电路连接材料和电路部件的连接结构.pdf

上传人:奻奴 文档编号:778032 上传时间:2018-03-11 格式:PDF 页数:33 大小:1.73MB
返回 下载 相关 举报
摘要
申请专利号:

CN200880008437.2

申请日:

2008.05.14

公开号:

CN101632199A

公开日:

2010.01.20

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

H01R11/01; C09J9/02; C09J201/00; H01B1/00; H01B1/22; H01B5/16; H01L21/60; H05K3/36

主分类号:

H01R11/01

申请人:

日立化成工业株式会社

发明人:

小岛和良; 小林宏治; 有福征宏; 望月日臣

地址:

日本东京都

优先权:

2007.5.15 JP 129221/2007

专利代理机构:

北京银龙知识产权代理有限公司

代理人:

雒纯丹

PDF下载: PDF下载
内容摘要

一种电路连接材料,其是用于电连接形成有电路电极的2个电路部件使前述电路电极对抗的电路连接材料,其中,电路连接材料含有粘合剂组合物和导电粒子,该导电粒子是包含有机高分子化合物的核体被含镍或镍合金的金属层覆盖,并且在表面上具有多个突起部分的导电粒子,前述核体的平均粒径为1~4μm,金属层的厚度为65~125nm。

权利要求书

1: 一种电路连接材料,其是用于电连接形成有电路电极的2个电路部件 以使得前述2个电路部件的前述电路电极对抗的电路连接材料,其中, 前述电路连接材料含有粘合剂组合物和导电粒子, 前述导电粒子是包含有机高分子化合物的核体被含镍或镍合金的金属层 覆盖、并且在表面上具有多个突起部分的导电粒子,前述核体的平均粒径为 1~4μm,前述金属层的厚度为65~125nm。
2: 如权利要求1所述的电路连接材料,其中,前述突起部分的高度为50~ 500nm。
3: 如权利要求1或2所述的电路连接材料,其中,相邻的前述突起部分 之间的距离为1000nm以下。
4: 一种电路部件的连接结构,具有形成有电路电极并且前述电路电极以 相对向方式设置的2个电路部件和介于前述电路部件之间并且使前述电路电 极电连接的电路连接部件,其中, 前述电路连接部件是权利要求1~3任一项所述的电路连接材料或其固化 物。
5: 如权利要求4所述的电路部件的连接结构,其中,前述2个电路部件 的电路电极中的至少一个电路电极,具有包含氧化铟锡的最外层。
6: 如权利要求4所述的电路部件的连接结构,其中,前述2个电路部件 的电路电极中的至少一个电路电极,具有包含氧化铟锌的最外层。

说明书


电路连接材料和电路部件的连接结构

    【技术领域】

    本发明涉及电路连接材料和电路部件的连接结构。

    背景技术

    液晶显示器和薄膜封装(Tape Carrier Package:TCP,)的连接,挠性电路基板(Flexible Printed Circuit:FPC)和TCP的连接,或者FPC和印刷线路板的连接这样的电路部件的相互连接,使用在粘合剂中分散了导电粒子的电路连接材料(例如,各向异性导电性粘合剂)。

    最近,在基板上安装半导体硅晶片时,为了使电路部件相互连接而不使用引线结合,而是进行将半导体硅晶片面朝下直接安装在基板上的,所谓倒装法(flip chip)安装。即使在该倒装法安装中,为了进行电路部件的相互连接,也使用了各向异性导电性粘合剂等电路连接材料(参见专利文献1~5)。

    专利文献1:日本特开昭59-120436号公报

    专利文献2:日本特开昭60-191228号公报

    专利文献3:日本特开平1-251787号公报

    专利文献4:日本特开平7-90237号公报

    专利文献5:日本特开2001-189171号公报

    专利文献6:日本特开2005-166438号公报

    【发明内容】

    近年来,随着电子机器的小型化、薄型化,在电路部件上所形成的电路的高密度化也在不断发展,因此存在有与相邻电极的间隔以及电极宽度变得非常狭窄的倾向。电路电极的形成,通过这样的工序进行,即,将构成电路原料的金属在基板整个面上形成,并将抗蚀剂涂布在应该形成电路电极的部分,并固化,再用酸或碱蚀刻掉其他部分。然而,在上述高密度化电路的情况下,当基板整个面上所形成的金属的凹凸较大时,凹部和凸部处的蚀刻时间不同,因此无法进行精密的蚀刻,并且存在有相邻电路间产生短路或断路的问题。因此,希望高密度电路的电极表面处凹凸小,即,电极表面平坦。

    然而,在使用前述以往的电路连接材料连接这种相对的平坦电路电极彼此时,在电路连接材料中所含的导电粒子和平坦电极之间残留有粘合剂树脂,因此存在有在相对的电路电极间无法确保足够的电连接和长期可靠性的问题。

    因此,以解决该问题为目的,提出了将含有在表面侧具有多个突起部分,并且最外层为金(Au)的导电粒子的电路连接材料,用于相对向的电路电极的彼此连接(参见专利文献6)。

    使用该电路连接材料连接的电路连接结构体,虽然在相对向的电路电极间确保了足够的电连接和长期可靠性,但要求能够实现相对的电路电极彼此之间更加良好的电连接,并且进一步提高电路电极间的电特性的长期可靠性。

    本发明是鉴于上述情况而进行的,其目的在于提供一种电路连接材料以及提供使用该电路连接材料的电路部件的连接结构,该电路连接材料能够实现相对的电路电极彼此之间的良好电连接,并且能够充分提高电路电极间的电特性的长期可靠性。

    本发明人们为了解决上述问题而进行了积极研究,结果发现,产生上述问题的原因特别在于导电粒子的最外层材质。也就是说,以往的电路连接材料中所含的导电粒子的最外层是Au的金属膜,因此,在电路连接时,即使通过突起贯通了导电粒子和平坦电极间的粘合剂组合物,由于Au是比较软的金属,因此导电粒子地最外层相对于电路电极会产生变形,并且导电粒子难以进入电路电极。

    并且,本发明人等为了解决上述问题而更加积极地反复研究,结果发现,通过将导电粒子最外层的材质改变为比Au硬的金属,提高了连接可靠性,由此完成了本发明。

    本发明提供一种电路连接材料,其是用于电连接形成有电路电极的2个电路部件以使得前述2个电路部件的电路电极对抗的电路连接材料,前述电路连接材料含有粘合剂组合物和导电粒子,前述导电粒子是包含有机高分子化合物的核体被含镍或镍合金的金属层覆盖、并且在表面上具有多个突起部分的导电粒子,前述核体的平均粒径为1~4μm,前述金属层的厚度为65~125nm。

    在制作电路部件的连接结构时,上述电路连接材料位于2个电路部件(以下,根据场合将其称为“第1和第2电路部件”)之间,并隔着电路部件进行加压。根据本发明的电路连接材料,和导电粒子的最外层为Au的情况相比,隔着导电粒子相对的电路电极相互之间能够更加良好地进行电连接,同时,能够进一步提高电路电极间的电特性的长期可靠性。也就是说,即使粘合剂组合物的固化物进入了导电粒子和电路电极之间,由于导电粒子的表面侧设置有多个突起部分,因此通过该导电粒子施加在粘合剂组合物的固化物上的压力,和没有突起部分的导电粒子相比,充分提高,从而,导电粒子的突起部分可以很容易地贯通粘合剂组合物的固化物,并且一定程度进入电路电极,因此可以进一步增加导电粒子和电路电极的接触面积。此外,由于作为导电粒子最外层的镍(Ni)或镍合金比Au硬,因此导电粒子的最外层可以更容易地进入电路电极,并且可以增加导电粒子和电路电极地接触面积,由此,可以得到更良好的电连接和电特性的长期可靠性。并且,通过使导电粒子的金属层厚度为65~125nm的范围,连接电阻稳定。进一步,通过使导电粒子的核体的平均粒径为1~4μm的范围,可以将电连接所需的导电粒子的个数限制为最小,因此可以充分保证和相邻电路的绝缘性。因此,可以得到电路电极相互之间的良好的电连接。并且,隔着导电粒子而对抗的电路电极间的良好的电连接状态,可以通过粘合剂组合物的固化物长时间保持,因此可以充分提高电特性的长期可靠性。

