《压缩感知框架下的快速弥散张量成像方法及系统.pdf》由会员分享,可在线阅读,更多相关《压缩感知框架下的快速弥散张量成像方法及系统.pdf(10页珍藏版)》请在专利查询网上搜索。
1、(19)中华人民共和国国家知识产权局 (12)发明专利 (10)授权公告号 (45)授权公告日 (21)申请号 201310307016.2 (22)申请日 2013.07.19 (65)同一申请的已公布的文献号 申请公布号 CN 103356193 A (43)申请公布日 2013.10.23 (73)专利权人 哈尔滨工业大学深圳研究生院 地址 518000 广东省深圳市南山区西丽镇 深圳大学城哈工大校区 (72)发明人 马婷 吴绍华 张利敏 (74)专利代理机构 深圳市科吉华烽知识产权事 务所(普通合伙) 44248 代理人 邓扬 于标 (51)Int.Cl. A61B 5/055(200。
2、6.01) (56)对比文件 CN 102389309 A,2012.03.28, CN 101975935 A,2011.02.16, CN 102018514 A,2011.04.20, US 2009/0278539 A1,2009.11.12, US 2013/0121550 A1,2013.05.16, CN 102309328 A,2012.01.11, WO 2012/127341 A1,2012.09.27, 审查员 洪虹 (54)发明名称 压缩感知框架下的快速弥散张量成像方法 及系统 (57)摘要 本发明提供了一种压缩感知框架下的快速 弥散张量成像方法及系统, 该快速弥散张量。
3、成像 方法包括A.初始化第一个弥散梯度对应的采样 掩膜mask1, 并且采用射线型采样轨迹; B.将第一 个弥散梯度对应的采样掩模mask1旋转一固定角 度, 得到第二个弥散梯度对应的采样掩膜mask2, 将第二个弥散梯度对应的采样掩膜mask2以同样 方向旋转同一固定角度获得第三个弥散梯度对 应的采样掩膜mask3, 以此类推共获得L个采样掩 膜mask。 本发明的有益效果是本发明在采样点数 相同的情况下, 本发明可以通过重建, 获得更高 质量的弥散图像。 换句话, 就是在获得相同的图 像质量时, 新方案所需的采样点更少, 降低采样 时间, 实现加速成像的目的。 权利要求书2页 说明书6页 。
4、附图1页 CN 103356193 B 2016.12.28 CN 103356193 B 1.一种压缩感知框架下的快速弥散张量成像方法, 其特征在于, 针对有M个层面, 每个 层面有L个梯度的弥散张量成像系统, 即: 共重建M*L幅图像, 对于每个层面包括执行如下步 骤: A.初始化第一个弥散梯度对应的采样掩膜mask1, 并且采用射线型采样轨迹; B.将第一个弥散梯度对应的采样掩模mask1旋转一固定角度, 得到第二个弥散梯度对 应的采样掩膜mask2,将第二个弥散梯度对应的采样掩膜mask2以同样方向旋转同一固定角 度获得第三个弥散梯度对应的采样掩膜mask3, 以此类推共获得L个采样掩。
5、膜mask, 根据各 个采样掩膜mask, 获得各测量矩阵i, 所述L为弥散梯度数量; C.利用生成的测量矩阵分别获取对应各弥散梯度k空间的测量值yi; D.针对在第n个层面的第i个梯度的图像数据, 利用同一层面上第1到i-1、 与i+1到L个 梯度的加权数据对其进行补偿, 作为目标图像的新的测量值yi_new, 并获得测量值所对应的 测量矩阵i_new, 构造稀疏小波变换; E.利用前面获得的yi_new与i_new, 带入压缩感知非 线性共轭梯度算法获得各个弥散张量图像; 通过重复步骤A至步骤E, 能够获得M*L个弥散图像; i的范围是1至L。 2.根据权利要求1所述的快速弥散张量成像方法。
