以串联的方式或任何合适的布置来使用两个或多个电去电离作用装置。通常地,但不是必须地,纳米过滤级在电去电离作用级之前。这种配置可使得下游的单元操作和/或构件(例如在电去电离作用装置的相关联的壳体组件和浓缩室以及配件和管道中)的污染被减少,或者甚至没有污染。因此,一个或多个纳米过滤装置可有利地用于去除二价和/或多价离子,例如引起硬度的物质,并且,一个或多个电去电离作用装置可有利地用于去除单价离子,从而减少或消除污染的趋势。事实上,本发明可指向这样的系统和技术,其提供了这样的一个或多个级或单元操作,这些级或单元操作可从水流中去除一种或多种二价和/或多价物质,或至少减少其浓度;且提供了这样的一个或多个级或单元操作,这些级或单元操作可从水流中去除一种或多种单价物质,或至少减少其浓度。所得到的产品水可由此而变得适于饮用。
本发明的其它一些方面致力于这样的系统和技术,其通过如下做法而将水流净化,即,在第一级或初级中,使水流中一种或多种物质的形成结垢或污染膜装置的趋势被减少甚至被最小化,并且,在第二级或后续级中去除单价物质或至少降低其浓度。
第一级,例如,诸如纳米过滤等的过滤,可以在小于或等于约4.7kwh/kgal的能量需求下运行。第二级,例如通过电化学的方式,如电去电离作用,可以在小于或等于约2.3kwh/kgal的条件下运行。因而,可以预期约为7kwh/kgal的整体能耗,同其它脱盐技术,如蒸发、RO、双程纳米过滤或混合式的纳米过滤/RO及纳米过滤/蒸发技术相比,其提供了能量消耗方面的显著的降低。
根据本发明的一个或多个实施例,源自该工艺的包含有浓缩物,以及渗余物(拒绝液(reject))的流体(其通常含有比它们各自的供水更高的TDS)可被排放至供水源或传统的废水处理设施中。例如来自于CEDI装置的浓缩流出物可作为供水而再循环至供应至纳米过滤装置的供水中,或与该供水相结合。在某些情况下,例如当浓盐水(brine)产生自CEDI装置的提浓室时,该盐水——其实质上或基本上没有二价和多价离子,或具有有所降低的结垢形成物质的水平——可用作盐水源以用于生产消毒剂,例如,但不局限于次氯酸钠。软化的盐水可以作为可电解的氯物质的来源,以被使用于消毒剂制造系统中,其可利用,举例而言,电解装置。因此,如果利用本发明某些方面而生产的纯净的水能受益于稍后的消毒,则可以低成本而获得消毒剂和/或软化的、浓缩的盐水的现成的来源。
在处理供水之前,可以采用各种预处理步骤(procedure)。例如,预处理技术可用于可能含有这样的固体或其它材料的供水,这些固体或其它材料可能会妨碍或降低任何级或装置、如纳米过滤装置或EDI装置的效率。预处理工艺可在纳米过滤装置和/或EDI装置的上游被实行,并且可包括例如,微粒过滤(particulate filtration)、砂滤、碳滤、诸如横流微过滤(CMF)等的微过滤,及其组合,以及其它致力于减少微粒的方法。例如通过添加酸、碱或缓冲液、或通过曝气,还可进行对供水的pH值和/或碱度的调整。
包含第一单价选择性级的实施例的一个尤其重要的可选优势是:因为这种系统的水回收高于使用现有技术所能达到的可能性,所以极大地减少了处理原始水所需要的预处理的量。因此,所需要的预处理设备的数量成比例地减少。其结果是减少了预处理设备的成本和尺寸,并且/或者备选地,使通常被视为经济上不可行的预处理系统的应用成为可能。例如,膜微过滤——一种不仅能去除原始水中的大微粒,而且能去除原始水中的微生物污染和其它有害的胶体成分的技术——可作为传统的低效的砂滤系统的替代而更具成本效率地被使用。这改善了最终用水的质量,同时提高了下游处理构件的可靠性。
图1中显示了本发明系统的一个实施例。系统100包含一个或多个纳米过滤装置110以及一个或多个电去电离作用装置120。纳米过滤装置110包括位于壳体中的纳米过滤膜。电去电离作用装置120包括一个或多个阳极室、阴极室、浓缩室或贫化室。水源被提供给电去电离作用装置120的贫化室、浓缩室及电极室。供水源140可例如为海洋。供水可被泵送通过管道150并由泵130加压以穿过纳米过滤装置110中的纳米过滤膜。通常,泵130将供水加压至大约600psi或更低的运行压力。来自纳米过滤装置110的多价离子含量降低的渗透液,作为至电去电离作用装置120的供给流而穿过管道160。来自纳米过滤装置110的被拒绝流体经过管道170,并且,可例如被引导回到供水源140中。