    在上述电路连接材料中,导电粒子的突起部分的高度优选为50~500nm。此外,导电粒子上邻接的突起部分间的距离优选为1000nm以下。通过使导电粒子的突起部分的高度和邻接的突起部分间的距离处于上述范围内,导电粒子的突起部分可以更容易地贯通粘合剂组合物的固化物,并且可以得到更良好的电连接和电特性的长期可靠性。

    本发明提供一种电路部件的连接结构,其具有形成有电路电极并且配置成前述电路电极相对的2个电路部件,和介于前述电路部件之间并且使前述电路电极电连接的电路连接部件,其中,前述电路连接部件是本发明的电路连接材料或其固化物。

    该电路部件的连接结构,由于使用上述电路连接材料制作,因此可以得到电路电极相互之间的良好的电连接。并且,隔着导电粒子而对抗的电路电极间的良好的电连接状态,通过粘合剂组合物的固化物而长时间保持,因此可以充分提高电特性的长期可靠性。

    在上述电路部件的连接结构中,2个电路部件的电路电极中的至少一个,优选具有包含氧化铟锡(以下,称为“ITO”)或氧化铟锌(以下,称为“IZO”)的最外层。由于这种电路电极具有由ITO或IZO构成的最外层,因此和具有由Au、Ag、Sn、Pt族的金属、Al或Cr等构成的最外层的电极相比,具有防止下层金属氧化的优点。

    根据本发明的电路连接材料,可以获得相对的电路电极相互之间的良好电连接,同时,可以充分提高电路电极间的电特性的长期可靠性。此外,根据本发明,可以提供一种电路电极间的电特性的长期可靠性非常优异的电路部件的连接结构。

    【附图说明】

    [图1]是表示本发明电路部件的连接结构的一种实施方式的截面图。

    [图2]是表示构成本发明电路连接材料的导电粒子的各种形态的截面图。

    符号说明

    1...电路部件的连接结构、10...电路连接部件、11...绝缘性物质、12...导电粒子、14...突起、21...核体、21a...中核部分、21b...突起部分、22...金属层、30...第1电路部件、31...电路基板(第1电路基板)、31a...主面、32...电路电极(第1电路电极)、40...第2电路部件、41...电路基板(第2电路基板)、41a...主面、42...电路电极(第2电路电极)、43...绝缘层(第2绝缘层)。

    【具体实施方式】

    以下,根据需要,参照附图,对本发明的优选实施方式进行详细说明。另外,附图中,相同元素给予相同符号,并省略重复的说明。并且,上下左右等位置关系,没有特别指示的话,基于附图所示的位置关系。此外,附图的尺寸比例,并不限于图示的比例。

    图1是表示本发明电路部件的连接结构的一个例子的概略截面图。电路部件的连接结构1,具有互相相对的第1电路部件30和第2电路部件40,并且,在第1电路部件30和第2电路部件40之间,设置有连接它们的电路连接部件10。电路连接部件10,通过对含有粘合剂组合物和表面侧具有多个突起部分14的导电粒子12的电路连接材料进行固化处理而得到。因此,电路连接材料10,含有绝缘性物质11和导电粒子12。此处,绝缘性物质11,由粘合剂组合物的固化物所构成。

    第1电路部件30,具有电路基板(第1电路基板)31、和在电路基板31的主面31a上所形成的电路电极(第1电路电极)32。第2电路部件40,具有电路基板41、和在电路基板41的主面41a上所形成的电路电极(第1电路电极)42。

    在电路基板31、41中,电路电极32、42的表面达到平坦。另外,本发明中,“电路电极的表面平坦”,是指电路电极的表面凹凸为20nm以下。

    电路电极32、42的厚度,希望为50nm以上。当电路电极32、42的厚度不到50nm时,存在有电路连接材料中的导电粒子12的表面侧的突起部分14在压合时贯通了电路电极32、42而和电路基板31、41接触的可能性。这时,存在有电路电极32、42和导电粒子12的接触面积减少,从而连接电阻上升的倾向。此外,电路电极32、42的厚度,从制作成本等观点考虑,优选为1000nm以下,并更优选为500nm以下。

    作为电路电极32、42的材质,可以列举Au、Ag、Sn、Pt族的金属或氧化铟锡(ITO)、氧化铟锌(IZO)、Al、Cr。特别是在电路电极32、42的材质为ITO、IZO时,电连接显著变好,发挥了本发明的效果。此外,电路电极32、42,可以由上述物质构成其全体,也可以由上述物质仅构成其最外层。

    电路基板31、41的材质没有特别限制,但通常为有机绝缘性物质、玻璃或硅。

    作为第1电路部件30和第2电路部件40的具体例子,可以列举半导体芯片、电阻芯片、电容器芯片等芯片部件、印刷基板等基板。在这些电路部件30、40中,通常可以设置多个(根据情况也可以是单个)电路电极(电路端子)32、42。此外,作为电路部件的连接结构的形式,有IC芯片和芯片搭载基板的连接结构、电路相互之间的连接结构形式。

    此外,在第1电路部件30中,可以在第1电路电极32和电路基板31之间进一步设置绝缘层,在第2电路部件40中,也可以在第2电路电极42和电路基板41之间进一步设置绝缘层。绝缘层,只要由绝缘材料构成,就没有特别限制,但通常由有机绝缘性物质、二氧化硅或氮化硅构成。

    并且,在该电路部件的连接结构1中,相对的电路电极32和电路电极42隔着导电粒子12而电连接。即,导电粒子12与电路电极32、42这两者直接接触。具体来说,导电粒子12的突起部分14贯通了绝缘性物质11,与第1电路电极32、第2电路电极42接触。

    因此,电路电极32、42间的连接电阻可以充分降低,并且可以使电路电极32、42间良好地电连接。因此,电路电极32、42间的电流可以顺利流动,并且可以充分发挥电路所具有的功能。

    优选导电粒子12的多个突起部分14中的部分突起部分14进入电路电极32或电路电极42。这时,导电粒子12的突起部分14和电路电极32、42的接触面积可以进一步增加,并且进一步降低连接电阻。

    在电路部件的连接结构1中,第1电路电极32、第2电路电极42中的至少一个的表面积为15000μm2以下,并且,第1电路电极32和第2电路电极42之间的平均导电粒子数优选为1个以上。此处,平均导电粒子数,是指每个电路电极的导电粒子数的平均值。这时,可以充分降低相对的电路电极32、42间的连接电阻。

    此外,当平均导电粒子数为3个以上时,可以获得更加良好的连接电阻。这是由于相对的电路电极32、42间的连接电阻变得足够低。此外,当电路电极32、42间的平均导电粒子数为1个以下时,连接电阻变得过高,有时电子电路无法正常工作。

    以下,对于电路连接部件10进行详细说明。电路连接部件10为膜状,并且如上所述,其可以通过对含有表面侧具有突起部分14的导电粒子12和粘合剂组合物的电路连接材料进行固化处理而得到。

    (导电粒子)

    首先,对于导电粒子12的构成进行详细说明。导电粒子12由具有导电性的粒子(本体部分)和在该粒子表面上所形成的多个突起部分14构成。此处,多个突起部分14由具有导电性的金属构成。图2是表示本发明电路连接材料中所含的导电粒子的各种形态的截面图。

