技术领域
本发明属于食品添加剂技术领域,特别涉及一种降低食物、食品、中药中重金属浸出 毒性,提升食安、环保的稳定剂及其制备方法。
背景技术
对处在食物链末端的人来说,食物链的重金属污染是一个对人类健康极大关注全球性 的问题。这些重金属进入人体后,不易排泄,逐渐蓄积,倾向于积聚于大脑,肾脏,免疫 系统,当超过人体的生理负荷时,就会引起生理功能改变,导致急、慢性疾病或产生远期 危害,包括可能渐形成癌组织且导致癌症,而会严重干扰人体健康、正常功能并甚或危害 人体生命。此类食物安全方面的危害已严重恶劣地威胁公共安全、和社会稳定、以及国家 全体经济福祉,情况令人堪忧。
然而,现今没有一个普遍通行的食品级产品,亦没有报导披露一种的方法或食品级 产品,其能够安全并低廉有效地降低食物、食品中所含重金属浸出毒性浓度,即将溶解、 游离态的重金属转换为非常不易溶解的稳定产物并达无害化,即降低生物包括农作物对 其吸收的有效性、亦即减低对生物的毒性,并制止该重金属再回到食物链以及减少或避免 转移、散播富集且放大之毒害或影响。因此,人类不会是食物链重金属污染效应的最后一 环,但亦可能因富集且经胃酸分解反而放大、传播的开端。
中国目前土壤普遍被重金属污染,导致农作物、中药材产品中重金属含量超标,进而 污染食物链。中国多省市频发毒大米丑闻引发大陆民众持续的强烈关注。由于米及其制品 米粉是中国人的主要食糧,以“镉大米”制成的产品如米粉,米糕等亦受影响。一份美国哥 伦比亚大学公共卫生学院的研究报告显示,来到纽约的中国移民体内的铅、镉、汞含量远 远高于其他族裔人群。中国大陆移民的血铅含量比其他亚洲移民高24.3%,比纽约本地人 高48.6%,镉含量比其他亚洲移民高35.4%,比纽约本地人高74%;汞含量是其他亚洲移 民的1.8倍,是纽约人的2.7倍。
这份报告分析说,由于镉和铅可以在人体内留存数十年,所以中国新移民体内的镉 和铅可以确定大部分是来自中国。报告认为这与他们在中国时的饮食大有关系。一方面是 因为中国人有服用中药的习惯,而中药中含有大量的重金属元素,更重要的一个原因则是 土壤普遍被重金属污染,进而也使农作物受到污染。但是即便从现在采取强有力的措施治 理,土壤一旦被污染,完全复原需要长达千年的时间。然土壤重金属的全量不等于生物, 包括农作物和人体,的吸收可利用量(生物有效性),唯有水溶性、易溶解的(如遇酸分解) 或游离型态的才能被生物,如农作物根部,所吸收;这些型态的重金属经由淋洗作用移动到 地下水体中,才会危及饮用水源。生活环境中免不了有重金属的存在,因此在没有被污染 的土壤中仍然含有少量的重金属,即使是特殊地质因素造成浓度特别高,也只有生物有效 性(即生物吸收可利用度)的部分才会透过食物链如农作物、中药而产生毒害、影响人体健 康。按毒理(物)学观点,溶解度小的毒物不易被人体吸收而其毒性作用不易发挥。毒物在 水中溶解度越大,其迁移性以及毒性也越大,对神经系统亲和力即损害力也较大。毒物不 具有一定的水溶性也不易被血液吸收。重金属迁移性和生物有效性,不仅与其总量有关, 更大程度上是由其形态分布决定,不同的形态产生不同的迁移性和溶解度以及环境与人体 健康效应。一般言,“稳定化之化学改性”将溶解、游离态重金属还原至非常不易溶解的原 始矿物组成结构为降低其生物有效性、毒性简易且迅速有效的方式,即可有效减低农作物、 稻谷对重金属的吸收而提高农产品质量、产量且减少人类食入重金属的机会或人体可吸收 物质型态之重金属。
2014年中国发明专利CN102416396B提供一种重金属常温固化剂。该重金属常温固 化剂按重量百分比组成:氧化镁30.0%~40.0%,磷酸二氢钾55.0%~65.0%,硼砂3.5%~5.0%, 氧化铁0.1%~0.5%,二氧化硅0.1%~0.5%。还提供一种使用其固化重金属污染物中重金属的 方法。该发明的常温固化剂对含重金属废弃物在常温下进行固化处理后,可以实现废弃物 资源化利用。