可从渗余物流中回收能量并例如用于加热供水,供电(provideelectricity),和/或为其它工艺或单元操作提供能量,这些工序和单元操作不需要直接与系统100相关联。管道160中的水可被供给至电去电离作用装置120的任何贫化室、浓缩室和/或电极室。电去电离作用装置120通常由电流源(未显示)供电,其可配置成用以提供可逆转的电场。净化的稀释液(diluent)在管道180处被接收,在那里,其可被发送而作为饮用水被储存或使用。如果需要,饮用水可被贮藏或进一步被消毒。来自电去电离作用装置120的浓缩流可经由管道190而排放至废水中,可经由管道192而再循环通过该系统,或者,可经由管道194而被用作盐水源。浓缩流可具有与海水的氯化钠含量相似的氯化钠含量,并且可作为至纳米过滤装置110的供水源。
本发明的系统和技术的可按连续的或成批的原则来运行,且可在固定的位置或在移动平台上,例如在船上或在车上运行。还可采用多程CEDI系统,在那里,供水通常两次或多次穿过装置,或者可穿过可选的第二装置。在某些情况下,可加热电去电离作用装置,以便,例如,增加其中的离子物质传输的速率。因而,电去电离作用装置可在室温下运行;备选地,电去电离作用装置可以在高于约30℃,高于约40℃,或甚至高于约50℃的温度下运行。
在某些情况下,可能需要减少电去电离作用装置的内部电阻,以将能量用量最小化。因此,根据本发明的一个或多个实施例,可使用低电阻膜来隔离或限定其贫化室和/或浓缩室。例如,电去电离作用装置的单个室或池可构造成具有小于约10毫米的宽度。使用低电阻膜和/或薄的室可有助于减少电阻或负载,并因而有助于减少电功率需求。根据本发明的某些实施例可使用的低电阻膜包括,例如,可商业上从日本东京的ASTOM公司获得的膜。在本发明的某些实施例中,膜间的间距可以是,举例而言,小于约0.1英寸,小于或等于约0.06英寸,或者,小于或等于约0.05英寸。
在某些应用中,重要的或所希望的是,将水中硼物质的浓度降低到被认为适合于农业使用和/或人类饮用的水平。举例来说,所希望的硼物质的浓度优选地小于约1ppm。在某些情况下,硼物质的浓度适宜地约为或甚至低于政府和/或卫生组织所建议的水平。例如,硼离子浓度可约为或低于世界卫生组织所建议的、约为0.5ppm的水平。事实上,在一些应用中,已处理的水中的硼的浓度优选小于约0.4ppm。
因为海水中常常含有较高水平的硼,例如,大约1至4ppm,利用传统的脱盐工艺可能难以实现所推荐或建议的硼水平的目标。有利的是,可利用本发明的系统和技术将供水中的硼物质的浓度减少到可接受的水平。事实上,本发明的某些实施例致力于这样的系统和技术,其将供给流中的硼浓度从大约4.6ppm降低到低于约0.5ppm。
除了较低的能量成本之外,本发明的系统和技术可提供较低的资本成本、运行成本和/或维护成本。例如,由于具有以较低的运行压力运转的能力,所以在本发明的系统中可采用成本更低的材料,如塑料管路,以取代在RO系统中通常所必须的高压不锈钢和/或钛合金。
为了净化海水,需要将水与其溶解组分(component)相分离。执行此分离过程所需要的能量是克服供水(海水)和产品(淡水)之间的渗透压的差异所需要的能量的合计。
海水的渗透压Psw,可由van′t Hoff方程来确定:Psw=c×R×T,其中,c是离子的摩尔浓度,R是气体常数,0.0820升-巴/度-摩尔(即,0.082liter-bar/degree-mole),T是以开尔文为单位的绝对温度,T=300K(约27℃)。假设为纯氯化钠溶液,则海水中的离子盐浓度为大约1.12摩尔/升。因此,确定渗透压为大约400psi(1.12×0.082×300=27.6bar)。
脱盐的能量需求一般以每小时每1,000加仑净化水来计量。使海水脱盐所需要的理论最低能量的估算值为大约2.9kwh/kgal(或约0.77kwh/m3),其按下述方法确定,假定约400psi的跨膜(trans-membrane)压力(对于NF膜)和100%的泵效率,用下式计算制动马力(Brakehorsepower):

用于使海水脱盐的(热驱动或压力驱动)方法被认为是与所需最少能量无关的。