    图2(a)所示的导电粒子12由有机高分子化合物所形成的核体21,和在核体21的表面上形成的金属层22所构成。核体21由中核部分21a和在中核部分21a的表面上形成的突起部分21b所构成。金属层22在其表面侧具有多个突起部分14。金属层22覆盖了核体21,并且在突起部分21b所对应的位置处突出,该突出的部分形成了突起部分14。

    核体21和由金属所形成的核体相比,成本低,并且对于热膨胀或压合接合时的尺寸变化来说,弹性变形范围广,因此更适合用作电路连接材料。

    作为构成核体21中核部分21a的有机高分子化合物,例如,可以列举丙烯酸树脂、苯乙烯树脂、苯鸟粪胺树脂、硅树脂、聚丁二烯树脂或它们的共聚物,并且也可以使用它们的交联物。

    核体21的中核部分21a的平均粒径,优选为1~4μm,更优选为2~4μm,并进一步优选为2.5~3.5μm。如果平均粒径不到1μm,则产生了粒子的二次凝集,并且存在有和邻接电路的绝缘性变得不足的倾向。另一方面,如果平均粒径超过4μm,则由于电路连接时,排除粘合剂组合物的面积变大,因此存在有和邻接电路的绝缘性变得不足的倾向。另外,本说明书中的核体21的平均粒径,是指中核部分21a的平均粒径,其可以使用粒度分布测定装置,或通过电子显微镜观察导电粒子的截面而测定。

    作为构成核体21突起部分21b的有机高分子化合物,例如,可以列举丙烯酸树脂、苯乙烯树脂、苯鸟粪胺树脂、硅树脂、聚丁二烯树脂或它们的共聚物,并且也可以使用它们的交联物。构成突起部分21b的有机高分子化合物,可以和构成中核部分21a的有机高分子化合物相同,也可以不同。

    核体21可以通过使多个具有比中核部分21a更小直径的突起部分21b吸附在中核部分21a的表面上而形成。作为使突起部分21b吸附在中核部分21a的表面上的方法,例如,可以列举使用硅烷、氧化铝、钛等各种偶联剂和粘合剂的稀释溶液对这两者或一者进行表面处理,然后将两者混合而使其附着的方法。

    作为金属层22的材质,有Ni或Ni合金。作为Ni合金,例如,可以列举Ni-B、Ni-W、Ni-B、Ni-W-Co、Ni-Fe和Ni-Cr。从通过固化而容易进入电路电极32、42的观点考虑,优选Ni。金属层22,可以通过使用无电解镀覆法对核体21镀覆这些金属而形成。无电解镀覆法,可以大体分为间歇方式和连续滴入方式,使用任一种方式都可以形成金属层22。

    金属层22的厚度(镀覆层厚度),优选为65~125nm,更优选为75~110nm,并进一步优选为80~100nm。通过使金属层22的厚度在该范围内,可以使电路电极32、42间的连接电阻更加良好。此处,本说明书中的导电粒子的金属层22的厚度,是指不含突起部分14的金属层部分的平均厚度,其可以通过电子显微镜对导电粒子的截面进行测定。

    当金属层22的厚度不到65nm时,由于镀层的厚度薄,因此存在有连接电阻变大的倾向,如果其超过125nm,则镀覆时,在导电粒子间产生凝结,并且存在有在邻接电路电极间产生短路的倾向。

    此外,在导电粒子12中,金属层22从核体21上完全剥离的粒子的混入率,在25万个粒子中优选小于5%,更优选为小于1.0%,并进一步优选为小于0.1%。通过使金属层22从核体21上完全剥离的粒子的混入率为该范围,可以确保电路电极32、42间的导通。当金属层22从核体21上完全剥离的粒子的混入率为5%以上时,由于未参与导电的粒子存在于电极上,因此存在有连接电阻变大的倾向。

    对于本发明中的导电粒子12来说,存在部分核体21露出的情况。从连接可靠性观点考虑,金属层22相对于核体21的表面积的覆盖率,优选为70%以上,更优选为80~100%。通过使金属层22的覆盖率处于该范围内,可以使电路电极32、42间的连接电阻进一步优良。金属层22的覆盖率不足70%时,由于导电粒子表面的导通面积变小,因此,连接电阻有变大的倾向。

    导电粒子12的突起部分14的高度H,优选为50~500nm,更优选为65~500nm,并进一步优选为100~300nm。此外,邻接的突起部分14间的距离S,优选为1000nm以下,并更优选为500nm以下。

    此外,为了使粘合剂组合物不进入导电粒子12和电路电极32、42之间,并且使导电粒子12和电路电极32、42充分接触,邻接的突起部分14间的距离S,希望为至少50nm以上。这里,导电粒子12的突起部分14的高度H和邻接的突起部分14间的距离S,可以通过电子显微镜进行测定。

    另外,导电粒子12,如图2(b)所示,其核体21可以仅由中核部分21a构成。换句话说,在图2(a)所示的导电粒子12中,突起部分21b也可以不设置。图2(b)所示的导电粒子12,可以通过对核体21a的表面进行金属镀,并在核体21a的表面上形成金属层22而得到。

    此处,对形成突起部分14的镀覆方法进行说明。例如,突起部分14,可以通过在镀覆反应过程中,追加比最初使用的镀覆液浓度更高的镀覆液,使镀覆液浓度不均匀而形成。此外,通过调节镀覆液的pH,例如使镍镀覆液的pH为6,可以得到疙瘩状的金属层,即具有突起部分14的金属层22(望月等人,“表面技术”,Vol.48,No.4,429~432页,1997)。此外,在使用甘氨酸,作为赋予镀覆浴稳定性的络合剂时,可以得到平滑的金属层(涂膜),相反,在使用酒石酸或DL-苹果酸时,可以得到疙瘩状的涂膜,即具有突起部分14的金属层22(荻原等人,“非晶質めつき(非晶镀覆)”,Vol.36,第35~37页,1994;荻原等人,电路安装学会志,Vol.10,No.3,148~152页,1995)。

    金属层22,可以由单一的金属层构成,也可以由多个金属层构成。

    (粘合剂组合物)

    接着,对粘合剂组合物进行详细说明。粘合剂组合物,具有绝缘性和粘合性。作为粘合剂组合物,优选为(1)含有环氧树脂和环氧树脂的潜在性固化剂的组合物、(2)含有自由基聚合性物质和通过加热而产生游离自由基的固化剂的组合物、或(1)和(2)的混合组合物。

    首先,对(1)含有环氧树脂和环氧树脂的潜在性固化剂的组合物进行说明。作为上述环氧树脂,可以列举双酚A型环氧树脂、双酚F型环氧树脂、双酚S型环氧树脂、苯酚线性酚醛型环氧树脂、甲酚线性酚醛型环氧树脂、双酚A线性酚醛型环氧树脂、双酚F线性酚醛型环氧树脂、脂环式环氧树脂、缩水甘油酯型环氧树脂、缩水甘油胺型环氧树脂、乙内酰脲型环氧树脂、异氰脲酸酯型环氧树脂、脂肪族链状环氧树脂。这些环氧树脂,可以被卤代,也可被氢化。这些环氧树脂也可以两种以上结合使用。

    作为上述潜在性固化剂,只要是可以使环氧树脂固化的物质即可。作为这种潜在性固化剂,可以列举阴离子聚合性的催化剂型固化剂、阳离子聚合性的催化剂型固化剂、加聚型的固化剂。它们可以单独使用或作为2种以上的混合物使用。其中,从快速固化性优异,无需考虑化学当量的观点考虑,优选阴离子或阳离子聚合性的催化剂型固化剂。

    作为阴离子或阳离子聚合性的催化剂型固化剂,可以列举咪唑类、酰肼类化合物、三氟化硼-胺配位化合物、锍盐、胺酰亚胺、二氨基马来腈、蜜胺及其衍生物、多胺的盐、双氰胺,并且也可以使用它们的改性物。作为加聚型的固化剂,可以列举多胺类、多硫醇、多酚、酸酐。