6、, 其特征在于, 在所述步骤B中, 旋转固 定角度为旋转 /LN角度; 测量矩阵中采样射线数量为N, 则采样轨迹中相邻两条射线之间的 夹角为 /N。 3.根据权利要求2所述的快速弥散张量成像方法, 其特征在于, 在所述步骤D中, 其中wj表示加权系数, 根据获得的yi_new, 获得相应的采样掩膜, 即: 在存在采样值的位置将其置1, 在不存在采样值的位置将其置0, 利用此掩膜可以获得与 之相对应的部分傅里叶测量矩阵i_new。 4.根据权利要求1至3任一项所述的快速弥散张量成像方法, 其特征在于, 在所述步骤A 中, 通过射线型采样轨迹, 以高概率多采集k空间中心数据, 而越远离中心位置的数。
7、据, 其被 采到的概率越小, 则k空间中心区域的傅里叶密度高。 5.一种压缩感知框架下的快速弥散张量成像系统, 其特征在于, 包括: 采样轨迹生成模块, 用于初始化第一个弥散梯度对应的采样掩膜mask1, 并且采用射线 型采样轨迹; 测量矩阵生成模块, 用于将第一个弥散梯度对应的采样掩模mask1旋转一固定角度, 得 到第二个弥散梯度对应的采样掩膜mask2,将第二个弥散梯度对应的采样掩膜mask2以同样 方向旋转同一固定角度获得第三个弥散梯度对应的采样掩膜mask3, 以此类推共获得L个采 样掩膜mask, 根据各个采样掩膜mask, 获得各测量矩阵i, 所述L为弥散梯度数量; 获得测量值模。
8、块, 用于利用生成的测量矩阵分别获取对应各弥散梯度k空间的测量值 yi; 测量值补偿模块, 针对在第n个层面的第i个梯度的图像数据, 利用同一层面上第1到i- 1、 与i+1到L个梯度的加权数据对其进行补偿作为目标图像的新的测量值yi_new, 并获得测量 值所对应的测量矩阵i_new, 构造稀疏小波变换; 图像重构模块, 用于利用前面获得的yi_new与i_new, 带入压缩感知非线性共轭梯度算法 获得各个弥散张量图像。 权 利 要 求 书 1/2 页 2 CN 103356193 B 2 6.根据权利要求5所述的快速弥散张量成像系统, 其特征在于, 在所述测量矩阵生成模 块中, 旋转固定角。
9、度为旋转 /LN角度; 测量矩阵中采样射线数量为N, 则采样轨迹中相邻两 条射线之间的夹角为 /N。 7.根据权利要求6所述的快速弥散张量成像系统, 其特征在于, 在所述小波稀疏变换模 块中,其中wj表示加权系数, 根据获得的yi_new, 获得相应的采样 掩膜, 即: 在存在采样值的位置将其置1, 在不存在采样值的位置将其置0, 利用此掩膜可以 获得与之相对应的部分傅里叶测量矩阵i_new。 8.根据权利要求7所述的快速弥散张量成像系统, 其特征在于, 在所述采样轨迹生成模 块中, 通过射线型采样轨迹, 以高概率多采集k空间中心数据, 而越远离中心位置的数据, 其 被采到的概率越小, 则k空。
10、间中心区域的傅里叶密度高。 权 利 要 求 书 2/2 页 3 CN 103356193 B 3 压缩感知框架下的快速弥散张量成像方法及系统 技术领域 0001 本发明涉及成像方法及系统, 尤其涉及压缩感知框架下的快速弥散张量成像方法 及系统。 背景技术 0002 磁共振弥散张量成像 (DTI) 作为一种特殊的磁共振成像方法, 其优点是可以从微 观领域评价组织结构的完整性, 它也是显示神经纤维束走向的唯一方法。 压缩感知 (CS) 理 论作为近几年兴起的一种快速成像方法, 已经成功应用于磁共振成像中, 该理论认为, 如果 信号是足够稀疏的, 那我们就可以通过极少量的采样点 (完全可以打破Nyq。
11、uist采样定律的 限制) 完美的重构出原始信号。 0003 传统压缩感知框架下的成像过程可以简述如下: 首先在某个合适的域 (小波域) 中 将图像进行稀疏表示如下, s=x 0004 这里x是原图像, 是稀疏变化矩阵, s是稀疏后的图像。 然后, 对于图像x, 我们通 过线性测量过程来获取x中的一部分信息y, 可写成如下公式: 0005 y=x=Ts 0006 这里y表示测量值, 表示测量矩阵。 最后通过求解下面的代价函数, 重建出目标 图像x。 0007 0008 这里 表示噪声量级。 0009 但由于弥散张量成像特殊的成像特点, 导致其扫描时间过长。 这样极易引起运动 伪影, 甚至会超出。