示例1
现有技术的基于RO的系统与本发明的系统及方法的对比显示了可达到的能量节省。如以下计算所示,传统的RO系统使海水脱盐需要大约19.2kwh/kgal的能耗。在计算中,假定的跨膜压力为大约900psi,假定的泵效率为大约85%,并假定的水回收率为大约40%。
此外,对于大约41.67gpm的供水流率,将产生大约16.67gpm的渗透液和大约25gpm的拒绝液。假设没有使用能量回收技术。

然而,如果利用能量回收技术,算得的能量需求量可能会减少。能量回收组件或技术的示例包括,举例而言,涡轮,例如佩尔顿叶轮(Pelton wheel),或压力交换装置。这两种类型的装置都可以从高压的拒绝液中回收能量并将该能量输送给RO装置的供给流。佩尔顿叶轮组件的回收效率通常为大约80%,并且容积式(positive displacement)系统通常宣称约90%至约95%的回收效率。
为了计算能量回收在总能耗上的效果,假设功率的大约40%在渗透液流中被消耗(0.4*19.2kwh/kgal=7.68kwh/kgal),而假设60%的功率在拒绝液流中被消耗(0.6*19.2=11.52kwh/kgal)。假设,例如,在拒绝液流中的能量的93%可以被回收,那么,约7%的能量被消耗(0.07*11.52=0.81kwh/kgal)。因此,利用了能量回收技术的RO装置的总能耗为大约7.68+0.81=8.49kwh/kgal。
示例2
为了估算利用包含纳米过滤装置和电去电离作用装置的系统来使海水脱盐所需要的能量总额,可分别确定各个装置的能量需求,然后再合并。
如以下计算所示,与纳米过滤装置相关的能量需求为约10.7kwh/kgal(约2.8kwh/m3)

该估算源自以下假定,即,假设跨膜压力为约500psi,泵效率为约85%,水回收率为约40%。此外,该估算基于大约41.67gpm的入口流率,其产生大约16.67gpm的渗透液以及大约25gpm的拒绝液。没有利用能量回收技术。
在纳米过滤装置中,同样可按照与上述基于RO的装置中类似的方式利用能量技术。此外,回收效率方面使用类似的假定:假设渗透液流消耗该功率的约40%(0.4*10.7kwh/kgal=4.28kwh/kgal),而假设拒绝液流消耗该功率的约60%(0.6*10.7=6.42kwh/kgal)。如果拒绝液流中大约93%的能量被回收,那么该能量的约7%假定被消耗掉(0.07*6.42=0.45kwh/kgal)。因此,与纳米过滤装置相关的能耗为约4.73kwh/kgal(4.28+0.45=4.73kwh/kgal)。
为了比RO系统消耗更少的能量,包括纳米过滤级和CEDI级的脱盐系统将需要在总体上消耗比RO系统单独消耗的能量更少的能量。如上所示,纳米过滤级消耗约4.7kwh/kgal,而RO系统的总能耗为约8.5kwh/kgal。因此,为了具有比RO系统低的总能耗,CEDI级的能耗优选小于或等于约3.8kwh/kgal。
如果纳米过滤系统拒绝了包含于海水供应中的入口总溶解固体物的约91%,那么下游CEDI模块优选去除剩余TDS的约90%,以便使水满足低于500ppm TDS的饮用水标准。因此,为了能与RO系统竞争,CEDI系统将需要在使用少于3.8kwh/kgal产品水的能量的条件下去除这一数量的固体。
示例3
运行系统以确定是否可以将海水净化(淡化)到低于约500ppmTDS的水平。该系统包括能够满足上述能量需求(小于约3.8kwh/kgal)的CEDI装置和纳米过滤装置。人工海水制备自INSTANT合成海盐混合物,其可从俄亥俄州门托市(Mentor,Ohio)的AquariumSystems公司获得。
纳米过滤装置和CEDI装置在如下条件下运行:
对于纳米过滤和CEDI装置,都使用闭环。用于CEDI装置的电极室供水(其与纳米过滤的产品水相分离)是由RO水组成,其中,添加有硫酸以达到约为2的pH值的。以CaCO3衡量,供水钙含量为大约50mg/L。
纳米过滤装置使用NF90(4×40)膜,其可从密歇根州米德兰陶氏化学公司(The Dow Chemical Company,Midland,Michigan)所获得。进入纳米过滤装置的入口水流被加压至约500psi,并具有大约45.5mS/cm的电导率(conductivity)。来自纳米过滤装置的渗透液在大约3.25l/m的流率下具有大约4.2mS/cm的电导率。拒绝液流率为大约36l/m。该装置的标称运行温度为大约23℃