    在配合叔胺类或咪唑类作为阴离子聚合型的催化剂型固化剂时,环氧树脂通过在160℃~200℃左右的中温下加热几十秒~几小时左右而固化。因此,由于使用寿命(适用期)较长而优选。

    作为阳离子聚合型的催化剂型固化剂,例如,优选通过能量线照射使环氧树脂固化的感光性鎓盐(主要使用芳香族重氮鎓盐、芳香族锍盐等)。

    并且,作为能量线照射之外通过加热活化使环氧树脂固化的物质,有脂肪族锍盐等。这种固化剂,由于具有快速固化性这样的特征而优选。

    使用聚氨酯类、聚酯类等高分子物质,或镍、铜等金属薄膜和硅酸钙等无机物覆盖这些潜在性固化剂而微胶囊化的物质,由于可以延长使用寿命而优选。

    接着,对(2)含有自由基聚合性物质和通过加热而产生游离自由基的固化剂的组合物进行说明。

    自由基聚合性物质是具有通过自由基聚合的官能团的物质。作为这种自由基聚合性物质,可以列举丙烯酸酯(包括对应的甲基丙烯酸酯。下同)化合物、丙烯酰氧基(包括对应的甲基丙烯酰氧基。下同)化合物、马来酰亚胺化合物、柠康酰亚胺树脂、降冰片烯二甲酰亚胺树脂。自由基聚合性物质,可以以单体或低聚物的状态使用,也可以将单体和低聚物结合使用。

    作为上述丙烯酸酯化合物的具体例子,可以列举丙烯酸甲酯、丙烯酸乙酯、丙烯酸异丙酯、丙烯酸异丁酯、乙二醇二丙烯酸酯、二乙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、四羟甲基甲烷四丙烯酸酯、2-羟基-1,3-二丙烯酰氧基丙烷、2,2-双(4-(丙烯酰氧基甲氧基)苯基)丙烷、2,2-双(4-(丙烯酰氧基聚乙氧基)苯基)丙烷、二环戊烯基丙烯酸酯、三环癸烷基丙烯酸酯、三(丙烯酰氧基乙基)异氰脲酸酯、氨酯丙烯酸酯。它们可以单独使用或2种以上混合使用。

    此外,根据需要,可以适当使用氢醌、甲基醚氢醌类等阻聚剂。进一步,从耐热性提高的观点考虑,丙烯酸酯化合物优选具有选自二环戊烯基、三环癸基和三嗪环的至少一种取代基。

    上述马来酰亚胺化合物,是分子中含有至少2个以上马来酰亚胺基的物质。作为这种马来酰亚胺化合物,例如,可以列举1-甲基-2,4-二马来酰亚胺苯、N,N’-间亚苯基二马来酰亚胺、N,N’-对亚苯基二马来酰亚胺、N,N’-间亚甲苯基二马来酰亚胺、N,N’-4,4-二亚苯基二马来酰亚胺、N,N’-4,4-(3,3’-二甲基二亚苯基)二马来酰亚胺、N,N’-4,4-(3,3’-二甲基二苯基甲烷)二马来酰亚胺、N,N’-4,4-(3,3’-二乙基二苯基甲烷)二马来酰亚胺、N,N’-4,4-二苯基甲烷二马来酰亚胺、N,N’-4,4-二苯基丙烷二马来酰亚胺、N,N’-3,3’-二苯砜二马来酰亚胺、N,N’-4,4-二苯醚二马来酰亚胺、2,2-二(4-(4-马来酰亚胺苯氧基)苯基)丙烷、2,2-二(3-叔丁基-4,8-(4-马来酰亚胺苯氧基)苯基)丙烷、1,1-二(4-(4-马来酰亚胺苯氧基)苯基)癸烷、4,4’-环亚己基-二(1-(4-马来酰亚胺苯氧基)-2-环己基苯、2,2-二(4-(4-马来酰亚胺苯氧基)苯基)六氟丙烷。它们可以单独使用或2种以上混合使用。

    上述柠康酰亚胺树脂,是使分子中含有至少一个柠康酰亚胺基的柠康酰亚胺化合物聚合而成的物质。作为柠康酰亚胺化合物,例如,可以列举苯基柠康酰亚胺、1-甲基-2,4-二柠康酰亚胺苯、N,N’-间亚苯基二柠康酰亚胺、N,N’-对亚苯基二柠康酰亚胺、N,N’-4,4-二亚苯基二柠康酰亚胺、N,N’-4,4-(3,3-二甲基二亚苯基)二柠康酰亚胺、N,N’-4,4-(3,3-二甲基二苯甲烷)二柠康酰亚胺、N,N’-4,4-(3,3-二乙基二苯甲烷)二柠康酰亚胺、N,N’-4,4-二苯甲烷二柠康酰亚胺、N,N’-4,4-二苯丙烷二柠康酰亚胺、N,N’-4,4-二苯醚二柠康酰亚胺、N,N’-4,4-二苯砜二柠康亚酰胺、2,2-二(4-(4-柠康酰亚胺苯氧基)苯基)丙烷、2,2-二(3-叔丁基-3,4-(4-柠康酰亚胺苯氧基)苯基)丙烷、1,1-二(4-(4-柠康酰亚胺苯氧基)苯基)癸烷、4,4’-环亚己基-二(1-(4-柠康酰亚胺苯氧基)苯氧基)-2-环己基苯、2,2-二(4-(4-柠康酰亚胺苯氧基)苯基)六氟丙烷。它们可以单独使用或2种以上混合使用。

    上述降冰片烯二甲酰亚胺(ナジイミド)树脂,是使分子中含有至少一个降冰片烯二甲酰亚胺基的降冰片烯二甲酰亚胺化合物聚合而成的物质。作为降冰片烯二甲酰亚胺化合物,例如,可以列举苯基降冰片烯二甲酰亚胺、1-甲基-2,4-双降冰片烯二甲酰亚胺苯、N,N’-间亚苯基双降冰片烯二甲酰亚胺、N,N’-对亚苯基双降冰片烯二甲酰亚胺、N,N’-4,4-二亚苯基双降冰片烯二甲酰亚胺、N,N’-4,4-(3,3-二甲基二亚苯基)双降冰片烯二甲酰亚胺、N,N’-4,4-(3,3-二甲基二苯甲烷)双降冰片烯二甲酰亚胺、N,N’-4,4-(3,3-二乙基二苯甲烷)双降冰片烯二甲酰亚胺、N,N’-4,4-二苯甲烷双降冰片烯二甲酰亚胺、N,N’-4,4-二苯丙烷双降冰片烯二甲酰亚胺、N,N’-4,4-二苯醚双降冰片烯二甲酰亚胺、N,N’-4,4-二苯砜双降冰片烯二甲酰亚胺、2,2-二(4-(4-降冰片烯二甲酰亚胺苯氧基)苯基)丙烷、2,2-二(3-叔丁基-3,4-(4-降冰片烯二甲酰亚胺苯氧基)苯基)丙烷、1,1-二(4-(4-降冰片烯二甲酰亚胺苯氧基)苯基)癸烷、4,4’-环亚己基-二(1-(4-降冰片烯二甲酰亚胺苯氧基)苯氧基)-2-环己基苯、2,2-二(4-(4-降冰片烯二甲酰亚胺苯氧基)苯基)六氟丙烷。它们可以单独使用或2种以上混合使用。

    此外,在上述自由基聚合性物质中,优选结合使用下述化学式(1)所表示的具有磷酸酯结构的自由基聚合性物质。这时,由于提高了相对于金属等无机物表面的粘合强度,因此对于电路电极的相互粘合是适合的。

    [化1]

    式中,n表示1~3的整数。

    上述具有磷酸酯结构的自由基聚合性物质,可以通过使磷酸酐与2-羟乙基(甲基)丙烯酸酯反应而得到。作为具有磷酸酯结构的自由基聚合性物质,具体来说有单(2-甲基丙烯酰氧基乙基)酸式磷酸酯、二(2-甲基丙烯酰氧基乙基)酸式磷酸酯。它们可以单独使用或2种以上混合使用。