12、病人的承受能力, 在一定程度上限制了其在临床上的应用。 因此如何提高 成像速度已成为该研究领域的热点问题。 发明内容 0010 为了解决现有技术中的问题, 本发明提供了一种压缩感知框架下的快速弥散张量 成像方法。 0011 本发明提供了一种压缩感知框架下的快速弥散张量成像方法, 针对有M个层面, 每 个层面有L个梯度的弥散张量成像系统, 即: 共重建M*L幅图像, 对于每个层面包括执行如下 步骤: 0012 A.初始化第一个弥散梯度对应的采样掩膜mask1, 并且采用射线型采样轨迹; 0013 B.将第一个弥散梯度对应的采样掩模mask1旋转一固定角度, 得到第二个弥散梯 度对应的采样掩膜ma。
13、sk2,将第二个弥散梯度对应的采样掩膜mask2以同样方向旋转同一固 定角度获得第三个弥散梯度对应的采样掩膜mask3, 以此类推共获得L个采样掩膜mask, 根 据各个采样掩膜mask, 获得各测量矩阵i, 所述L为弥散梯度数量; 0014 C.利用生成的测量矩阵分别获取对应各弥散梯度k空间的测量值yi; 说 明 书 1/6 页 4 CN 103356193 B 4 0015 D.针对在第j个层面的第i个梯度的图像数据, 利用同一层面上第1到i-1、 与i+1到 L个梯度的加权数据对其进行补偿作为该目标图像的新的测量值yi_new, 并获得测量值所对 应的测量矩阵i_new, 构造稀疏小波变。
14、换; 0016 E.利用前面获得的yi_new与i_new, 带入压缩感知非线性共轭梯度算法获得各个弥 散张量图像。 0017 通过重复步骤A至步骤E, 能够获得M*L个弥散图像。 0018 作为本发明的进一步改进, 在所述步骤B中, 旋转固定角度为旋转 /LN角度; 测量 矩阵中采样射线数量为N, 则采样轨迹中相邻两条射线之间的夹角为 /N。 0019作为本发明的进一步改进, 在所述步骤D中,其中wj表 示加权系数, 根据获得的yi-new, 获得相应的采样掩膜, 即: 在存在采样值的位置将其置1, 在 不存在采样值的位置将其置0, 利用此掩膜可以获得与之相对应的部分傅里叶测量矩阵 i-ne。
15、w。 0020 作为本发明的进一步改进, 在所述步骤E中, 通过求解下面的代价函数, 重构出弥 散图像: 0021 0022 作为本发明的进一步改进, 在所述步骤A中, 通过射线型采样轨迹, 以高概率多采 集k空间中心数据, 而越远离中心位置的数据, 其被采到的概率越小, 则k空间中心区域的傅 里叶密度高。 0023 本发明还提供了一种压缩感知框架下的快速弥散张量成像系统, 包括: 0024 采样轨迹生成模块, 用于初始化第一个弥散梯度对应的采样掩膜mask1, 并且采用 射线型采样轨迹; 0025 测量矩阵生成模块, 用于将第一个弥散梯度对应的采样掩模mask1旋转一固定角 度, 得到第二个。
16、弥散梯度对应的采样掩膜mask2,将第二个弥散梯度对应的采样掩膜mask2 以同样方向旋转同一固定角度获得第三个弥散梯度对应的采样掩膜mask3, 以此类推共获 得L个采样掩膜mask, 根据各个采样掩膜mask, 获得各测量矩阵i, 所述L为弥散梯度数量; 0026 获得测量值模块, 用于利用生成的测量矩阵分别获取对应各弥散梯度k空间的测 量值yi; 0027 测量值补偿模块, 针对在第j个层面的第i个梯度的图像数据, 利用同一层面上第1 到i-1、 与i+1到L个梯度的加权数据对其进行补偿, 作为该目标图像的新的测量值yi_new, 并 获得测量值所对应的测量矩阵i_new, 构造稀疏小波。