对两种不同的CEDI装置进行了评价,其分别被指定为堆组A(低电阻)和堆组B(标准)。堆组A和B中每一个都包括处在2级折叠路径(2-stage folded path)中的20个池,其中,每个级中有10个池。流动路径长度为大约28英寸。两个堆组还利用了基于氧化铱的阳极、不锈钢阴极,以及DOWEX TM MARATHON强碱性阴离子/强酸性阳离子树脂的大约50/50的混合物,这两者都来自密歇根州米德兰陶氏化学公司。堆组A和B中每一者的膜间间隔为大约0.06英寸。堆组A包括交替的(alternating)离子交换膜。
如下,在表2中总结了两个模块的运行条件和性能。表2中所列举的能量需求数据并未考虑电源的效率。
这些数据表明堆组A优于堆组B,因为前者以类似的速率生产类似质量的产品而使用少大约40%的能量。
因此,假定纳米过滤装置需要约4.7kwh/kgal的能量来达到所希望的低于大约90%的去除性能,那么包括纳米过滤和CEDI装置的系统将达到大约7kwh/kgal的能耗。该整体能量需求比传统的基于RO的系统的能量需求少大约15%。
表3CEDI堆组A和B的运行参数和测得参数
  操作参数或测得参数  堆组A  堆组B  通过贫化室的流率(ml/min)  280  280  通过浓缩室的流率(ml/min)  72  73  通过电极室的流率(ml/min)  250  200  供应流的电导率(mS/cm)  4.2  4.2  产品电导率(μS/cm)  570  550  贫化室的压力降(psi)  5.6  7.5  浓缩室的压力降(psi)  2.2  3.6  电极室的压力降(psi)  6.4  8.9  施加的电极电势(VDC)  17.15  26.6  池对电压(Cell Pair Voltage)(VDC)  13.5  22.0  每池对的电压(Voltage per Cell Pair)(VDC)  0.675  1.1  电流消耗(A)  0.84  0.83  能量消耗(kwh/kgal)  2.5  4.2  运行持续时间(小时)  175  274  产品TDS(ppm)  240  232

示例4
这个示例进一步介绍了可用于减少海水中溶解固体的浓度的本发明的其它实施例。
如图2中所示,该系统可包括至少一个电去电离作用级,其设置在一个或多个单价物质减少级以及一个或多个二价物质减少级的下游。
单价减少级可以包括任何降低单价物质(例如,但不仅限于氯化钠)的浓度的单元操作。可用于减少单价溶解固体的单元操作的示例包括但不仅限于电渗析和电透析装置。
这种单价离子减少级可以在升高的、例如大约60%至70%或更高的水回收率下运行,这依赖于隔膜的有关单价物质对非单价物质的选择性系数。这是因为,非单价物质或多价物质使膜装置结垢或污染膜装置的潜在风险被避免(因为它们浓度并不与单价物质的浓度以相同比例增加)。相对于其它工艺如非选择性ED或蒸馏而言,这种装置的污染和结垢的趋势小得多,并且相对于诸如NF和RO等工艺(其有选择地浓缩多价物质以及污染物超过单价物质)而言,这种装置的污染和结垢的趋势更是小得多得多。通过在提高的水回收率下运行,不仅使该工艺更有效率(例如,通过减少预处理设备和材料的体积需求),而且还减少了用于整个工艺的所需要的水的总量,这在水资源匮乏的区域中是特别重要的。此外,通过在高水回收率下运行,提高了装置的浓缩流中的盐的浓度,这使其在某些情况下更加有用。例如,通过在大约3.33%的供水盐度、大约67%的回收率下运行,可获得带有大约10%的盐浓度的浓缩流。在主要地为单价的离子被有选择地转移到所述浓缩流中的情况下,所得到的流可以是处在约10%的浓度下的主要地纯单价(例如,氯化钠)的流。这种流可部分地用于使已经耗尽的离子交换柱再生,用作盐水清洗剂,用于供给至结晶器以高效地生产结晶盐,和/或在更多的电化学过程中被用以生产(例如)氯气和苛性碱以用于消毒或调整pH值。此外,浓缩的盐可被循环至ED装置本身的电解质室中,并且可在不需要单独的苛性碱/氯气生成系统的情况下生产副产品氯气和苛性碱,并避免了提供除了盐(其已存在于待脱盐的供水中)之外的额外的化学品的需要。