    上述化学式(1)所表示的具有磷酸酯结构的自由基聚合性物质的配合量,相对于自由基聚合性物质和根据需要配合的成膜材料的总计100质量份,优选为0.01~50重量份,并更优选为0.5~5质量份。

    上述自由基聚合性物质,可以和烯丙基丙烯酸酯结合使用。这时,烯丙基丙烯酸酯的配合量,相对于自由基聚合性物质和根据需要配合的成膜材料的总计100质量份,优选为0.1~10重量份,更优选为0.5~5重量份。

    通过加热而产生游离自由基的固化剂,是通过加热而分解并产生游离自由基的固化剂。作为这种固化剂,可以列举过氧化化合物、偶氮类化合物。这种固化剂,可以根据目的连接温度、连接时间、适用期等适当选定。从高反应性和提高适用期的观点考虑,优选为半衰期10小时的温度为40℃以上并且半衰期1分钟的温度为180℃以下的有机过氧化物,并更优选为半衰期10小时的温度为60℃以上并且半衰期1分钟的温度为170℃以下的有机过氧化物。

    上述固化剂的配合量,在连接时间为25秒以下时,为了得到充分的反应率,其相对于自由基聚合性物质和根据需要配合的成膜材料的总计100重量份,优选为2~10重量份左右,并更优选为4~8重量份左右。另外,未限定连接时间时的固化剂的配合量,相对于自由基聚合性物质和根据需要配合的成膜材料的总计100重量份,优选为0.05~20重量份,并更优选为0.1~10重量份。

    作为通过加热而产生游离自由基的固化剂,更具体来说,可以列举二酰基过氧化物、过氧化二碳酸酯、过氧化酯、过氧化缩酮、二烷基过氧化物、过氧化氢、甲硅烷基过氧化物。

    此外,从抑制电路电极32、42的腐蚀的观点考虑,固化剂优选其中所含的氯离子或有机酸的浓度为5000ppm以下,进一步,更优选加热分解后产生的有机酸少的物质。

    作为这种固化剂,具体来说,可以列举过氧化酯、二烷基过氧化物、过氧化氢、甲硅烷基过氧化物等,并更优选从可以得到高反应性的过氧化酯中选定。另外,上述固化剂可以适当混合使用。

    作为过氧化酯,可以列举枯基过氧化新癸酸酯、1,1,3,3-四甲基丁基过氧化新癸酸酯、1-环己基-1-甲基乙基过氧化新癸酸酯、叔己基过氧化新癸酸酯、叔丁基过氧化特戊酸酯、1,1,3,3-四甲基丁基过氧化-2-乙基己酸酯、2,5-二甲基-2,5-二(2-乙基己酰过氧化)己烷、1-环己基-1-甲基乙基过氧化-2-乙基己酸酯、叔己基过氧化-2-乙基己酸酯、叔丁基过氧化-2-乙基己酸酯、叔丁基过氧化异丁酸酯、1,1-二(叔丁基过氧化)环己烷、叔己基过氧化异丙基单碳酸酯、叔丁基过氧化-3,5,5-三甲基己酸酯、叔丁基过氧化月桂酸酯、2,5-二甲基-2,5-二(间甲苯酰过氧化)己烷、叔丁基过氧化异丙基单碳酸酯、叔丁基过氧化-2-乙基己基单碳酸酯、叔己基过氧化苯甲酸酯、叔丁基过氧化乙酸酯。

    作为二烷基过氧化物,可以列举α,α’-二(叔丁基过氧化)二异丙苯、二枯基过氧化物、2,5-二甲基-2,5-二(叔丁基过氧化)己烷、叔丁基枯基过氧化物。

    作为过氧化氢,可以列举二异丙苯过氧化氢、枯烯过氧化氢。

    作为二酰基过氧化物,可以列举异丁基过氧化物、2,4-二氯苯甲酰过氧化物、3,5,5-三甲基己酰过氧化物、辛酰过氧化物、月桂酰过氧化物、硬酯酰过氧化物、琥珀酰过氧化物、苯甲酰过氧化甲苯、苯甲酰过氧化物。

    作为过氧化二碳酸酯,可以列举二正丙基过氧化二碳酸酯、二异丙基过氧化二碳酸酯、二(4-叔丁基环己基)过氧化二碳酸酯、二-2-乙氧基甲氧基过氧化二碳酸酯、二(2-乙基己基过氧化)二碳酸酯、二甲氧基丁基过氧化二碳酸酯、二(3-甲基-3-甲氧基丁基过氧化)二碳酸酯。

    作为过氧缩酮,可以列举1,1-二(叔己基过氧化)-3,3,5-三甲基环己烷、1,1-二(叔己基过氧化)环己烷、1,1-二(叔丁基过氧化)-3,3,5-三甲基环己烷、1,1-二(叔丁基过氧化)环十二烷、2,2-二(叔丁基过氧化)癸烷。

    作为甲硅烷基过氧化物,可以列举叔丁基三甲基甲硅烷基过氧化物、二(叔丁基)二甲基甲硅烷基过氧化物、叔丁基三乙烯基甲硅烷基过氧化物、二(叔丁基)二乙烯基甲硅烷基过氧化物、三(叔丁基)乙烯基甲硅烷基过氧化物、叔丁基三烯丙基甲硅烷基过氧化物、二(叔丁基)二烯丙基甲硅烷基过氧化物、三(叔丁基)烯丙基甲硅烷基过氧化物。

    这些固化剂,可以单独使用或2种以上混合使用,并且可以将分解促进剂、抑制剂等混合使用。此外,可以使用聚氨酯类、聚酯类等高分子物质等覆盖这些固化剂而使其微胶囊化。微胶囊化的固化剂,曲于延长了使用寿命,因此优选。

    在粘合剂组合物中,可以根据需要,添加成膜材料而使用。成膜材料,是指在将液状物固体化而使构成组合物形成膜形状时,该膜的操作变得容易,并且赋予不容易发生断裂、破碎、粘着之类的机械特性等的物质,并且,其在通常状态下(常温常压)可以作为膜操作。

    作为成膜材料,可以列举苯氧基树脂、聚乙烯甲醛树脂、聚苯乙烯树脂、聚乙烯缩丁醛树脂、聚酯树脂、聚酰胺树脂、二甲苯树脂、聚氨酯树脂。其中,从粘合性、相溶性、耐热性、机械强度优异的观点考虑,优选苯氧基树脂。

    苯氧基树脂,是通过使双官能酚类与表卤醇反应直至其高分子化所得的树脂,或者是通过使双官能环氧树脂与双官能酚类加聚所得的树脂。苯氧基树脂,例如,可以通过在碱金属氢氧化物等催化剂存在下,使1摩尔双官能酚类与0.985~1.015摩尔表卤醇,在非反应性溶剂中在40~120℃的温度下反应而得到。

    此外,作为苯氧基树脂,从树脂的机械特性和热特性观点考虑,特别优选,双官能环氧树脂与双官能酚类的配合当量比为环氧基/酚羟基=1/0.9~1/1.1,并且在碱金属化合物、有机磷类化合物、环状胺类化合物等催化剂存在下,在沸点为120℃以上的酰胺类、醚类、酮类、内酯类、醇类等有机溶剂中,并在反应固体成分为50质量份以下的条件下,加热至50~200℃进行加聚反应所得的树脂。

    作为上述双官能环氧树脂,可以列举双酚A型环氧树脂、双酚F型环氧树脂、双酚AD型环氧树脂、双酚S型环氧树脂、联苯基二缩水甘油醚、甲基取代联苯基二缩水甘油醚。

    双官能酚类具有两个酚羟基。作为双官能酚类,例如,可以列举对苯二酚类、双酚A、双酚F、双酚AD、双酚S、双酚芴、甲基取代双酚芴、二羟基联苯、甲基取代二羟基联苯等双酚类。