17、变换; 0028 图像重构模块, 用于利用前面获得的yi_new与i_new, 带入压缩感知非线性共轭梯 度算法获得各个弥散张量图像。 0029 作为本发明的进一步改进, 在所述测量矩阵生成模块中, 旋转固定角度为旋转 / LN角度; 测量矩阵中采样射线数量为N, 则采样轨迹中相邻两条射线之间的夹角为 /N。 0030作为本发明的进一步改进, 在所述小波稀疏变换模块中, 说 明 书 2/6 页 5 CN 103356193 B 5 其中wj表示加权系数, 根据获得的yi-new, 获得相应的采样掩膜, 即: 在存在采样值的位置将 其置1, 在不存在采样值的位置将其置0, 利用此掩膜可以获得与之。
18、相对应的部分傅里叶测 量矩阵i-new。 0031 作为本发明的进一步改进, 在所述图像重构模块中, 通过求解下面的代价函数, 重 构出弥散图像: 0032 0033 作为本发明的进一步改进, 在所述采样轨迹生成模块中, 通过射线型采样轨迹, 以 高概率多采集k空间中心数据, 而越远离中心位置的数据, 其被采到的概率越小, 则k空间中 心区域的傅里叶密度高。 0034 本发明的有益效果是: 本发明与传统的CS加速成像方案相比较, 在采样点数相同 的情况下, 本发明可以通过重建, 获得更高质量的弥散图像。 换句话, 就是在获得相同的图 像质量时, 新方案所需的采样点更少, 即采样因子R可以取的更。
19、大, 从而降低采样时间, 实现 加速成像的目的。 附图说明 0035 图1是本发明的压缩感知框架下的快速弥散张量成像方法流程图。 具体实施方式 0036 如图1所示, 本发明公开了一种压缩感知框架下的快速弥散张量成像方法, 针对有 M个层面, 每个层面有L个梯度, 即: 共重建M*L幅图像, 对于每个层面包括执行如下步骤: 0037 在步骤S1中, 初始化第一个弥散梯度对应的采样掩膜mask1, 并且采用射线型采样 轨迹; 0038 在步骤S2中, 将第一个弥散梯度对应的采样掩模mask1旋转一固定角度, 得到第二 个弥散梯度对应的采样掩膜mask2,将第二个弥散梯度对应的采样掩膜mask2以。
20、同样方向旋 转同一固定角度获得第三个弥散梯度对应的采样掩膜mask3, 以此类推共获得L个采样掩膜 mask, 根据各个采样掩膜mask, 获得各测量矩阵i, 所述L为弥散梯度数量; 0039 在步骤S3中, 利用生成的测量矩阵分别获取对应各弥散梯度k空间的测量值yi; 0040 在步骤S4中, 针对在第j个层面的第i个梯度的图像数据, 利用同一层面上第1到i- 1、 与i+1到L个梯度的加权数据对其进行补偿, 作为该目标图像的新的测量值yi_new, 并获得 测量值所对应的测量矩阵i_new, 构造稀疏小波变换; 0041 在步骤S5中, 利用前面获得的yi_new与i_new, 带入压缩感。
21、知非线性共轭梯度算法 获得各个弥散张量图像。 0042 通过重复步骤S1至步骤S5, 能够获得M*L个弥散图像。 0043 在所述步骤S2中, 旋转固定角度为旋转 /LN角度; 测量矩阵中采样射线数量为N, 则采样轨迹中相邻两条射线之间的夹角为 /N。 0044在所述步骤S3中,其中wj表示加权系数, 根据获得的 说 明 书 3/6 页 6 CN 103356193 B 6 yi-new, 获得相应的采样掩膜, 即: 在存在采样值的位置将其置1, 在不存在采样值的位置将其 置0, 利用此掩膜可以获得与之相对应的部分傅里叶测量矩阵i-new。 0045 在所述步骤S5中, 通过求解下面的代价函数。
22、, 重构出弥散图像: 0046 0047 在所述步骤S1中, 通过射线型采样轨迹, 以高概率多采集k空间中心数据, 而越远 离中心位置的数据, 其被采到的概率越小, 则k空间中心区域的傅里叶密度高。 0048 本发明还公开了一种压缩感知框架下的快速弥散张量成像系统, 包括: 0049 采样轨迹生成模块, 用于初始化第一个弥散梯度对应的采样掩膜mask1, 并且采用 射线型采样轨迹; 0050 测量矩阵生成模块, 用于将第一个弥散梯度对应的采样掩模mask1旋转一固定角 度, 得到第二个弥散梯度对应的采样掩膜mask2,将第二个弥散梯度对应的采样掩膜mask2 以同样方向旋转同一固定角度获得第三。
