用于合成诺卡酮、二氢诺卡酮和四氢诺卡酮的反应序列.pdf

上传人:r5 文档编号:8045124 上传时间:2019-12-18 格式:PDF 页数:10 大小:469.54KB
返回 下载 相关 举报
摘要
申请专利号:

CN201680072317.3

申请日:

20161208

公开号:

CN108430464A

公开日:

20180821

当前法律状态:

有效性:

审查中

法律详情:

IPC分类号:

A61K31/12,A61K31/35,A61K31/122,C07C45/00,C07C45/27,C07C45/40

主分类号:

A61K31/12,A61K31/35,A61K31/122,C07C45/00,C07C45/27,C07C45/40

申请人:

路易斯安那州立大学监事会和农机学院

发明人:

罗格·莱恩

地址:

美国路易斯安那州

优先权:

62/265,723

专利代理机构:

北京康信知识产权代理有限责任公司

代理人:

沈敬亭;郑希元

PDF下载: PDF下载
内容摘要

公开了一种用于诺卡酮、四氢诺卡酮及其衍生物的廉价立体选择性合成,该合成利用臭氧氧化。在该合成中使用的原材料廉价并且反应在商业上可行并且经得起扩大规模。主要原材料(‑)‑β‑蒎烯在GRAS列表(通常被认为是安全的)上。

权利要求书

1.一种合成诺卡酮的方法,包括以下步骤:臭氧氧化β-蒎烯(化合物1)以生产诺蒎酮(化合物2) 2.根据权利要求1所述的方法,其中所述臭氧氧化的步骤包括:在MeOH中使用臭氧/O氧化β-蒎烯;和添加(CH)S以生产诺蒎酮。 3.根据权利要求1所述的方法,其中所述臭氧氧化的步骤包括:在CHCl中使用臭氧/O氧化β-蒎烯;和添加AcOH和锌以生产诺蒎酮。 4.根据权利要求1所述的方法,进一步包括以下步骤:将诺蒎酮转化为化合物6和臭氧氧化化合物6以生产化合物7 5.根据权利要求4所述的方法,其中所述化合物6的臭氧氧化包括:在MeOH中使用臭氧/O氧化化合物6;和添加(CH)S以生产化合物7。 6.根据权利要求4所述的方法,其中所述化合物6的臭氧氧化包括:在CHCl中使用臭氧/O氧化化合物6;和添加AcOH和锌以生产化合物7。 7.一种制备化合物7的方法,包括以下步骤:臭氧氧化化合物6 8.根据权利要求7所述的方法,其中所述化合物6的臭氧氧化包括:在CHCl中使用臭氧/O氧化化合物6;和添加AcOH和锌以生产化合物7。 9.根据权利要求7所述的方法,其中所述化合物6的臭氧氧化包括:在MeOH中使用臭氧/O氧化化合物6;和添加(CH)S以生产化合物7。 10.根据权利要求7所述的方法,进一步包括以下步骤:臭氧氧化β-蒎烯(化合物1)以生产诺蒎酮(化合物2)和将诺蒎酮转化为化合物6。 11.根据权利要求10所述的方法,其中所述臭氧氧化的步骤包括:在MeOH中使用臭氧/O氧化化合物1;和添加(CH)S以生产化合物2。 12.根据权利要求10所述的方法,其中所述臭氧氧化的步骤包括:在CHCl中使用臭氧/O氧化β-蒎烯;和添加AcOH和锌以生产诺蒎酮。 13.一种制备诺卡酮衍生物的方法,包括以下步骤:臭氧氧化β-蒎烯(化合物1)以生产诺蒎酮(化合物2) 14.根据权利要求13所述的方法,其中所述臭氧氧化的步骤包括:在MeOH中使用臭氧/O氧化β-蒎烯;和添加(CH)S以生产诺蒎酮。 15.根据权利要求13所述的方法,其中所述臭氧氧化的步骤包括:在CHCl中使用臭氧/O氧化β-蒎烯;和添加AcOH和锌以生产诺蒎酮。 16.根据权利要求13所述的方法,进一步包括以下步骤:将诺蒎酮转化为化合物6和臭氧氧化化合物6以生产化合物7 17.根据权利要求16所述的方法,其中所述臭氧氧化的步骤包括:在MeOH中使用臭氧/O氧化化合物6;和添加(CH)S以生产化合物7。 18.根据权利要求1所述的方法,其中所述化合物6的臭氧氧化包括:在CHCl中使用臭氧/O氧化化合物6;和添加AcOH和锌以生产化合物7。 19.根据权利要求13所述的方法,其中所述诺卡酮衍生物选自由以下组成的组:异诺卡酮、四氢诺卡酮、11,12-二氢诺卡酮、1,10-二氢诺卡酮、诺卡醇和二氢诺卡酮。 20.根据权利要求19所述的方法,其中所述诺卡酮衍生物选自由以下组成的组:异诺卡酮、二氢诺卡酮和四氢诺卡酮。

说明书

优选权

本申请要求2015年12月10日提交的美国临时申请No.62/265,723的优先权,其内容在此通过引证的方式将其全部内容结合。

技术领域

本发明涉及使用臭氧氧化合成诺卡酮及其衍生物。

背景技术

具有以下结构的诺卡酮(方案I中的化合物9)在包括雪松、香根草和柑橘油的某些植物源中天然存在。诺卡酮具有让人想起葡萄柚的芳香,并且在商业上用作调味料或芳香成分。诺卡酮对人体和其他哺乳动物无毒,被FDA视为GRAS物质。

诺卡酮还具有作为针对各种节肢动物以及针对包括线虫在内的某些其他无脊椎动物的驱除剂或毒物的活性,所述节肢动物包括白蚁、蚂蚁、苍蝇、蚊子、跳蚤、虱子、蜱虫、鼹鼠蟋蟀和蟑螂。自从现在的驱虫剂的主要成分DEET以来,尚无新的商业可行的驱虫剂上市。如由蜱虫引起的莱姆病,由蚊子引起的登革热、基孔肯雅热、寨卡和疟疾等疾病的传播驱使需要更多产品来驱除这些昆虫。诺卡酮也充当环保木材和艺术的防腐剂。参见例如国际专利申请公开No.WO 01/28343;和美国专利No.6,906,108;其中的每一个通过引证的方式将其全部内容结合与此。

商业上制备诺卡酮的过高成本妨碍了其在调味料和香料之外的这些和其它用途的更广泛用途。虽然诺卡酮是已知的且已经被使用了一段时间,商业上制备该化合物及其衍生物的手段,特别是通过合成方法,一直难以捉摸。因此,对诺卡酮、四氢诺卡酮和其它诺卡酮衍生物的有效经济合成的需求长期未得到满足。成功的合成优选为立体选择性的,从而产物具有所需的生物活性;并且以GRAS(通常被认为是安全的)列表上的原材料为基础,以减轻监管批准的负担。迄今为止,商业上销售的大多数诺卡酮是通过橙油组分瓦伦烯(valencene)的半合成氧化生产的。瓦伦烯是一种昂贵的原材料,但还有待开发避免其使用的可行的商业化生产。