单价物质去除级可以利用膜,该膜有选择地去除单价阳离子,单价阴离子,或者单价阳离子及单价阴离子两者。如果希望从含有钙和硫酸盐的供水中生产纯氯化钠,那么该系统可包含单价选择性阳离子膜和阴离子膜两者。备选地,如果目标只是生产含有纯钠离子的浓缩流而不关心硫酸盐水平,那么该系统可以只包含单价选择性阳离子膜。
之后,可将来自单价选择性去除级的部分地脱盐的产物传送到二价减少级中,该级可包括任何降低二价物质(例如,但不仅限于钙和镁盐)的单元操作。可用于减少这种引起硬度的物质的单元操作的示例包括但不仅限于离子交换装置,尤其是使用阳离子交换介质的阳离子交换柱。此外,包含选择性吸附剂和阴离子选择性介质的离子交换介质可用于选择性地从水中去除有问题的痕量离子(trace ions),如残留的硼和碳酸氢盐,以及二价阴离子,例如硫酸盐。对于不仅需要盐水再生步骤,而且还需要酸或苛性碱再生步骤的选择性吸附剂,还可以可选地从源自第一级浓缩排出液(该排出液来自第一单选择性膜级)的浓缩的纯盐溶液中制造出酸和苛性碱。
图2所代表的实施例进一步显示将来自某一级的副产品在另一级中使用以促进其运行。如示例所示,该单价减少级可以减少待处理的水的氯化钠的浓度,并将这些物质收集在浓缩的副产品流中,其通常作为富含氯化钠的废流而被排出。这种副产品流可以用于在二价减少级中使阳离子交换介质再生。该末级可被视为精加工(polishing)级,其进一步降低了任何不希望有的物质的浓度并使水变得可饮用。来自这个级的副产品流可以重新引入或与待处理或排放的水相混合。因此,图示的实施例可有利地减少总体排放负担。在某些情况下,利用这种浓缩流来使二价去除级再生是不切实际的,但是由于单价选择性装置通常运行在提高的浓度下,所以离子交换器的有效再生的可能性成为可能。还可以生产酸,苛性碱,以及氯气,用于清洁,卫生处理,消毒,以及用于辅助诸如硼选择性离子交换介质等的特定选择性离子交换器的再生。
来自单选择性膜装置的产品水可直接用于某些目的而无需进一步的处理,例如用于农业用水,其有利地保持了二价离子的一定水平(相对于单价离子)。备选地,例如,在产品水经过大约90%的脱盐,以及在水中没有或只有较低水平的痕量元素和二价物质的情况下,来自第二级的产品水可直接地被使用。然而,备选地,可将来自第二级的产物传送至第三膜分离装置,该装置包括,例如,非选择性的ED膜或EDI膜,在那里,水被进一步脱盐至高纯度水平。在这种情况下,来自第三级的浓缩溶液通常包含基本上仅一种类型的单价离子,并因而,第三级发生污染或结构的可能性很低。并且,在高回收率下,浓缩物可在例如类似于原始水的浓度下被循环以流入单价选择性装置的第一级的浓缩流。最终的结果是得到可为不同的最终用途提供不同类型的水的整体工艺,同时该系统在不容易产生污染或结垢的高效率条件下运行,其中,水回收率远高于传统的脱盐技术,并且其中,用于再生、用于去除痕量元素、用以消毒,用于pH值调整,以及用于清洁所需要的辅助性化学品都可从原始水的离子组成中被提供。
虽然已经描述了本发明的至少一个实施例的若个方面,但是应该懂得各种改动、修改和改进对于本领域中的技术人员来说是易于想到的。这种改动、修改和改进也被认为是本发明公开的一部分,并被认为属于本发明的精神和范围内。因此,前面的描述和附图是仅作为示例的。

用于脱盐的方法及设备.pdf_第1页
第1页 / 共30页
用于脱盐的方法及设备.pdf_第2页
第2页 / 共30页
用于脱盐的方法及设备.pdf_第3页
第3页 / 共30页
点击查看更多>>
资源描述

《用于脱盐的方法及设备.pdf》由会员分享,可在线阅读,更多相关《用于脱盐的方法及设备.pdf(30页珍藏版)》请在专利查询网上搜索。

本发明提供了用于净化水的方法和设备。供水,例如海水可供应至诸如多微孔膜或纳米过滤膜等的过滤器中,以生产渗透液,渗透液则又可被供应至电去电离作用系统中,以生产淡水。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 水、废水、污水或污泥的处理


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1