23、个弥散梯度对应的采样掩膜mask3, 以此类推共获 得L个采样掩膜mask, 根据各个采样掩膜mask, 获得各测量矩阵i, 所述L为弥散梯度数量; 0051 获得测量值模块, 用于利用生成的测量矩阵分别获取对应各弥散梯度k空间的测 量值yi; 0052 在测量值补偿模块, 针对在第j个层面的第i个梯度的图像数据, 利用同一层面上 第1到i-1、 与i+1到L个梯度的加权数据对其进行补偿, 作为该目标图像的新的测量值yi_new, 并获得测量值所对应的测量矩阵i_new, 构造稀疏小波变换; 0053 图像重构模块, 用于利用前面获得的yi_new与i_new, 带入压缩感知非线性共轭梯 度算。
24、法获得各个弥散张量图像。 0054 在所述测量矩阵生成模块中, 旋转固定角度为旋转 /LN角度; 测量矩阵中采样射 线数量为N, 则采样轨迹中相邻两条射线之间的夹角为 /N。 0055在所述小波稀疏变换模块中,其中wj表示加权系数, 根 据获得的yi-new, 获得相应的采样掩膜, 即: 在存在采样值的位置将其置1, 在不存在采样值的 位置将其置0, 利用此掩膜可以获得与之相对应的部分傅里叶测量矩阵i-new。 0056 在所述图像重构模块中, 通过求解下面的代价函数, 重构出弥散图像: 0057 0058 在所述采样轨迹生成模块中, 通过射线型采样轨迹, 以高概率多采集k空间中心数 据, 而。
25、越远离中心位置的数据, 其被采到的概率越小, 则k空间中心区域的傅里叶密度高。 0059 本发明利用磁共振弥散张量图像间的特殊数据特点, 从压缩感知的三个关键点 (信号的稀疏表示、 测量矩阵的设计、 信号重建算法) 出发, 通过采用辐射型的采样轨道, 生 成相应的测量矩阵, 尽可能多的采样中心部分的点, 多获取图像集中在低频部分的主要信 息。 针对每个弥散梯度, 旋转采样掩膜, 生成测量矩阵, 分别获取各弥散图像中的不同采样 位置的图像信息。 针对待重建的弥散图对应的k空间数据, 根据其它图像与待重建图像之间 的相关信息, 对各数据进行加权, 在其未被采到的位置上, 补偿其它弥散图像在该位置的。
26、加 说 明 书 4/6 页 7 CN 103356193 B 7 权图像信息, 也就是在不增加采样数量的前提下, 增加了待重建图像的信息量, 从而在保证 图像重构质量的前提下, 降低采样时间。 0060 本发明的技术方案主要分为三部分, 首先是采样轨迹的选取, 其次是旋转采样轨 迹, 最后是在待重建图像的采样信息中, 加权补偿入它弥散梯度图像在不同采样位置的图 像信息, 最终得到各个弥散方向上的重构图像。 下面给将分别给出各个部分实现的详细介 绍。 0061 1.采样掩膜的选取 0062 在压缩感知理论中, 要求测量矩阵与稀疏变换基的乘积越不相关, 越能 以高概率重建出原始信号, 且在MRI中。
27、填充k空间的方式有很多, 例如: 等间隔采样、 变密度 采样、 射线型采样、 螺旋型采样、 圆型采样等。 因为自然的图像都呈现出一个明显的 “非随 机” 结构, 能量主要集中在低频部分 (k空间的中心位置) , 所以我们应该尽量拾取这部分重 要信息, 方法就是我们尽可能的以高概率多采集k空间中心数据, 而越远离中心位置的数 据, 其被采到的概率越小。 因此这里选择射线型采样轨迹, 则k空间中心区域的傅里叶密度 高, 故有利于提高图像的信噪比以及对比度, 同时也为后面掩膜旋转做基础。 0063 2.采样掩膜的旋转 0064 假设该系统的弥散梯度数量为L, 测量矩阵中采样射线数量为N, 则采样轨迹。
