一种多羟基化合物制乙二醇的方法 【技术领域】
本发明涉及乙二醇的制备方法,具体地说是多羟基化合物在水热条件下经过一步催化加氢降解制乙二醇的反应过程。
背景技术
乙二醇是重要的能源液体燃料,也是非常重要的聚酯合成原料,例如,用于聚对苯二甲酸乙二酯(PET),聚萘二甲酸乙二醇酯(PEN),还可以用作防冻剂、润滑剂、增塑剂、表面活性剂等,是用途广泛的有机化工原料。
目前,乙二醇的工业生产主要是采用石油原料路线,即乙烯环氧化后得到环氧乙烷,然后水合得到乙二醇【文献1:崔小明,国内外乙二醇生产发展概况,化学工业,2007,25,(4),15‑21.文献2:Process for preparingethanediol by catalyzing epoxyethane hydration,Patent No.CN1463960‑A;CN1204103‑C】。合成方法依赖于不可再生的石油资源,而且生产过程中包括选择氧化或环氧化步骤,技术难度大,效率低,副产物多,物耗高且污染严重。
利用具有可再生性的生物质制备乙二醇,可以减少人类对化石能源物质的依赖,有利于实现环境友好和经济可持续发展。多羟基化合物,包括淀粉、半纤维素、葡萄糖、蔗糖、果糖、果聚糖在自然界中广泛存在。随着农业技术的发展,其产量日益增长。发展以多羟基化合物制备乙二醇,不仅可以在一定程度上降低对石油资源的依赖,同时,有助于实现农产品深加工制高附加值化学品。目前,以多羟基化合物制多元醇的技术【文献3:Process for the preparation of lower polyhydric alcohols,patent,No.US5107018.文献4:Preparation
![]()
lower polyhydric alcohols,patent,No.US5210335文献5:一种生产乙二醇的新工艺,CN200610068869.5文献6:一种由山梨醇裂解生产二元醇和多元醇的方法,CN200510008652.0】一般包括三个步骤:(1)淀粉经过糊化、酶液化、酶糖化过程得到葡萄糖(2)葡萄糖经过贵金属钌或镍催化剂加氢得到山梨醇(3)山梨醇在高温高压下氢解生成产物多元醇,主要为丙二醇、丙三醇、乙二醇。其中,乙二醇的收率在10‑30%范围。制备过程繁琐。本发明提供的方法具有反应过程简单,而且产物中乙二醇收率高的显著优点。
【发明内容】
本发明的目的在于提供一种多羟基化合物制乙二醇的方法。多羟基化合物(包括淀粉、半纤维素、蔗糖、葡萄糖、果糖、果聚糖)经过一步催化加氢降解过程,高收率、高选择性地制备乙二醇。
为实现上述目的,本发明采取的技术方案为:以多羟基化合物,包括 淀粉、半纤维素、蔗糖、葡萄糖、果糖、果聚糖为反应原料,在密闭高压反应釜内于水中进行催化加氢反应,催化剂活性组分由两部分共同构成,一部分为8、9、10族过渡金属铁、钴、镍、钌、铑、钯、铱、铂中的一种或几种;另一部分为金属态的钼和/或钨,或者与钼和/或钨的碳化物、氮化物、磷化物。反应于密闭高压反应釜中进行。反应釜中氢气室温时的初始压力为1‑12MPa,反应温度为120‑300℃,反应时间不少于5分钟。优选的反应温度为180‑250℃,室温下反应釜中优选氢气的初始压力3‑7MPa,优选反应时间为30min—3h。
第二部份与第一部份的活性组分的重量比在0.02‑1600倍范围之间,优选重量比在0.3‑60倍范围之间。