用于制备诺卡酮的现有合成方法具有以下一个或多个缺点:合成冗长;合成需要相对昂贵的原材料;产率低;需要中间体的纯化;过量溶剂的使用造成商业生产中的废物问题;难以处理副产物;合成产生出外消旋混合物;或一种或多种原材料不在GRAS列表中。

因此,需要一种不太昂贵的用于立体选择性合成诺卡酮的方法。虽然目前诺卡酮的高价在某些使用领域(如调味料和香料)中可能是可容忍的,但缺少不那么昂贵的诺卡酮来源阻碍了在其它领域的商业应用,例如作为针对白蚁、蜱虫、蚊子或其它害虫的驱除剂或毒物。如果诺卡酮能够以比目前情况远更廉价地生产,将其及其衍生物用作针对各种节肢动物(包括白蚁、蚂蚁、苍蝇、蜱虫、鼹鼠蟋蟀、跳蚤、虱子和蟑螂)以及针对诸如线虫等某些其它无脊椎动物的驱除剂或毒物将变得商业可行。将其用作木材和艺术品防腐剂来防止破坏木材的昆虫的破坏也将变得商业可行。通过引证的方式以全部内容并入本文的美国专利No.7,112,700提供了诺卡酮的高效且经济的不对称合成,并且减少了制造诺卡酮和衍生物的全程合成步骤。然而,诺卡酮的大规模工业化生产需要改进的工艺,其需要较少的纯化步骤、较低的溶剂需求、较少的副产物并且产生较高的收率。因此,需要进一步修改合成路径的改进以促进诺卡酮的可行商业生产。这种合成可以提供较低的生产成本并且利用商业上可行的且可扩展的反应。

发明内容

本发明提供了一种诺卡酮、二氢诺卡酮、四氢诺卡酮及其衍生物的新型廉价的立体选择性合成,其在特定步骤中利用臭氧氧化。方案I中提供了诺卡酮的一种示例性合成。

方案I

合成中使用的原材料廉价。主要原材料(-)-β-蒎烯是GRAS列表上的一种天然化合物。该合成比现有的诺卡酮合成方案更短、更便宜、更有效并且具有显著更高的产率。例如,通过避免氧化铝的使用、对使用柱色谱法来纯化中间产物的需求以及溶剂的有限使用,改进了诺卡酮的制备工艺。特别地,本发明通过利用臭氧氧化来转化(-)-β-蒎烯以高收率生产诺蒎酮,并且在继续合成之前不需要进一步纯化,由此改进了现有合成。本发明还利用臭氧氧化以将3-(1,3-二甲基-丁-3-烯基)-3,6,6-三甲基-二环[3.1.1]庚-2-酮(化合物6)转化为(1R,3S,5R)-3-[(1R)-1-甲基-3-氧代丁基]-3,6,6-三甲基二环[3.1.1]庚-2-酮(化合物7),其也不需要纯化来进行下一个合成步骤。

实验数据示出,方案I中概述的合成方案立体选择性地产生诺卡酮作为唯一产物。原材料被转化成这种单一产物。

通过这一合成制备的诺卡酮也可用作制备诺卡酮衍生物的中间体,其中一些也具有驱除白蚁和其它无脊椎动物害虫的活性。例如,根据K.Stevens et al.,“Odour character and threshold values of nootkatone and related compounds,”J.Sci.Fd.Agric.,第21卷,第590–593页(1970)的方法,诺卡酮可以被转化成异诺卡酮、四氢诺卡酮、11,12-二氢诺卡酮或1,10-二氢诺卡酮。根据B.Zhu et al.,“Structure-activity of valencoid derivatives and their repellence to the Formosan subterranean termite,”J.Chem.Ecol.,第29卷,第2695–2701页(2003)的方法,诺卡酮可以被转化为诺卡醇(nootkatol)。根据美国专利No.7,112,700的方法,诺卡酮可以被转化为异诺卡酮、二氢诺卡酮或四氢诺卡酮。

具体实施方式

通过以下非限制性的实施例进一步举例说明本发明。

实施例1A

6,6-二甲基-二环[3.3.1]庚烷-2-酮,诺蒎酮(化合物2):在-78℃下的干冰上冷冻溶于160ml CH2Cl2中的β-蒎烯(化合物1)(40.0g,294mmol)溶液,并且通过臭氧/O2鼓泡过夜直到蓝色持续存在。然后将氮气通入反应混合物中鼓泡30分钟。添加CH2Cl2(160ml),随后添加AcOH(80ml)。在0℃下,历经4小时以每份1g添加Zn(40g),向溶液中添加干冰以控制温度。将溶液在旋转蒸发仪上在30℃下旋转1小时。TLC(10%EtOAc/己烷,5%H2SO4/EtOH染剂)示出反应完全。然后添加300ml水并且搅拌10分钟。过滤除去Zn并且用CH2Cl2冲洗。分离出CH2Cl2层并且再次用水洗涤,然后使用饱和Na2CO3溶液洗涤,随后用盐水洗涤,用MgSO4干燥并且浓缩,获得33.1g(82%收率)无色油状物。将粗产物直接用于下一步骤。1H NMR:(250MHz,CDCl3),δ2.7–2.5(m,3H),2.42–2.29(m,1H),2.27–2.2(m,1H),2.13–1.87(m,2H),1.61–1.57(d,J=9.46,1H),1.33(s,3H),0.86(s,3H).13C NMR:(62.5MHz,CDCl3),δ214.77,57.94,41.10,40.30,32.57,25.88,25.17,22.10,21.31。

实施例1B

6,6-二甲基-二环[3.3.1]庚烷-2-酮,诺蒎酮(化合物2):在-78℃下将臭氧鼓泡通过溶于MeOH(7mL)中的β-蒎烯(化合物1)4.60mL(29.36mmol,1当量)溶液。3小时后,再用O2鼓泡30分钟,此后溶液中的特征蓝色表明臭氧过量和底物消耗。在添加(CH3)2S(3.7mL,49.91mmol,1.7当量)后,使混合物升温至室温并再搅拌12小时。将反应混合物转移到分液漏斗中并且使用CH2Cl2(10mL)和H2O(10mL)稀释。收集有机相并且使用CH2Cl2(2 x 10mL)萃取水层。用盐水洗涤合并的有机萃取物并且使用Na2SO4干燥。减压浓缩产生油状物。使用溶于己烷的3.5%至8.5%EtOAc作为洗涤剂,在硅胶上进行快速柱色谱,产生澄清油状物,通过NMR光谱证实为标题化合物。3.812g,93%收率。