    苯氧基树脂可以通过自由基聚合性官能团或其它反应性化合物进行改性(例如,环氧基改性)。苯氧基树脂可以单独使用,也可以2种以上混合使用。

    粘合剂组合物,也可以进一步含有以丙烯酸、丙烯酸酯、甲基丙烯酸酯和丙烯腈中的至少一种作为单体成分的聚合物或共聚物。此处,从应力缓和优异的观点考虑,优选结合使用包含了含缩水甘油醚基的缩水甘油基丙烯酸酯或缩水甘油基甲基丙烯酸酯的共聚物类丙烯酸橡胶。这些丙烯酸橡胶的重均分子量,从提高粘合剂凝集力的观点考虑,优选为20万以上。

    导电粒子12的配合量,相对于100体积份粘合剂组合物,优选为0.1~30体积份,并且该配合量可以根据用途使用分配。从防止因过剩的导电粒子12所导致的电路电极短路等观点考虑,导电粒子12的配合量更优选为0.1~10体积份。

    电路连接材料中,还可以进一步含有橡胶微粒、填充剂、软化剂、促进剂、防老化剂、着色剂、阻燃剂、触变剂、偶联剂、酚树脂、蜜胺树脂、异氰酸酯类。

    橡胶微粒,只要是平均粒径为配合的导电粒子12的平均粒径的2倍以下,并且储存弹性模量为导电粒子12以及粘合剂组合物在室温下的储存弹性模量的1/2以下的微粒即可。特别是橡胶微粒的材质是聚硅氧烷、丙烯酸乳液、SBR、NBR、聚丁二烯橡胶的微粒,其适合单独使用或2种以上混合使用。三维交联的这些橡胶微粒,耐溶剂性优异,并且容易分散在粘合剂组合物中。

    在电路连接材料中含有填充剂时,由于连接可靠性等提高,因此优选。填充剂,只要其最大直径是导电粒子12粒径的1/2以下,就可以使用。当填充剂的粒径大于导电粒子时,存在有阻碍导电粒子扁平化的缺陷。此外,在结合使用不具有导电性的粒子时,只要填充剂的直径为不具有导电性的粒子直径以下,就可以使用。

    填充剂的配合量,相对于100体积份粘合剂组合物,优选为5~60体积份。如果配合量超过60体积份,则存在有连接可靠性提高效果饱和的倾向,而当其小于5体积份时,存在有填充剂添加效果不足的倾向。

    作为上述偶联剂,由于含有乙烯基、丙烯酸基、环氧基或异氰酸酯基的化合物提高了粘合性,因此优选。

    另外,膜状的电路连接材料,可以通过使用涂布装置(未图示)在支撑体(PET(聚对苯二甲酸乙二醇酯)膜等)上涂布上述电路连接材料,并进行规定时间的热风干燥而制作。

    [电路部件的连接结构的制造方法]

    接着,对上述的电路部件的连接结构1的制造方法进行说明。

    首先,准备上述的具有第1电路电极32的第1电路部件30、具有第2电路电极42的第2电路部件40和电路连接材料。作为电路连接材料,准备例如成型为膜状的电路连接材料(以下,称为膜状电路连接材料)。膜状电路连接材料含有上述粘合剂组合物和导电粒子12。膜状电路连接材料的厚度,优选为10~50μm。

    接着,在第1电路部件30上,放置膜状电路连接材料。然后,在膜状电路连接材料上放置第2电路部件40,并使第1电路电极32和第2电路电极42相对。由此,可以使膜状电路连接材料位于第1电路部件30和第2电路部件40之间。这时,膜状电路连接材料为膜状,并且容易使用。因此,使用该膜状电路连接材料的话,则在连接第1电路部件30和第2电路部件40时,可以很容易地位于它们之间,并且可以很容易地进行第1电路部件30和第2电路部件40的连接操作。

    接着,一边隔着第1电路部件30和第2电路部件40加热膜状电路连接材料,一边加压,实施固化处理,从而在第1和第2电路部件30、40之间形成电路连接部件10。固化处理,可以通过一般方法进行,并且该方法可以根据粘合剂组合物适当选择。这时,当电路连接材料中的导电粒子12的最外层为Ni时,由于Ni比Au硬,因此和最外层为Au的导电粒子相比,其突起部分14更深进入第1或第2电路电极32、42,并且导电粒子12和电路电极32、42得接触面积增加。此外,通过使导电粒子的金属层厚度为65~125nm的范围,连接电阻稳定。并且,通过对电路连接材料进行固化处理,使粘合剂组合物固化,实现了相对于第1电路部件30和第2电路部件40的高粘合强度,并且导电粒子12和第1及第2电路电极32、42牢固接触的状态可以长时间保持。

    因此,无论第1和/或第2电路电极32、42表面上有无凹凸,都可以充分降低相对的第1和第2电路电极32、42间的连接电阻,并且获得第1电路电极32和第2电路电极42的良好电连接,同时可以充分提高第1和第2电路电极32、42间的电特性的长期可靠性。

    这里,在上述实施方式中,使用膜状电路连接材料制造电路部件的连接结构1,但也可以使用形成膜状之前的电路连接材料代替膜状电路连接材料。这种情况下,只要将电路连接材料溶解在溶剂中,并将该溶液涂布在第1电路部件30或第2电路部件40的任一个之上,再使其干燥,就可以使其位于第1和第2电路部件30、40之间。

    以上,对本发明的优选实施方式进行了说明,但本发明并不限制于这些实施方式。

    实施例

    以下,基于实施例对本发明进行具体说明,但本发明不限定于此。

    [导电粒子的制作]

    (核体的制作)

    改变四羟甲基甲烷四丙烯酸酯、二乙烯基苯和苯乙烯单体的混合比,并使用苯甲酰过氧化物作为聚合引发剂进行悬浮聚合,再将所得的聚合物分级,由此得到具有3μm平均粒径的核体。

    (导电粒子No.1的制作)

    对上述核体的表面,实施无电解Ni镀覆处理,制作具有100nm均匀厚度的Ni层(金属层)的导电粒子No.1。

    (导电粒子No.2的制作)

    通过在导电粒子No.1上取代镀覆25nm厚度的Au,形成具有均匀厚度的Au层,制作导电粒子No.2。

    (导电粒子No.3的制作)

    调整在对上述核体的表面实施无电解Ni镀覆处理时的镀覆液的加入量、处理温度和时间,而改变镀覆的厚度,由此在上述核体的表面上形成Ni镀覆的突起部分。制作Ni层的目标厚度为40~60nm的导电粒子No.3。

    (导电粒子No.4的制作)

    调整在对上述核体的表面实施无电解Ni镀覆处理时的镀覆液的加入量、处理温度和时间,而改变镀覆的厚度,由此在上述核体的表面上形成Ni镀覆的突起部分。制作Ni层的目标厚度为60~80nm的导电粒子No.4。

    (导电粒子No.5的制作)

    调整在对上述核体的表面实施无电解Ni镀覆处理时的镀覆液的加入量、处理温度和时间,而改变镀覆的厚度,由此在上述核体的表面上形成Ni镀覆的突起部分。制作Ni层的目标厚度为90~100nm的导电粒子No.5。

    (导电粒子No.6的制作)

    调整在对上述核体的表面实施无电解Ni镀覆处理时的镀覆液的加入量、处理温度和时间,而改变镀覆的厚度,由此在上述核体的表面上形成Ni镀覆的突起部分。制作Ni层的目标厚度为110~130nm的导电粒子No.6。

    (导电粒子No.7的制作)