所述催化剂为负载型催化剂,活性组分担载在载体上,包括活性炭、氧化铝、氧化硅、碳化硅、氧化锆、氧化锌、二氧化钛一种或一种以上复合体。第一部分活性组分金属于催化剂上的含量在0.05‑50wt%,优选在1‑30wt%,第二部分活性组分金属于催化剂上的含量为1‑80wt%,优选为10‑60wt%。或者催化剂是非负载的、以活性组分作为催化剂骨架的骨架金属催化剂,例如雷尼镍等。
反应原料多羟基化合物与水的质量比为1∶200‑1∶4,多羟基化合物与催化剂的质量比为1∶1‑100∶1。
下面所列的实施例为高压反应釜中进行,但不排除可以通过反应器设计优化,例如,采用固定床反应器、浆态床反应器等,实现多羟基化合物、氢气、以及催化剂之间更好的传质效果,获得更好的反应结果。
本发明具有如下优点:
1.以多羟基化合物包括淀粉、半纤维素、葡萄糖、蔗糖、果糖、果聚糖为原料制备乙二醇,相对于现有的乙二醇工业合成路线中使用的乙烯原料,具有原料资源可再生的优点,符合可持续发展的要求。
2.多羟基化合物催化降解后,原料分子中的碳氢氧原子得到最大程度的保留,反应过程具有极高的原子经济性。
3.本发明反应过程简单。相对于已有的多羟基化合物制乙二醇技术,本发明无需预先对多羟基化合物进行加氢制得山梨醇后再裂解为乙二醇,而是仅仅通过一步反应过程即可实现由原料到产物乙二醇,反应过程简单。
4.反应过程具有很高的产品收率和选择性,乙二醇的收率可以达到50%以上,具有很好的应用前景。
下面通过具体实施例对本发明进行详细说明,但这些实施例并不对本发明的内容构成限制。
具体实施方式 实施例1
金属钨催化剂制备:将偏钨酸氨溶液(质量浓度为0.4g/ml)浸渍于活性炭载体上,经120℃烘箱干燥12h后,将置于H
2气氛中700℃进行还原1h,得到钨担载量为20wt%的W/AC。
实施例2
金属镍钨催化剂制备:将按照实施例1所述制备的钨催化剂近一步浸渍硝酸镍溶液,经过120℃干燥,400℃还原2h后,得到Ni‑W/AC(5wt%Ni‑18wt%W)催化剂。
实施例3
金属催化剂Ni/AC,Ni/SiO
2,Pt/AC,Ru/AC的制备:分别以硝酸镍、氯铂酸、三氯化钌水溶液浸渍活性碳载体,经过120℃干燥12h后,于450℃氢气氛中还原1h,分别得到催化剂Ni/AC(5wt%Ni),Pt/AC(0.5wt%Pt),Ru/AC(5wt%Ru)。将活性碳载体换为SiO
2,同样方法可制得Ni/SiO
2(15wt%Ni)催化剂。
实施例4
金属铂钨催化剂制备:将偏钨酸氨溶液(质量浓度为0.2g/ml)浸渍于氧化硅载体上,经120℃烘箱干燥12h后,将置于H
2气氛中700℃进行还原1h,得到钨担载量为10wt%的W/SiO
2。而后,进一步浸渍氯铂酸溶液,经120℃干燥,在350℃氢气还原2h,得到Pt‑W/SiO
2(0.5wt%Pt‑10wt%W)催化剂。
实施例5
碳化钨催化剂制备:将偏钨酸氨溶液(质量浓度为0.4g/ml)浸渍于活性炭载体(AC)上,经120℃烘箱干燥12h后,将催化剂前体置于H
2气氛中800℃进行碳热反应1h,得到钨担载量为20wt%的W
2C/AC催化剂。
实施例6
镍碳化钨催化剂制备:将按照实施例4所述制备的碳化钨催化剂近一步浸渍硝酸镍溶液,经过120℃干燥,400℃还原2h后,得到Ni‑W
2C/AC(5wt%Ni‑18wt%W)催化剂。
实施例7
钌碳化钨催化剂制备:将三氯化钌与偏钨酸氨的混合溶液浸渍于活性炭载体,经120℃烘箱干燥12h后,将催化剂前体置于H