实施例2

(1R,5R)-6,6-二甲基-3-E-亚乙基二环[3.3.1]庚烷-2-酮(化合物3):将诺蒎酮(9.9g,71.6mmol)和EtOH(172ml)的溶液冷却到5℃,搅拌的同时添加KOH(4.72g)。历经30分钟向反应中添加乙醛(5.74ml溶于43ml EtOH中)。以12h的间隔向溶液中添加四个额外部分的乙醛(相同量)。将该反应再搅拌6小时。添加对甲苯磺酸一水合物,然后在旋转蒸发仪上浓缩溶液。添加少量CH2Cl2以溶解残留物,然后添加己烷并且对溶液进行涡漩。将溶液转移到另一个烧瓶中并浓缩。快速色谱后(溶于己烷中的10%EtOAc),得到无色油状物(8.6g,73%收率)。使用Kugelrohr蒸馏(250℃,10mmHg)进一步纯化,得到6.5g产物(55%收率)。1H NMR:(250MHz,CDCl3),δ6.89–6.86(m,1H),2.59–2.56(m,4H),2.21(m,1H),1.81–1.77(m,3H),1.46(m,1H),1.35(s,3H),0.86(s,3H).13C NMR:(62.5MHz,CDCl3),δ202.48,134.76,134.00,55.5,40.5,38.98,27.9,27.8,26.2,21.6,13.7。

作为替代,在该合成中可以将NaOH代替KOH用作碱。

实施例3

3-亚乙基-6,6-二甲基-2-(2-甲基-烯丙基)-二环[3.1.1]庚烷-2-醇(化合物4):将Mg(2.04g,84mmol)置于具有THF(27ml)的圆底烧瓶中。回流的同时搅拌溶液。将甲代烯丙基氯(5.4ml,54mmol)与THF(9ml)混合并且缓慢地添加到Mg/THF悬浮液中。在添加前2ml后,当添加甲代烯丙基氯的过程中,当反应中释放的热保持溶液回流时,移去加热器。当添加完成时,将该加热器放回并且反应再回流30分钟。将溶液冷却到-78℃。将化合物3(2.94g,18mmol)与THF(9ml)混合并且历经2分钟逐滴添加到格氏溶液中。当TLC示出反应完成时(5%的EtOAc己烷溶液,产物斑点高于原材料斑点),使用45ml THF稀释反应,并且逐滴添加H2O(2ml)。涡漩之后,溶液变为澄清。将溶液转移到另一个烧瓶中,浓缩并进行快速色谱(5%的EtOAc己烷溶液)。分离产物3.43g(87%收率),为无色油状物。1H NMR:(250MHz,CDCl3),δ0.973(s 3H),1.05–1.01(d 1H),1.21(s 3H),1.60–1.57(d of t,3H),1.61(s 3H),1.92(s 3H),2.63–2.18(m 5H),4.82–4.65(m 2H),5.79–5.77(m 1H);13C NMR(62.5MHz,CDCl3)δ13.1,22.4,24.7,27.3,30.1,31.6,37.9,38.7,48.9,49.8,78.7,114.4,122.0,143.2,143.4。

实施例4

Oxy-Cope重排的一般程序(化合物4转化为化合物5):在氩气氛下,将无油氢化钾KH(4.1mmol)置于圆底烧瓶中。将新蒸馏的THF(35mL)插管到烧瓶中,并且在0℃下搅拌内容物。将化合物4(2.4mmol)添加到烧瓶中,之后立即通过插管添加18-冠-6的THF(2.4mmol)溶液。使混合物在0℃下反应约6小时。然后用磷酸盐缓冲溶液(pH=7)淬灭反应,并且用乙醚萃取内容物。用水和盐水洗涤合并的有机层,并且用Na2SO4干燥。过滤后,真空除去过量的溶剂,得到粗品3-(1,3-二甲基-丁-3-烯基)-6,6-二甲基-二环[3.1.1]庚烷-2-酮(化合物5)。通过柱色谱(使用90:10/己烷:EtOAc溶剂)获得纯化的化合物5(0.49g,71%)。1H NMR:(250MHz,CDCl3),δ0.79(s 3H),0.93–0.90(d 3H),1.32(s 3H),1.73–1.68(s和q重叠,5H),2.12–1.95(m3H),2.42–2.25(m 1H),2.47–2.43(m 1H),2.57–2.50(m 2H),2.65–2.60(m,-OH,1H),4.764.71(d 2H);13C NMR(62.5MHz,CDCl3)δ15.3,21.2,21.8,25.8,26.8,27.6,40.6,43.2,43.5,44.9,57.9,111.9,144.0,215.9。

在Oxy-Cope反应中可以使用替代性相转移剂或金属螯合剂代替18-冠-6以降低成本,例如季铵化合物(quats)、PEG[聚乙二醇]或三[2-(2-甲氧基乙氧基)乙基]胺。

实施例5

甲基化的一般程序(化合物5转化为化合物6):将氨基钠(3.64mmol,测定90%)置于装有回流冷凝器的圆底烧瓶中,抽真空,然后用氮气吹扫。将新蒸馏的苯(用Na/二苯甲酮干燥)插管到装置中,并用加热套将混合物加热。然后注入酮化合物5(1.2mmol),并将反应混合物连续搅拌回流5小时。然后将反应物冷却至45℃(通过热水浴),注入作为单独部分的碘甲烷(2.9mmol)(新蒸馏并用无水硫酸钙干燥)。2.5小时后注入另外一部分碘甲烷(1.57当量),并使溶液在45℃下反应额外的15小时。然后添加饱和NH4Cl水溶液以冷却溶液,并且使用乙醚萃取产物。然后用水和盐水洗涤有机层,并且使用Na2SO4干燥。在真空下除去过量溶剂,提供粗产物6。

作为替代,在该合成中可以将甲苯用作溶剂来代替苯。

3-(1,3-二甲基-丁-3-烯基)-3,6,6-三甲基-二环[3.1.1]庚烷-2-酮(化合物6):通过柱色谱(使用90:10/己烷:EtOAc溶剂)得到纯化的化合物6(0.25g,78%)。1H NMR:(250MHz,CDCl3),δ0.89–0.87(s和d重叠,6H),1.31(s 3H),1.33(s 3H),1.70(s 3H),1.80–1.73(m 2H),2.13–1.89(m 3H),2.30–2.22(q1H),2.49–2.36(m 1H),2.60–2.56(t 1H),3.12–3.01(brd,1H),4.72–4.67(d2H);13C NMR(62.5MHz,CDCl3)δ14.7,21.8,22.3,25.8,26.6,35.2,38.1,40.7,41.7,43.1,45.9,59.5,111.3,145.1,219.2。