28、中相 邻两条射线之间的夹角为 /N。 以此为前提, 即每个弥散梯度的采样射线数量是为一定值, 为了尽可能多的获取k空间中不同位置的图像信息, 我们要做就是旋转采样轨迹, 并且使每 个采样轨迹叠加后尽量不重叠。 因此, 在已知第一个弥散梯度采样掩膜的前提下, 我们可以 将其旋转 /LN角度, 获得第二个弥散梯度对应的采样轨迹。 同理, 将第二个弥散梯度对应的 采样掩膜沿同一时针方向旋转相同的角度, 即可得到第三个采样掩膜, 以此类推, 我们也可 以获得相应于第L个弥散梯度的采样轨迹。 通过各个采样掩膜。 我们可以分别获取对应的部 分傅里叶测量矩阵i。 鉴于DTI特殊的数据特点, 各弥散图像之间存。
29、在很大的相关性, 则通 过这样的操作之后, 我们就可以在采样点数不变的情况下, 最大可能的获取图像信息。 0065 3.在待重建图像的采样信息中, 加权补偿入其它弥散梯度图像在不同采样位置的 加权图像信息 0066 鉴于弥散张量特殊的数据特点, 在同一层面上, 由不同弥散梯度获取的图像信息 之间有很大的相关性, 因此我们可以利用这一特性来实现加速成像的目的。 利用上面旋转 得到的对应于每个弥散梯度的采样轨迹, 分别获取各弥散梯度对应的弥散图像的k空间数 据yi。 针对待重建的弥散图对应的k空间数据, 根据其它图像与待重建图像之间的相关性对 各数据进行加权, 在其未被采到的位置上, 补偿其它弥散。
30、图像在该位置的加权图像信息, 作 为待重建图像的k空间采样值yi-new, 即: 0067 0068 这里wj表示加权系数。 根据获得的yi-new, 我们获得相应的采样掩膜, 即: 在存在采 样值的位置将其置1, 在不存在采样值的位置将其置0, 利用此掩膜我们就可以获得与之相 对应的部分傅里叶测量矩阵i-new。 最后我们利用压缩感知重建算法, 非线性共轭梯度算 法, 通过求解下面的代价函数, 即可重构出高质量的弥散图像。 说 明 书 5/6 页 8 CN 103356193 B 8 0069 0070 与传统的CS加速成像算法相比较, 在采样点数相同的情况下, 上面的方法可以通 过重建获得。
31、更高质量的弥散图像。 换句话说, 就是在获得相同的图像质量时, 上面算法的采 样点更少, 即采样因子R可以取的更大, 从而降低采样时间, 实现加速成像的目的。 0071 本发明与传统的CS加速成像方案相比较, 在采样点数相同的情况下, 本发明可以 通过重建, 获得更高质量的弥散图像。 换句话, 就是在获得相同的图像质量时, 新方案所需 的采样点更少, 即采样因子R可以取的更大, 从而降低采样时间, 实现加速成像的目的。 0072 产生上面优点的原因在于, DTI特殊的数据特点, 即统一层面上不同弥散梯度对应 图像之间具有相关性。 新方案在传统CS加速成像方案的基础上, 通过改进k空间的数据采样。
32、 方案, 利用相关度加权图像数据信息, 增加图像重构前的数据信息量, 最终重构出更高质量 的弥散图像。 从而相比于传统CS加速方案, 在获得相同图像质量的情况下, 可以减少图像采 样点, 使采样因子可以取的更大, 可以改善磁共振弥散张量在成像过程中所花费的时间, 减 少病人在DTI扫描时的扫描时间, 避免长时间扫描造成的运动伪影, 提高磁共振设备的利用 率。 0073 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认定 本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术人员来说, 在 不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的 保护范围。 说 明 书 6/6 页 9 CN 103356193 B 9 图1 说 明 书 附 图 1/1 页 10 CN 103356193 B 10 。