2气氛中700℃进行碳热反应1h,得到钌担载量5%,钨担载量为10wt%的Ru‑W
2C/AC(5wt%Ru‑10wt%W)催化剂。
实施例8
钻碳化钼催化剂制备:将硝酸钻与钼酸铵按照钼/钴质量比2:1配置成混合溶液,而后浸渍于活性炭载体上,经120℃烘箱干燥12h后,将催化剂前体置于H
2气氛中700℃进行碳热反应1h,得到Co‑Mo
2C/AC催化剂(10wt%Co‑20wt%Mo)。
实施例9
氮化钨催化剂制备:偏钨酸氨溶液(质量浓度为0.2g/ml)浸渍于活性炭载体上,经120℃烘箱干燥12h后,将置于NH
3气氛中700℃进行氮化1h,得到钨担载量为15wt%的W
2N/AC。
实施例10
镍氮化钨催化剂制备:将偏钨酸氨和硝酸镍按照钼/镍质量比为1:1的比例制成混合溶液,其中,钼酸铵的质量浓度为0.2g/ml。将混合溶液浸渍活性炭载体(AC)。经120℃烘箱干燥12h后,将催化剂前体置于NH
3气氛中700℃下氮化1h,得到Ni‑W
2N/AC催化剂(15wt%Ni‑15wt%W)。
实施例11
氮化钼催化剂制备:将钼酸铵溶液(质量浓度为0.3g/ml)浸渍活性炭载体(AC)。经120℃烘箱干燥12h后,将催化剂前体置于NH
3气氛中700℃下氮化1h,得到Mo
2N/AC催化剂(其中Mo于催化剂中的担量为25wt%,即25wt%Mo)。
实施例12
镍氮化钼催化剂制备:将钼酸铵和硝酸镍按照钼/镍质量比为1:1的比例制成混合溶液,其中,钼酸铵的质量浓度为0.27g/ml。而后,将混合溶液浸渍二氧化硅载体。经120℃烘箱干燥12h后,将催化剂前体置于NH
3气氛中700℃下氮化1h,得到Ni‑Mo
2N/SiO
2催化剂(15wt%Ni‑15wt%Mo)。
实施例13
Ni‑Mo/Al
2O
3催化剂制备:将硝酸镍与钼酸铵的混合溶液浸渍于氧化铝载体上,经过120℃烘箱干燥12h后,将催化剂前体置于氢气氛中700℃下还原1h,得到Ni‑Mo/Al
2O
3催化剂(15wt%Ni‑15wt%Mo)。
实施例14
磷化钼催化剂制备:将钼酸铵、磷酸氢二铵按照钼磷原子比为1:1.2的比例配成溶液。将溶液浸渍于TiO
2载体上,经过120℃干燥后,于650℃下用氢气还原2h,得到MoP/TiO
2催化剂(10wt% Mo)。
实施例15
铱磷化钼催化剂制备:将钼酸铵、磷酸氢二铵、氯铱酸按照一定比例配成溶液,其中钼磷原子比为1:1.2,钼铱重量比为10:1。将溶液浸渍TiO
2载体,经过120℃干燥后,于650℃下用氢气还原2小时,得到Ir‑MoP/TiO
2催化剂(1wt% Ir‑10wt% Mo)。
实施例16
淀粉催化转化实验:将1.0g多羟基化合物,0.3g催化剂和100ml水加入到200ml反应釜中,通入氢气置换三次气体后,充氢气至5MPa,升温至240℃反应30min。反应结束后,降至室温,取离心后的上清液体,在高效液相色谱钙型离子交换柱上进行分离并用差示折光检测器进行检测。产物收率中仅对目标产物乙二醇以及六元醇(包括山梨醇、甘露醇)进行计算,其他液体产物包括丙二醇、丁四醇、乙醇、未知成分,以及气体产物(CO
2,CH
4,C
2H
6等)未计算其收率。
实施例17
替换催化剂的种类,反应条件同实施例16。各种催化剂上淀粉的催化转化结果(表一)。
表一 各种催化剂上,淀粉催化转化的结果
催化剂乙二醇收率% 六元醇收率% 其他%
Ni‑W/AC(5%Ni‑18%W)56638