实施例6

(1R,3S,5R)-3-[(1R)-1-甲基-3-氧代丁基]-3,6,6-三甲基二环[3.1.1]庚烷-2-酮(化合物7):从化合物6开始:在-78℃的干冰上冷冻化合物6(0.25g,1.1mmol)的2ml CH2Cl2溶液,并且使用臭氧/O2鼓泡过夜直到获得持久的蓝色。然后将氮气通入反应混合物中鼓泡30分钟。然后添加2ml CH2Cl2,随后添加1ml AcOH。在0℃下,历经4小时以每份100mg添加0.5g锌。然后在30℃下在旋转蒸发仪上将溶液旋转1小时。TLC(15%EtOAc/己烷和5%H2SO4/EtOH TLC染剂)示出反应完全。然后添加3ml水并且搅拌10分钟。过滤除去Zn并且用CH2Cl2冲洗。分离出CH2Cl2层并且再次用水洗涤,然后使用饱和Na2CO3溶液洗涤,随后用盐水洗涤。用MgSO4干燥,然后浓缩,获得0.2g(90%收率)无色油状物,并且鉴定为化合物7。将粗产物直接用于下一步骤而不需要纯化。1H NMR:(250MHz,CDCl3),δ0.85–0.82(d和s重叠,6H),1.17(s 3H),1.24(s 3H),1.78–1.72(m 2H),1.93–1.85(2br s,1H),2.09–1.96(m 1H),2.09(s 3H),2.24–2.12(m 1H),2.42–2.27(m 1H),2.58–2.47(m 2H),3.58–3.52(m 1H);13C NMR(62.5MHz,CDCl3)δ16.4,22.6,24.8,25.7,26.3,30.4,35.1,36.9,41.6,42.7,44.6,47.3,59.5,208.2,219.9。

替代地,在臭氧氧化完成后,可以添加(CH3)2S,接着使混合物升温至室温并搅拌直至反应完成。使用CH2Cl2和H2O稀释反应混合物,收集有机相并且使用CH2Cl2萃取水层。使用盐水洗涤合并的有机萃取物,使用Na2SO4干燥并且浓缩。如有必要,产物可以进一步纯化。

实施例7

(4R,4aS,6R)-4,4a,5,6,7,8-六氢-4,4a-二甲基-6-(1-氯-1-甲基乙基)-2(3H)-萘酮(化合物8):在干燥的三颈圆底烧瓶上装配多孔气体玻璃料和两个气流适配器。在稳定的氩气流下,向烧瓶中添加溶于冰醋酸(99.6%,Aldrich)中的纯化的化合物7的溶液。在室温下,通过多孔玻璃料鼓泡无水气态HCl(气阀瓶,Aldrich)直到溶液由HCl饱和。在室温下搅拌21小时之后,将混合物倒入到冰中,然后使用二氯甲烷萃取。有机层使用水洗涤,用盐水洗涤,用MgSO4干燥,过滤并且通过旋转蒸发仪浓缩,得到油状形式的粗物质。

用己烷重结晶,提供化合物8,为无色针状物。收率74%。1H NMR:(250MHz,CDCl3),δ5.75(s,1H),2.53–2.34(m,2H),2.31–2.22(m,2H),2.20–1.91(m,4H),1.59(d,6H,CH3,J=4.3Hz),1.39–1.25(m,2H),1.10(s,3H,CH3),1.00–0.97(d,3H,CH3,J=6.76Hz);13C NMR(62.5MHz,CDCl3)δ199.7,170.1,124.9,74.1,45.8,42.4,40.8,40.5,39.5,32.3,30.9,30.5,28.5,17.3,15.3。

实施例8

诺卡酮(化合物9):将乙酸钠三水合物(0.22g,1.6mmol)添加到装有回流冷凝器的单颈圆底烧瓶中。将溶解于冰醋酸(4mL)中的氯烯酮化合物8(0.14g,0.54mmol)的溶液注射到烧瓶中,并且将混合物加热到100℃,并且在该温度下保持2小时。然后将反应混合物冷却至室温,倒入到冷水中,并且使用氯仿萃取。然后使用连续部分的2%KOH水溶液、2N HCl、NaHCO3和盐水洗涤有机层,然后用MgSO4干燥。通过旋转蒸发仪除去过量溶剂,得到诺卡酮,为黄色油状物(93%)。由于Oxy-Cope反应和甲基化均提供所需的对映体产物,因此最终的诺卡酮产物的对映体纯度与β-蒎烯起始产品的对映体纯度相比未发生变化。定性而言,所述合成的诺卡酮的香气与衍生自其他来源的诺卡酮的香气相同。NMR数据与先前报道的诺卡酮的NMR数据相匹配:1H NMR:(250MHz,CDCl3),δ5.77(s,1H),4.75–4.72(m,2H),2.62–2.43(m,1H),2.41–2.22(m,4H),2.09–1.87(M,3H),1.46–1.38(m,1H),1.12–1.10(m,4H),0.98(d,3H)。

本说明书中引用的所有参考文献的全部公开内容在此通过引证方式并入。然而,如果发生不可调和的冲突,则以本说明书为准。

用于合成诺卡酮、二氢诺卡酮和四氢诺卡酮的反应序列.pdf_第1页
第1页 / 共10页
用于合成诺卡酮、二氢诺卡酮和四氢诺卡酮的反应序列.pdf_第2页
第2页 / 共10页
用于合成诺卡酮、二氢诺卡酮和四氢诺卡酮的反应序列.pdf_第3页
第3页 / 共10页
点击查看更多>>
资源描述

《用于合成诺卡酮、二氢诺卡酮和四氢诺卡酮的反应序列.pdf》由会员分享,可在线阅读,更多相关《用于合成诺卡酮、二氢诺卡酮和四氢诺卡酮的反应序列.pdf(10页珍藏版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201680072317.3 (22)申请日 2016.12.08 (30)优先权数据 62/265,723 2015.12.10 US (85)PCT国际申请进入国家阶段日 2018.06.08 (86)PCT国际申请的申请数据 PCT/US2016/065598 2016.12.08 (87)PCT国际申请的公布数据 WO2017/100437 EN 2017.06.15 (71)申请人 路易斯安那州立大学监事会和农机 学院 地址 美国路易斯安那州 (72)发明人 罗格莱恩 。