    调整在对上述核体的表面实施无电解Ni镀覆处理时的镀覆液的加入量、处理温度和时间,而改变镀覆的厚度,由此在上述核体的表面上形成Ni镀覆的突起部分。制作Ni层的目标厚度为130~150nm的导电粒子No.7。

    (导电粒子No.8的制作)

    通过在导电粒子No.5上取代镀覆25nm厚度的Au,形成具有多个突起部分的Au层,制作导电粒子No.8。

    对于如上所述制作的导电粒子No.1~8,使用电子显微镜[(株)日立制作所制造,S-800]进行观察,测定金属层的厚度、突起部分的高度以及邻接的突起部分间的距离。结果示于表1。

    [表1]

    (苯氧基树脂的制备)

    将50g苯氧基树脂(重均分子量:45000,Union Carbide公司制造,商品名“PKHC”)溶解在甲苯/乙酸乙酯=50/50(质量比)的混合溶剂中,制备固体成分为40质量%的苯氧基树脂溶液。

    (氨酯丙烯酸酯的合成)

    一边搅拌400质量份聚己内酯二醇(重均分子量:800)、131质量份2-羟基丙基丙烯酸酯、0.5质量份作为催化剂的二丁基二月桂酸锡和1.0质量份作为阻聚剂的氢醌单甲醚,一边加热至50℃,进行混合。接着,在该混合液中,滴入222质量份的异佛尔酮二异氰酸酯,并进一步搅拌,同时升温至80℃,进行氨酯化反应。确认异氰酸酯基的反应率达到99%以上后,降低反应温度,得到氨酯丙烯酸酯。

    [电路连接材料的制作]

    (电路连接材料A的制作)

    混合125g上述苯氧基树脂溶液(固体成分含量:50g)、49g上述氨酯丙烯酸酯、1g磷酸酯型丙烯酸酯和5g作为通过加热而产生游离自由基的固化剂的叔己基过氧化-2-乙基己酸酯,得到粘合剂组合物。相对于100质量份所得的粘合剂组合物,分散2.3质量份导电粒子No.4,制备电路连接材料。

    然后,使用涂布装置,将该电路连接材料涂布在单面进行了表面处理的厚度为50μm的PET膜上,在70℃下热风干燥3分钟,在PET膜上得到厚度为18μm的膜状电路连接材料A。

    (电路连接材料B的制作)

    除了使用3.0质量份导电粒子No.5,代替导电粒子No.4外,和电路连接材料A同样制作,制作厚度为18μm的膜状电路连接材料B。

    (电路连接材料C的制作)

    除了使用3.6质量份导电粒子No.6,代替导电粒子No.4外,和电路连接材料A同样进行,制作厚度为18μm的膜状电路连接材料C。

    (电路连接材料D的制作)

    除了使用1.8质量份导电粒子No.3,代替导电粒子No.4外,和电路连接材料A同样进行,制作厚度为18μm的膜状电路连接材料D。

    (电路连接材料E的制作)

    除了使用4.0质量份导电粒子No.7,代替导电粒子No.4外,和电路连接材料A同样进行,制作厚度为18μm的膜状电路连接材料E。

    (电路连接材料F的制作)

    除了使用3.0质量份导电粒子No.1,代替导电粒子No.4外,和电路连接材料A同样进行,制作厚度为18μm的膜状电路连接材料F。

    (电路连接材料G的制作)

    除了使用3.0质量份导电粒子No.2,代替导电粒子No.4外,和电路连接材料A同样进行,制作厚度为18μm的膜状电路连接材料G。

    (电路连接材料H的制作)

    除了使用3.0质量份导电粒子No.8,代替导电粒子No.4外,和电路连接材料A同样进行,制作厚度为18μm的膜状电路连接材料H。

    [电路部件的连接结构的制作]

    (实施例1)

    作为第1电路部件,准备具有由聚酰亚胺膜(厚度为38μm)和镀Sn的Cu箔(厚度为8μm)所形成的2层结构的挠性电路板(以下,称为FPC)。该FPC的电路的线宽为18μm,间距为50μm。

    接着,作为第2电路部件,准备在表面上具有ITO电路电极(厚度为50nm,表面电阻<20Ω)的玻璃基板(厚度为1.1mm)。该第2电路部件的电路的线宽为25μm,间距为50μm。

    然后,在第2电路部件上贴附裁剪为规定尺寸(1.5×30mm)的电路连接材料A,在70℃、1.0MPa的条件下加热3秒钟,进行加压,并暂时连接。接着,剥离PET膜,然后将FPC配置为通过FPC和第2电路部件夹住电路连接材料A,进行FPC的电路和第2电路部件的电路的位置对准。然后,在170℃、3MPa、10秒的条件下,从FPC上方进行加热、加压,将FPC和第2电路部件正式连接。如此所述,制作电路部件的连接结构。

    (实施例2)

    作为第1电路部件,准备和实施例1相同的FPC。接着,作为第2电路部件,准备在表面上具有IZO电路电极(厚度为50nm,表面电阻<20Ω)的玻璃基板(厚度为1.1mm)。该第2电路部件的电路,线宽为25μm,间距为50μm。然后,和实施例1同样进行,使用电路连接材料A,制作电路部件的连接结构。

    (实施例3)

    作为第1电路部件,准备和实施例1相同的FPC。接着,作为第2电路部件,准备在表面上具有ITO(最外层,厚度为50nm)/Cr(厚度为200nm)2层结构的电路电极(表面电阻<20Ω)的玻璃基板(厚度为1.1mm)。该第2电路部件的电路,线宽为25μm,间距为50μm。然后,和实施例1同样进行,使用电路连接材料A,制作电路部件的连接结构。

    (实施例4)

    作为第1电路部件,准备和实施例1相同的FPC。接着,作为第2电路部件,准备在表面上具有ITO(最外层,厚度为50nm)/Ti(厚度为100nm)/Al(厚度为200nm)/Ti(厚度为100nm)4层结构的电路电极(表面电阻<20Ω)的玻璃基板(厚度为1.1mm)。该第2电路部件的电路,线宽为25μm,间距为50μm。然后,和实施例1同样进行,使用电路连接材料A,制作电路部件的连接结构。

    (实施例5)

    作为第1电路部件,准备和实施例1相同的FPC。接着,作为第2电路部件,准备在表面上具有Al电路电极(厚度为200nm,表面电阻<5Ω)的玻璃基板(厚度为1.1mm)。该第2电路部件的电路,线宽为25μm,间距为50μm。然后,和实施例1同样进行,使用电路连接材料A,制作电路部件的连接结构。

    (实施例6)

    除了使用电路连接材料B代替电路连接材料A外,和实施例1同样进行,制作电路部件的连接结构。

    (实施例7)

    除了使用电路连接材料B代替电路连接材料A外,和实施例2同样进行,制作电路部件的连接结构。

    (实施例8)

    除了使用电路连接材料B代替电路连接材料A外,和实施例3同样进行,制作电路部件的连接结构。

    (实施例9)

    除了使用电路连接材料B代替电路连接材料A外,和实施例4同样进行,制作电路部件的连接结构。

    (实施例10)

    除了使用电路连接材料B代替电路连接材料A外,和实施例5同样进行,制作电路部件的连接结构。

    (实施例11)

    除了使用电路连接材料C代替电路连接材料A外,和实施例1同样进行,制作电路部件的连接结构。

    (实施例12)

    除了使用电路连接材料C代替电路连接材料A外,和实施例2同样进行,制作电路部件的连接结构。

    (实施例13)

    除了使用电路连接材料C代替电路连接材料A外,和实施例3同样进行,制作电路部件的连接结构。

    (实施例14)

    除了使用电路连接材料C代替电路连接材料A外,和实施例4同样进行,制作电路部件的连接结构。

    (实施例15)

    除了使用电路连接材料C代替电路连接材料A外,和实施例5同样进行,制作电路部件的连接结构。

    (比较例1)