Pt‑W/AC(0.5%Pt‑75%W)511039
Ni/AC(5%Ni)84844
Pt/AC(0.5%Pt)54550
W/AC(20%W)3097
Ru‑W2C/AC(5%Ru‑10%W)481141
Ru/AC(5%Ru)61084
W2C/AC(20%)12385
Ni‑W2C/AC(5%Ni‑18%W)54739
Ni‑W2N/SiO2(15%Ni‑15%W)43552
Ni/SiO2(15wt%Ni)54451
W2N/AC(15%)8488
Ni‑Mo/Al2O3(15%Ni‑15%Mo)32563
Ir‑MoP/TiO2(1%Ir‑10%Mo)38755
Co‑Mo2C/AC(10%Co‑20%Mo)31465
Ni‑Mo2N/AC(15%Ni‑15%Mo)36856
W2C/AC(20%W)+Ru/AC(5%Ru) 501238
Mo2N/AC(25wt%Mo)+Ru/C(5%Ru) 371152
W2N/AC(15%)+Ru/AC(5%Ru) 451342
W/AC(20%W)+Reny Ni52741
如表一所示,淀粉能够在本发明中所涉及的各种多金属催化剂上高收率地转化为乙二醇。其中,Ni‑W/AC上的收率可以达到56%。通过将含有钨、钼活性组分的催化剂与对含有加氢性能的8,9,10族金属催化剂以机械混合的方式进行组合使用,同样可以实现淀粉高收率转化为乙二醇。
实施例18
替换催化剂的种类,反应条件同实施例16。各种催化剂上蔗糖的催化转化结果(表二)。
表二 各种催化剂上,蔗糖催化转化的结果
率%率%%
Ni‑W/AC(5%Ni‑18%W)432829
Ni/AC(5%Ni)75142
W/AC(20%W)3097
Ru‑W2C/AC(5%Ru‑10%W)323434
Ru/AC(5%Ru)51085
W2C/AC(20%)11485
Ni‑W2N/SiO2(15%Ni‑15%W)453124
Ni/SiO2(15wt%Ni)64747
W2N/AC(15%)7390
Ni‑Mo/Al2O3(15%Ni‑15%Mo)252649
Ir‑MoP/TiO2(1%Ir‑10%Mo)282448
Co‑Mo2C/AC(10%Co‑20%Mo)261856
Ni‑Mo2N/AC(15%Ni‑15%Mo)253441
W/AC(20%W)+Reny Ni462133
如表二所示,蔗糖能够在本发明中所涉及的各种多金属催化剂上高收率地转化为乙二醇。通过将含有钨、钼活性组分的催化剂与对含有加氢性能的8,9,10族金属催化剂以机械混合的方式进行组合使用,同样可以实现蔗糖高收率转化为乙二醇。
实施例19
替换催化剂的种类,反应条件同实施例16。各种催化剂上葡萄糖的催化转化结果(表三)。
表三 各种催化剂上,葡萄糖催化转化的结果
催化剂乙二醇收率% 六元醇收率% 其他%
Ni‑W/AC(5%Ni‑18%W)393526
Ru‑W2C/AC(5%Ru‑10%W)324127
Ni‑W2N/SiO2(15%Ni‑15%W)373231
Ni‑Mo/Al2O3(15%Ni‑15%Mo)232948
Ir‑MoP/TiO2(1%Ir‑10%Mo)242749
Co‑Mo2C/AC(10%Co‑20%Mo)251659
Ni‑Mo2N/AC(15%Ni‑15%Mo)223840
W/AC(20%W)+Reny Ni412633