2、(74)专利代理机构 北京康信知识产权代理有限 责任公司 11240 代理人 沈敬亭 郑希元 (51)Int.Cl. A61K 31/12(2006.01) A61K 31/35(2006.01) A61K 31/122(2006.01) C07C 45/00(2006.01) C07C 45/27(2006.01) C07C 45/40(2006.01) (54)发明名称 用于合成诺卡酮、 二氢诺卡酮和四氢诺卡酮 的反应序列 (57)摘要 公开了一种用于诺卡酮、 四氢诺卡酮及其衍 生物的廉价立体选择性合成, 该合成利用臭氧氧 化。 在该合成中使用的原材料廉价并且反应在商 业上可行并且经得起扩。

3、大规模。 主要原材料(-)- -蒎烯在GRAS列表(通常被认为是安全的)上。 权利要求书3页 说明书6页 CN 108430464 A 2018.08.21 CN 108430464 A 1.一种合成诺卡酮的方法, 包括以下步骤: 臭氧氧化 -蒎烯(化合物1) 以生产诺蒎酮(化合物2) 2.根据权利要求1所述的方法, 其中所述臭氧氧化的步骤包括: 在MeOH中使用臭氧/O2氧化 -蒎烯; 和 添加(CH3)2S以生产诺蒎酮。 3.根据权利要求1所述的方法, 其中所述臭氧氧化的步骤包括: 在CH2Cl2中使用臭氧/O2氧化 -蒎烯; 和 添加AcOH和锌以生产诺蒎酮。 4.根据权利要求1所述的方。

4、法, 进一步包括以下步骤: 将诺蒎酮转化为化合物6 和臭氧氧化化合物6以生产化合物7 5.根据权利要求4所述的方法, 其中所述化合物6的臭氧氧化包括: 在MeOH中使用臭氧/O2氧化化合物6; 和添加(CH3)2S以生产化合物7。 6.根据权利要求4所述的方法, 其中所述化合物6的臭氧氧化包括: 在CH2Cl2中使用臭氧/O2氧化化合物6; 和 添加AcOH和锌以生产化合物7。 7.一种制备化合物7的方法, 包括以下步骤: 权 利 要 求 书 1/3 页 2 CN 108430464 A 2 臭氧氧化化合物6 8.根据权利要求7所述的方法, 其中所述化合物6的臭氧氧化包括: 在CH2Cl2中使。

5、用臭氧/O2氧化化合物6; 和 添加AcOH和锌以生产化合物7。 9.根据权利要求7所述的方法, 其中所述化合物6的臭氧氧化包括: 在MeOH中使用臭氧/O2氧化化合物6; 和 添加(CH3)2S以生产化合物7。 10.根据权利要求7所述的方法, 进一步包括以下步骤: 臭氧氧化 -蒎烯(化合物1) 以生产诺蒎酮(化合物2) 和 将诺蒎酮转化为化合物6。 11.根据权利要求10所述的方法, 其中所述臭氧氧化的步骤包括: 在MeOH中使用臭氧/O2氧化化合物1; 和 添加(CH3)2S以生产化合物2。 12.根据权利要求10所述的方法, 其中所述臭氧氧化的步骤包括: 在CH2Cl2中使用臭氧/O2。

6、氧化 -蒎烯; 和 添加AcOH和锌以生产诺蒎酮。 13.一种制备诺卡酮衍生物的方法, 包括以下步骤: 臭氧氧化 -蒎烯(化合物1) 以生产诺蒎酮(化合物2) 14.根据权利要求13所述的方法, 其中所述臭氧氧化的步骤包括: 在MeOH中使用臭氧/O2氧化 -蒎烯; 和 权 利 要 求 书 2/3 页 3 CN 108430464 A 3 添加(CH3)2S以生产诺蒎酮。 15.根据权利要求13所述的方法, 其中所述臭氧氧化的步骤包括: 在CH2Cl2中使用臭氧/O2氧化 -蒎烯; 和 添加AcOH和锌以生产诺蒎酮。 16.根据权利要求13所述的方法, 进一步包括以下步骤: 将诺蒎酮转化为化合。

7、物6 和 臭氧氧化化合物6以生产化合物7 17.根据权利要求16所述的方法, 其中所述臭氧氧化的步骤包括: 在MeOH中使用臭氧/O2氧化化合物6; 和 添加(CH3)2S以生产化合物7。 18.根据权利要求1所述的方法, 其中所述化合物6的臭氧氧化包括: 在CH2Cl2中使用臭氧/O2氧化化合物6; 和 添加AcOH和锌以生产化合物7。 19.根据权利要求13所述的方法, 其中所述诺卡酮衍生物选自由以下组成的组: 异诺卡 酮、 四氢诺卡酮、 11,12-二氢诺卡酮、 1,10-二氢诺卡酮、 诺卡醇和二氢诺卡酮。 20.根据权利要求19所述的方法, 其中所述诺卡酮衍生物选自由以下组成的组: 异。

8、诺卡 酮、 二氢诺卡酮和四氢诺卡酮。 权 利 要 求 书 3/3 页 4 CN 108430464 A 4 用于合成诺卡酮、 二氢诺卡酮和四氢诺卡酮的反应序列 0001 优选权 0002 本申请要求2015年12月10日提交的美国临时申请No.62/265,723的优先权, 其内 容在此通过引证的方式将其全部内容结合。 技术领域 0003 本发明涉及使用臭氧氧化合成诺卡酮及其衍生物。 背景技术 0004 具有以下结构的诺卡酮(方案I中的化合物9)在包括雪松、 香根草和柑橘油的某些 植物源中天然存在。 诺卡酮具有让人想起葡萄柚的芳香, 并且在商业上用作调味料或芳香 成分。 诺卡酮对人体和其他哺乳。

9、动物无毒, 被FDA视为GRAS物质。 0005 0006 诺卡酮还具有作为针对各种节肢动物以及针对包括线虫在内的某些其他无脊椎 动物的驱除剂或毒物的活性, 所述节肢动物包括白蚁、 蚂蚁、 苍蝇、 蚊子、 跳蚤、 虱子、 蜱虫、 鼹鼠蟋蟀和蟑螂。 自从现在的驱虫剂的主要成分DEET以来, 尚无新的商业可行的驱虫剂上 市。 如由蜱虫引起的莱姆病, 由蚊子引起的登革热、 基孔肯雅热、 寨卡和疟疾等疾病的传播 驱使需要更多产品来驱除这些昆虫。 诺卡酮也充当环保木材和艺术的防腐剂。 参见例如国 际专利申请公开No.WO 01/28343; 和美国专利No.6,906,108; 其中的每一个通过引证的方。