    除了使用电路连接材料D代替电路连接材料A外,和实施例1同样进行,制作电路部件的连接结构。

    (比较例2)

    除了使用电路连接材料D代替电路连接材料A外,和实施例2同样进行,制作电路部件的连接结构。

    (比较例3)

    除了使用电路连接材料D代替电路连接材料A外,和实施例3同样进行,制作电路部件的连接结构。

    (比较例4)

    除了使用电路连接材料D代替电路连接材料A外,和实施例4同样进行,制作电路部件的连接结构。

    (比较例5)

    除了使用电路连接材料D代替电路连接材料A外,和实施例5同样进行,制作电路部件的连接结构。

    (比较例6)

    除了使用电路连接材料E代替电路连接材料A外,和实施例1同样进行,制作电路部件的连接结构。

    (比较例7)

    除了使用电路连接材料E代替电路连接材料A外,和实施例2同样进行,制作电路部件的连接结构。

    (比较例8)

    除了使用电路连接材料E代替电路连接材料A外,和实施例3同样进行,制作电路部件的连接结构。

    (比较例9)

    除了使用电路连接材料E代替电路连接材料A外,和实施例4同样进行,制作电路部件的连接结构。

    (比较例10)

    除了使用电路连接材料E代替电路连接材料A外,和实施例5同样进行,制作电路部件的连接结构。

    (比较例11)

    除了使用电路连接材料F代替电路连接材料A外,和实施例1同样进行,制作电路部件的连接结构。

    (比较例12)

    除了使用电路连接材料F代替电路连接材料A外,和实施例2同样进行,制作电路部件的连接结构。

    (比较例13)

    除了使用电路连接材料F代替电路连接材料A外,和实施例3同样进行,制作电路部件的连接结构。

    (比较例14)

    除了使用电路连接材料F代替电路连接材料A外,和实施例4同样进行,制作电路部件的连接结构。

    (比较例15)

    除了使用电路连接材料F代替电路连接材料A外,和实施例5同样进行,制作电路部件的连接结构。

    (比较例16)

    除了使用电路连接材料G代替电路连接材料A外,和实施例1同样进行,制作电路部件的连接结构。

    (比较例17)

    除了使用电路连接材料G代替电路连接材料A外,和实施例2同样进行,制作电路部件的连接结构。

    (比较例18)

    除了使用电路连接材料G代替电路连接材料A外,和实施例3同样进行,制作电路部件的连接结构。

    (比较例19)

    除了使用电路连接材料G代替电路连接材料A外,和实施例4同样进行,制作电路部件的连接结构。

    (比较例20)

    除了使用电路连接材料G代替电路连接材料A外,和实施例5同样进行,制作电路部件的连接结构。

    (比较例21)

    除了使用电路连接材料H代替电路连接材料A外,和实施例1同样进行,制作电路部件的连接结构。

    (比较例22)

    除了使用电路连接材料H代替电路连接材料A外,和实施例2同样进行,制作电路部件的连接结构。

    (比较例23)

    除了使用电路连接材料H代替电路连接材料A外,和实施例3同样进行,制作电路部件的连接结构。

    (比较例24)

    除了使用电路连接材料H代替电路连接材料A外,和实施例4同样进行,制作电路部件的连接结构。

    (比较例25)

    除了使用电路连接材料H代替电路连接材料A外,和实施例5同样进行,制作电路部件的连接结构。

    [电路电极上所存在的导电粒子数]

    使用微分干涉显微镜,目视计数(n=38)上述电路部件的连接结构中的各电路电极上所存在的导电粒子数。结果,实施例1~15、比较例1~25的电路电极上的平均导电粒子数在32~45个的范围内,并且未见到由于电路连接材料或电路部件的差异所导致的导电粒子数的极端增减。

    [连接电阻的测定]

    对于上述电路部件的连接结构,使用万用表(株式会社ADC(エ一デイ一シ一)公司制造,商品名“数字万用表7461A”),测定第1电路部件(FPC)的电路电极和第2电路部件的电路电极间的连接电阻值。连接电阻值在初期(连接后即刻),以及在80℃、95%RH的恒温恒湿槽中保持500小时(高温高湿处理)后进行测定。结果示于表2(见下页)。

    在表2中,连接电阻值,用邻接电路间37点电阻的平均值和3倍标准偏差值的和(x+3σ)来表示。此外,电阻增加率,是由百分率来表示初期电阻值到高温高湿处理后电阻值的增加量,具体来说,其通过下式来计算。:

    电阻增加率(%)=[(处理后电阻值-初期电阻值)/初期电阻值]×100,作为连接可靠性改善效果的判断,将电阻增加率小于10%定为有改善效果,将电阻增加率是10%以上且小于20%定为以往产品的水平,并将电阻增加率是20%以上定为无改善效果(NG)。

    [表2]

    如表2所示,在使用电路电极的全部或最外层由ITO或IZO所构成的第2电路部件时,在实施例1~4、6~9、11~14的电路部件的连接结构中,可以得到电阻增加率非常小至不到10%的结果。相反,在比较例6~9、21~24的电路部件的连接结构中,电阻增加率约为10~18%,在比较例1~4、11~14、16~19的电路部件的连接结构中,电阻增加率为20%以上。

    由此可知,相对于电路电极的全部或最外层由ITO或IZO所构成的电路电极,通过在连接中使用含有具有突起部分、最外层为Ni、并且其厚度为65~125nm的导电粒子的电路连接材料,可以观察到连接可靠性的改善。

    此外,在使用具有Al电路电极的第2电路部件的情况下,在使用含有具有突起部分、最外层为Ni并且其厚度为65nm以上的导电粒子的电路连接材料进行连接的实施例5、10、15、比较例10中,结果是电阻增加率小至不到10%。该结果可以认为是由于连接时,导电粒子表面的突起部分突破了Al电路电极表面的氧化膜和电路电极接触。相反,在使用含有无突起部分的导电粒子的电路连接材料进行连接的比较例15、20中,电阻增加率约为15~34%。此外,在使用含有具有突起部分,最外层为Ni并且其厚度为50nm的导电粒子的电路连接材料进行连接的比较例5中,电阻增加率约为30%。

    这里,由于使用具有突起部分并且最外层为Ni的导电粒子的实施例5、10、15、比较例10,和使用具有突起部分并且最外层为Au的导电粒子的比较例25的电阻增加率为相同程度,因此,相对于电路电极由Al构成的电路部件,由于导电粒子的最外层的金属种类不同所导致的连接可靠性的改善效果并不显著。

    由上可确认,使用本发明的电路连接材料,可以获得相对的电路电极相互之间的良好电连接,同时,即使在高温高湿环境下或在热冲击试验等中,也可以充分提高稳定的连接可靠性。

    工业上的可利用性

    使用本发明的电路连接材料,可以获得相对的电路电极相互之间的良好电连接,同时,可以充分提高电路电极间的电特性的长期可靠性。此外,根据本发明,可以提供电路电极间的电特性的长期可靠性非常优异的电路部件的连接结构。

电路连接材料和电路部件的连接结构.pdf_第1页
第1页 / 共33页
电路连接材料和电路部件的连接结构.pdf_第2页
第2页 / 共33页
电路连接材料和电路部件的连接结构.pdf_第3页
第3页 / 共33页
点击查看更多>>
资源描述

《电路连接材料和电路部件的连接结构.pdf》由会员分享,可在线阅读,更多相关《电路连接材料和电路部件的连接结构.pdf(33页珍藏版)》请在专利查询网上搜索。

一种电路连接材料,其是用于电连接形成有电路电极的2个电路部件使前述电路电极对抗的电路连接材料,其中,电路连接材料含有粘合剂组合物和导电粒子,该导电粒子是包含有机高分子化合物的核体被含镍或镍合金的金属层覆盖,并且在表面上具有多个突起部分的导电粒子,前述核体的平均粒径为14m,金属层的厚度为65125nm。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1