如表三所示,葡萄糖能够在本发明中所涉及的各种多金属催化剂上高收率地转化为乙二醇。通过将含有钨、钼活性组分的催化剂与对含有加氢性能的8,9,10族金属催化剂以机械混合的方式进行组合使用,同样可以实现葡萄糖高收率转化为乙二醇。
实施例20
替换催化剂的种类,反应条件同实施例16。各种催化剂上果糖的催化转化结果(表四)。
表四 各种催化剂上,果糖催化转化的结果
催化剂乙二醇收率% 六元醇收率% 其他%
Ni‑W/AC(5%Ni‑25%W)333136
Ru‑W2C/AC(5%Ru‑10%W)303436
Ni‑W2N/SiO2(15%Ni‑15%W)342838
Ni‑Mo/Al2O3(15%Ni‑15%Mo)212554
Ni‑Mo2N/AC(15%Ni‑15%Mo)233542
如表四所示,果糖能够在本发明中所涉及的各种催化剂上高收率地转化为乙二醇。
实施例21
替换催化剂的种类,反应条件同实施例16。各种催化剂上半纤维素的催化转化结果(表五)。
表五 各种催化剂上,半纤维素催化转化的结果
催化剂乙二醇收率% 六元醇收率% 其他%
Ni‑W/AC(5%Ni‑18%W)51841
Ru‑W2C/AC(5%Ru‑10%W)481141
Ni‑W2N/SiO2(15%Ni‑15%W)52642
Ni‑Mo/Al2O3(15%Ni‑15%Mo)36559
Ni‑Mo2N/AC(15%Ni‑15%Mo)31366
如表五所示,半纤维素能够在本发明中所涉及的各种催化剂上高收率地转化为乙二醇。收率可以达到50%以上。
实施例22
反应时间的影响。不同反应时间下Ni‑W/AC(5%Ni‑25%W)催化剂上各种多羟基化合物催化转化结果(表六)。除反应时间不同外,反应条件分别同实施例16。
表六 不同反应时间下Ni‑W/AC催化剂上各种多羟基化合物催化转化结果
从表中可以看出,各种多羟基化合物在镍钨催化剂上一定的反应时间内均有优良的乙二醇收率。较佳时间为在30min‑3h。
实施例23
反应温度的影响。不同反应温度下Ni‑W/AC(5%Ni‑25%W)催化剂上各种多羟基化合物催化转化结果,见表七。除反应温度不同外,反应条件分别同实施例16。
表七 不同反应温度下Ni‑W/AC催化剂上各种多羟基化合物催化转化结果
从表中可以看出,各种多羟基化合物在镍钨催化剂上一定的反应温度内均有优良的乙二醇收率,较佳温度在180‑250℃附近。
实施例24
反应压力的影响。不同氢气压力下Ni‑W/AC(5%Ni‑25%W)催化剂上多羟基化合物催化转化的结果,见表八。除反应中的氢气压力不同外,反应条件分别同实施例16。
表八 不同氢气压力下Ni‑W/AC催化剂上各种多羟基化合物催化转化结果
从表中可以看出,各种多羟基化合物在镍钨催化剂上一定的氢气压力下均有优良的乙二醇收率。较佳反应压力为3‑7MPa。
实施例25
本发明所涉及的较佳催化剂以淀粉、葡萄糖为反应原料的反应结果(反应条件实施例16),与公开专利:一种由山梨醇裂解生产二元醇和多元醇的方法,CN200510008652.0所涉及的反应过程中的乙二醇收率的比较,见表九。
表九 本发明与公开专利结果对比
催化剂原料乙二醇收率%
Ni‑W/AC(5%Ni‑18%W)淀粉56%
Ni‑W/AC(5%Ni‑18%W)葡萄糖39%
Ni/Ru催化剂 专利CN200510008652.0 淀粉经过酶水解制葡萄糖,而后加氢后制得的山梨醇 15%
显然,本发明中的乙二醇收率明显更高。而且,本发明的反应过程更为简单。