10、 式将其全部内容结合与此。 0007 商业上制备诺卡酮的过高成本妨碍了其在调味料和香料之外的这些和其它用途 的更广泛用途。 虽然诺卡酮是已知的且已经被使用了一段时间, 商业上制备该化合物及其 衍生物的手段, 特别是通过合成方法, 一直难以捉摸。 因此, 对诺卡酮、 四氢诺卡酮和其它诺 卡酮衍生物的有效经济合成的需求长期未得到满足。 成功的合成优选为立体选择性的, 从 而产物具有所需的生物活性; 并且以GRAS(通常被认为是安全的)列表上的原材料为基础, 以减轻监管批准的负担。 迄今为止, 商业上销售的大多数诺卡酮是通过橙油组分瓦伦烯 (valencene)的半合成氧化生产的。 瓦伦烯是一种昂贵。

11、的原材料, 但还有待开发避免其使用 的可行的商业化生产。 0008 用于制备诺卡酮的现有合成方法具有以下一个或多个缺点: 合成冗长; 合成需要 相对昂贵的原材料; 产率低; 需要中间体的纯化; 过量溶剂的使用造成商业生产中的废物问 题; 难以处理副产物; 合成产生出外消旋混合物; 或一种或多种原材料不在GRAS列表中。 0009 因此, 需要一种不太昂贵的用于立体选择性合成诺卡酮的方法。 虽然目前诺卡酮 的高价在某些使用领域(如调味料和香料)中可能是可容忍的, 但缺少不那么昂贵的诺卡酮 来源阻碍了在其它领域的商业应用, 例如作为针对白蚁、 蜱虫、 蚊子或其它害虫的驱除剂或 毒物。 如果诺卡酮能。

12、够以比目前情况远更廉价地生产, 将其及其衍生物用作针对各种节肢 说 明 书 1/6 页 5 CN 108430464 A 5 动物(包括白蚁、 蚂蚁、 苍蝇、 蜱虫、 鼹鼠蟋蟀、 跳蚤、 虱子和蟑螂)以及针对诸如线虫等某些 其它无脊椎动物的驱除剂或毒物将变得商业可行。 将其用作木材和艺术品防腐剂来防止破 坏木材的昆虫的破坏也将变得商业可行。 通过引证的方式以全部内容并入本文的美国专利 No.7,112,700提供了诺卡酮的高效且经济的不对称合成, 并且减少了制造诺卡酮和衍生物 的全程合成步骤。 然而, 诺卡酮的大规模工业化生产需要改进的工艺, 其需要较少的纯化步 骤、 较低的溶剂需求、 较少的。

13、副产物并且产生较高的收率。 因此, 需要进一步修改合成路径 的改进以促进诺卡酮的可行商业生产。 这种合成可以提供较低的生产成本并且利用商业上 可行的且可扩展的反应。 发明内容 0010 本发明提供了一种诺卡酮、 二氢诺卡酮、 四氢诺卡酮及其衍生物的新型廉价的立 体选择性合成, 其在特定步骤中利用臭氧氧化。 方案I中提供了诺卡酮的一种示例性合成。 0011 方案I 0012 0013 合成中使用的原材料廉价。 主要原材料(-)- -蒎烯是GRAS列表上的一种天然化合 物。 该合成比现有的诺卡酮合成方案更短、 更便宜、 更有效并且具有显著更高的产率。 例如, 通过避免氧化铝的使用、 对使用柱色谱法。

14、来纯化中间产物的需求以及溶剂的有限使用, 改 进了诺卡酮的制备工艺。 特别地, 本发明通过利用臭氧氧化来转化(-)- -蒎烯以高收率生 产诺蒎酮, 并且在继续合成之前不需要进一步纯化, 由此改进了现有合成。 本发明还利用臭 说 明 书 2/6 页 6 CN 108430464 A 6 氧氧化以将3-(1,3-二甲基-丁-3-烯基)-3,6,6-三甲基-二环3.1.1庚-2-酮(化合物6)转 化为(1R,3S,5R)-3-(1R)-1-甲基-3-氧代丁基-3,6,6-三甲基二环3.1.1庚-2-酮(化合 物7), 其也不需要纯化来进行下一个合成步骤。 0014 实验数据示出, 方案I中概述的合成。

15、方案立体选择性地产生诺卡酮作为唯一产物。 原材料被转化成这种单一产物。 0015 通过这一合成制备的诺卡酮也可用作制备诺卡酮衍生物的中间体, 其中一些也具 有驱除白蚁和其它无脊椎动物害虫的活性。 例如, 根据K .Stevens et al ., “Odour character and threshold values of nootkatone and related compounds ,” J.Sci.Fd.Agric.,第21卷,第590593页(1970)的方法, 诺卡酮可以被转化成异诺卡酮、 四 氢诺卡酮、 11,12-二氢诺卡酮或1,10-二氢诺卡酮。 根据B.Zhu et a。

16、l., “Structure- activity of valencoid derivatives and their repellence to the Formosan subterranean termite,” J.Chem.Ecol.,第29卷,第26952701页(2003)的方法, 诺卡酮可 以被转化为诺卡醇(nootkatol)。 根据美国专利No.7,112,700的方法, 诺卡酮可以被转化为 异诺卡酮、 二氢诺卡酮或四氢诺卡酮。 具体实施方式 0016 通过以下非限制性的实施例进一步举例说明本发明。 0017 实施例1A 0018 6,6-二甲基-二环3.3.1庚烷-2-酮。

17、, 诺蒎酮(化合物2): 在-78下的干冰上冷冻 溶于160ml CH2Cl2中的 -蒎烯(化合物1)(40.0g,294mmol)溶液, 并且通过臭氧/O2鼓泡过夜 直到蓝色持续存在。 然后将氮气通入反应混合物中鼓泡30分钟。 添加CH2Cl2(160ml), 随后添 加AcOH(80ml)。 在0下, 历经4小时以每份1g添加Zn(40g), 向溶液中添加干冰以控制温度。 将溶液在旋转蒸发仪上在30下旋转1小时。 TLC(10EtOAc/己烷, 5H2SO4/EtOH染剂)示 出反应完全。 然后添加300ml水并且搅拌10分钟。 过滤除去Zn并且用CH2Cl2冲洗。 分离出 CH2Cl2层。

18、并且再次用水洗涤, 然后使用饱和Na2CO3溶液洗涤, 随后用盐水洗涤, 用MgSO4干燥 并且浓缩, 获得33.1g(82收率)无色油状物。 将粗产物直接用于下一步骤。 1H NMR: (250MHz,CDCl3), 2.72.5(m,3H),2.422.29(m,1H),2.272.2(m,1H),2.131.87(m,2H), 1.611.57(d,J9.46,1H),1.33(s,3H),0.86(s,3H). 13C NMR:(62.5MHz,CDCl3), 214.77, 57.94,41.10,40.30,32.57,25.88,25.17,22.10,21.31。 0019 实。

19、施例1B 0020 6,6-二甲基-二环3.3.1庚烷-2-酮, 诺蒎酮(化合物2): 在-78下将臭氧鼓泡通 过溶于MeOH(7mL)中的 -蒎烯(化合物1)4.60mL(29.36mmol,1当量)溶液。 3小时后, 再用O2 鼓泡30分钟, 此后溶液中的特征蓝色表明臭氧过量和底物消耗。 在添加(CH3)2S(3.7mL, 49.91mmol,1.7当量)后, 使混合物升温至室温并再搅拌12小时。 将反应混合物转移到分液 漏斗中并且使用CH2Cl2(10mL)和H2O(10mL)稀释。 收集有机相并且使用CH2Cl2(2 x 10mL)萃 取水层。 用盐水洗涤合并的有机萃取物并且使用Na2。

20、SO4干燥。 减压浓缩产生油状物。 使用溶 于己烷的3.5至8.5EtOAc作为洗涤剂, 在硅胶上进行快速柱色谱, 产生澄清油状物, 通 过NMR光谱证实为标题化合物。 3.812g, 93收率。 0021 实施例2 说 明 书 3/6 页 7 CN 108430464 A 7 0022 (1R,5R)-6,6-二甲基-3-E-亚乙基二环3.3.1庚烷-2-酮(化合物3): 将诺蒎酮 (9.9g,71.6mmol)和EtOH(172ml)的溶液冷却到5, 搅拌的同时添加KOH(4.72g)。 历经30分 钟向反应中添加乙醛(5.74ml溶于43ml EtOH中)。 以12h的间隔向溶液中添加四。

21、个额外部分 的乙醛(相同量)。 将该反应再搅拌6小时。 添加对甲苯磺酸一水合物, 然后在旋转蒸发仪上 浓缩溶液。 添加少量CH2Cl2以溶解残留物, 然后添加己烷并且对溶液进行涡漩。 将溶液转移 到另一个烧瓶中并浓缩。 快速色谱后(溶于己烷中的10EtOAc), 得到无色油状物(8.6g, 73收率)。 使用Kugelrohr蒸馏(250,10mmHg)进一步纯化, 得到6.5g产物(55收率)。 1H NMR:(250MHz,CDCl3), 6.896.86(m,1H),2.592.56(m,4H),2.21(m,1H),1.811.77(m, 3H),1.46(m,1H),1.35(s,3。

22、H),0.86(s,3H).13C NMR:(62.5MHz,CDCl3), 202.48,134.76, 134.00,55.5,40.5,38.98,27.9,27.8,26.2,21.6,13.7。 0023 作为替代, 在该合成中可以将NaOH代替KOH用作碱。 0024 实施例3 0025 3-亚乙基-6,6-二甲基-2-(2-甲基-烯丙基)-二环3.1.1庚烷-2-醇(化合物4): 将Mg(2.04g,84mmol)置于具有THF(27ml)的圆底烧瓶中。 回流的同时搅拌溶液。 将甲代烯丙 基氯(5.4ml,54mmol)与THF(9ml)混合并且缓慢地添加到Mg/THF悬浮液中。。

23、 在添加前2ml后, 当添加甲代烯丙基氯的过程中, 当反应中释放的热保持溶液回流时, 移去加热器。 当添加完 成时, 将该加热器放回并且反应再回流30分钟。 将溶液冷却到-78。 将化合物3(2.94g, 18mmol)与THF(9ml)混合并且历经2分钟逐滴添加到格氏溶液中。 当TLC示出反应完成时 (5的EtOAc己烷溶液, 产物斑点高于原材料斑点), 使用45ml THF稀释反应, 并且逐滴添加 H2O(2ml)。 涡漩之后, 溶液变为澄清。 将溶液转移到另一个烧瓶中, 浓缩并进行快速色谱 (5的EtOAc己烷溶液)。 分离产物3.43g(87收率), 为无色油状物。 1H NMR:(2。

24、50MHz, CDCl3), 0.973(s 3H),1.051.01(d 1H),1.21(s 3H),1.601.57(d of t,3H),1.61(s 3H) ,1.92(s 3H) ,2.632.18(m 5H) ,4.824.65(m 2H) ,5.795.77(m 1H); 13C NMR (62.5MHz,CDCl3) 13.1,22.4,24.7,27.3,30.1,31.6,37.9,38.7,48.9,49.8,78.7,114.4, 122.0,143.2,143.4。 0026 实施例4 0027 Oxy-Cope重排的一般程序(化合物4转化为化合物5): 在氩气氛下。

25、, 将无油氢化钾 KH(4.1mmol)置于圆底烧瓶中。 将新蒸馏的THF(35mL)插管到烧瓶中, 并且在0下搅拌内容 物。 将化合物4(2.4mmol)添加到烧瓶中, 之后立即通过插管添加18-冠-6的THF(2.4mmol)溶 液。 使混合物在0下反应约6小时。 然后用磷酸盐缓冲溶液(pH7)淬灭反应, 并且用乙醚 萃取内容物。 用水和盐水洗涤合并的有机层, 并且用Na2SO4干燥。 过滤后, 真空除去过量的溶 剂, 得到粗品3-(1,3-二甲基-丁-3-烯基)-6,6-二甲基-二环3.1.1庚烷-2-酮(化合物5)。 通过柱色谱(使用90:10/己烷:EtOAc溶剂)获得纯化的化合物5。

26、(0.49g,71)。 1H NMR: (250MHz,CDCl3), 0.79(s 3H),0.930.90(d 3H),1.32(s 3H),1.731.68(s和q重叠,5H), 2.121.95(m3H),2.422.25(m 1H),2.472.43(m 1H),2.572.50(m 2H),2.652.60(m,- OH,1H),4.764.71(d 2H); 13C NMR(62.5MHz,CDCl3) 15.3,21.2,21.8,25.8,26.8,27.6, 40.6,43.2,43.5,44.9,57.9,111.9,144.0,215.9。 0028 在Oxy-Cope。

27、反应中可以使用替代性相转移剂或金属螯合剂代替18-冠-6以降低成 本, 例如季铵化合物(quats)、 PEG聚乙二醇或三2-(2-甲氧基乙氧基)乙基胺。 说 明 书 4/6 页 8 CN 108430464 A 8 0029 实施例5 0030 甲基化的一般程序(化合物5转化为化合物6): 将氨基钠(3.64mmol,测定90)置 于装有回流冷凝器的圆底烧瓶中, 抽真空, 然后用氮气吹扫。 将新蒸馏的苯(用Na/二苯甲酮 干燥)插管到装置中, 并用加热套将混合物加热。 然后注入酮化合物5(1.2mmol), 并将反应 混合物连续搅拌回流5小时。 然后将反应物冷却至45(通过热水浴), 注入作。

28、为单独部分的 碘甲烷(2.9mmol)(新蒸馏并用无水硫酸钙干燥)。 2.5小时后注入另外一部分碘甲烷(1.57 当量), 并使溶液在45下反应额外的15小时。 然后添加饱和NH4Cl水溶液以冷却溶液, 并且 使用乙醚萃取产物。 然后用水和盐水洗涤有机层, 并且使用Na2SO4干燥。 在真空下除去过量 溶剂, 提供粗产物6。 0031 作为替代, 在该合成中可以将甲苯用作溶剂来代替苯。 0032 3-(1,3-二甲基-丁-3-烯基)-3,6,6-三甲基-二环3.1.1庚烷-2-酮(化合物6): 通过柱色谱(使用90:10/己烷:EtOAc溶剂)得到纯化的化合物6(0.25g,78)。 1H N。

29、MR: (250MHz,CDCl3), 0.890.87(s和d重叠,6H),1.31(s 3H),1.33(s 3H),1.70(s 3H),1.80 1.73(m 2H),2.131.89(m 3H),2.302.22(q1H),2.492.36(m 1H),2.602.56(t 1H), 3.123.01(brd,1H),4.724.67(d2H); 13C NMR(62.5MHz,CDCl3) 14.7,21.8,22.3,25.8, 26.6,35.2,38.1,40.7,41.7,43.1,45.9,59.5,111.3,145.1,219.2。 0033 实施例6 0034 (1。

30、R,3S,5R)-3-(1R)-1-甲基-3-氧代丁基-3,6,6-三甲基二环3.1.1庚烷-2- 酮(化合物7): 从化合物6开始: 在-78的干冰上冷冻化合物6(0.25g,1.1mmol)的2ml CH2Cl2溶液, 并且使用臭氧/O2鼓泡过夜直到获得持久的蓝色。 然后将氮气通入反应混合物 中鼓泡30分钟。 然后添加2ml CH2Cl2, 随后添加1ml AcOH。 在0下, 历经4小时以每份100mg 添加0.5g锌。 然后在30下在旋转蒸发仪上将溶液旋转1小时。 TLC(15EtOAc/己烷和5 H2SO4/EtOH TLC染剂)示出反应完全。 然后添加3ml水并且搅拌10分钟。 过。

31、滤除去Zn并且用 CH2Cl2冲洗。 分离出CH2Cl2层并且再次用水洗涤, 然后使用饱和Na2CO3溶液洗涤, 随后用盐水 洗涤。 用MgSO4干燥, 然后浓缩, 获得0.2g(90收率)无色油状物, 并且鉴定为化合物7。 将粗 产物直接用于下一步骤而不需要纯化。 1H NMR:(250MHz,CDCl3), 0.850.82(d和s重叠, 6H) ,1.17(s 3H),1.24(s 3H) ,1.781.72(m 2H),1.931.85(2br s,1H) ,2.091.96(m 1H),2.09(s 3H),2.242.12(m 1H),2.422.27(m 1H),2.582.47。

32、(m 2H),3.583.52(m 1H); 13C NMR(62.5MHz,CDCl3) 16.4,22.6,24.8,25.7,26.3,30.4,35.1,36.9,41.6,42.7, 44.6,47.3,59.5,208.2,219.9。 0035 替代地, 在臭氧氧化完成后, 可以添加(CH3)2S, 接着使混合物升温至室温并搅拌 直至反应完成。 使用CH2Cl2和H2O稀释反应混合物, 收集有机相并且使用CH2Cl2萃取水层。 使 用盐水洗涤合并的有机萃取物, 使用Na2SO4干燥并且浓缩。 如有必要, 产物可以进一步纯化。 0036 实施例7 0037 (4R,4aS,6R)-。

33、4,4a,5,6,7,8-六氢-4,4a-二甲基-6-(1-氯-1-甲基乙基)-2(3H)- 萘酮(化合物8): 在干燥的三颈圆底烧瓶上装配多孔气体玻璃料和两个气流适配器。 在稳定 的氩气流下, 向烧瓶中添加溶于冰醋酸(99.6,Aldrich)中的纯化的化合物7的溶液。 在室 温下, 通过多孔玻璃料鼓泡无水气态HCl(气阀瓶,Aldrich)直到溶液由HCl饱和。 在室温下 搅拌21小时之后, 将混合物倒入到冰中, 然后使用二氯甲烷萃取。 有机层使用水洗涤, 用盐 说 明 书 5/6 页 9 CN 108430464 A 9 水洗涤, 用MgSO4干燥, 过滤并且通过旋转蒸发仪浓缩, 得到油。

34、状形式的粗物质。 0038 用己烷重结晶, 提供化合物8, 为无色针状物。 收率74。 1H NMR:(250MHz,CDCl3), 5.75(s,1H),2.532.34(m,2H),2.312.22(m,2H),2.201.91(m,4H),1.59(d,6H,CH3,J 4.3Hz),1.391.25(m,2H),1.10(s,3H,CH3),1.000.97(d,3H,CH3,J6.76Hz); 13C NMR (62.5MHz,CDCl3) 199.7,170.1,124.9,74.1,45.8,42.4,40.8,40.5,39.5,32.3,30.9, 30.5,28.5,17.。

35、3,15.3。 0039 实施例8 0040 诺卡酮(化合物9): 将乙酸钠三水合物(0.22g,1.6mmol)添加到装有回流冷凝器的 单颈圆底烧瓶中。 将溶解于冰醋酸(4mL)中的氯烯酮化合物8(0.14g,0.54mmol)的溶液注射 到烧瓶中, 并且将混合物加热到100, 并且在该温度下保持2小时。 然后将反应混合物冷却 至室温, 倒入到冷水中, 并且使用氯仿萃取。 然后使用连续部分的2KOH水溶液、 2N HCl、 NaHCO3和盐水洗涤有机层, 然后用MgSO4干燥。 通过旋转蒸发仪除去过量溶剂, 得到诺卡酮, 为黄色油状物(93)。 由于Oxy-Cope反应和甲基化均提供所需的对。

36、映体产物, 因此最终的 诺卡酮产物的对映体纯度与 -蒎烯起始产品的对映体纯度相比未发生变化。 定性而言, 所 述合成的诺卡酮的香气与衍生自其他来源的诺卡酮的香气相同。 NMR数据与先前报道的诺 卡酮的NMR数据相匹配: 1H NMR:(250MHz,CDCl3), 5.77(s,1H),4.754.72(m,2H),2.62 2.43(m,1H),2.412.22(m,4H),2.091.87(M,3H),1.461.38(m,1H),1.121.10(m,4H), 0.98(d,3H)。 0041 本说明书中引用的所有参考文献的全部公开内容在此通过引证方式并入。 然而, 如果发生不可调和的冲突, 则以本说明书为准。 说 明 书 6/6 页 10 CN 108430464 A 10 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 >


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1