美国专利5202033号(Chowdhury等)所示为使用磷酸盐包括磷酸钠盐(包括磷酸二氢 钠、磷酸氢二钠、磷酸三钠)和磷酸和碱土金属如钙或镁氧化物与废料混合降低重金属铅 溶出的方法。
美国专利5512702号(Ryan等)所示另一使用磷酸钙化合物于原位处理铅污染土壤 的方法,其是利用磷酸钙固体材料与铅污染的土壤混合。磷酸钙固体材料包括天然存在的 磷灰石,合成的羟基磷灰石,磷酸氢钙,或磷矿石。
美国Forrester专利第7736291号以及7530939号披露的一种方法是利用粉状二水磷酸氢 钙有效地处理稳定化垃圾焚化飞灰、底渣并有显著的除臭效果。
另一美国专利第5797992号(Huff)披露重金属环境治理的方法,其所述的方法是利 用如磷灰石和合成的羟基磷灰石之磷酸钙矿物将表面涂料的铅污染稳定化和无害化。美国 Huff专利第6001185号披露的另一种方法是利用磷酸钙盐化合物有效地处理重金属污染 的表面涂层,重金属污染的工业副产品以及工业废水,使重金属化合物,包括砷、铅、镉、 铬、镍、银,安定并对人体和生物无害。Huff所采用的磷酸钙盐化合物是选自天然磷灰石, 合成羟基磷灰石,磷酸氢钙,或磷矿石中的至少一种化合物的形式。
虽然先前技术以及发展中技术已证明磷酸盐有效应用于修复重金属污染的土壤、垃圾 焚化飞灰、底渣,重金属污染的表面涂层,重金属废弃物,重金属污染的工业副产品以及 工业废水,但国内迄今没有任何专利技术或研发成果能提供一种方法或食品级产品,即使 包括市场上风行的排毒保健食品如维生素C、绿藻、麦绿素粉,或膳食纤维食物如香菜、 芹菜、绿豆、南瓜、地瓜、蘑菇、魔芋等,并提出一反应机理且证明在冲泡,烹煮,或调 味过程中,或于人体胃肠中能有效地将食物、食品、中药所含重金属浸出毒性浓度降低并 形成无害的、化学性质不活泼的形态的重金属稳定物、即降低人体或农作物对其吸收度, 且其自人体排出至环境后可阻止或避免该重金属再回到食物链。
中国发明专利CN101011432B提供了蕨菜黄酮提取物作为排铅和缓解铅中毒药物中 的应用,经实验,按每日每公斤体重使用蕨菜黄酮30-180mg的使用量,可以达显着的排 铅效果;按每日每公斤体重使用蕨菜黄酮50-300mg,可以达显着的缓解铅中毒或治疗铅中 毒的效果。中国发明专利CN1506070A公开了一种含水苏糖的排铅保健品,通过钙、锌、 铁的科学配比,协同作用,对抗铅毒性活性,减少铅吸收。同时辅以水苏糖既可吸附重金 属铅,又可快速增殖肠道有益菌一双歧杆菌,明显缩短肠道排空时间,促进排铅。对铅中 毒和毒性损伤由很好的预防和治疗效果。中国发明专利申请(申请号为CN101933937A)公 开了低分子柑橘果胶,一种柑桔中提取的果胶,在排铅排重金属临床中的应用。经过动物 和临床实验证实,低分子柑桔果胶不同于一般化学螯合剂,在排毒素时除可有效地铅,汞, 砷,排出体外,而不会影响其他如钙,镁,锌或矿物质的关键水平。每天摄入15克柑橘 果胶所有受试者表现出汞含量显着下降。平均跌幅为72.17%,范围38.13%-84.83%,没 有任何的副作用。
中国发明专利申请(申请号为WO2013127146A1)公开了一种能够缓解铅毒性的植物 乳杆菌及其用途。该植物乳杆菌为植物乳杆菌CCFM8661,其具有耐酸性,在体外对铅离 子有良好的耐受能力,能够耐受起始浓度为150mg/L的铅离子溶液,并且对铅离子有较强 的吸附作用,能够降低铅暴露小鼠血液、肝脏、肾脏、胃中的铅含量,显着改善铅暴露小 鼠机体的抗氧化指标,缓解铅暴露小鼠的病理症状。
其它许多研究或文章报导,很多天然食物和抗氧化剂都具有一定的防铅和祛铅功能以 及解毒作用。苹果酸与柠檬酸等有机酸是典型的重金属螯合剂。海带中的碘质和海藻酸能 促进铅的排出。牛奶中所含的蛋白质可与铅结合形成不溶物,所含的钙可阻止铅的吸收。多 糖类等大分子果胶,海藻酸和膳食纤维等多糖类大分子物质,其糖链上丰富的游离-OH和 -COOH基团可与铅络合,形成难以吸收的凝胶,有效地阻止铅在胃肠道的吸收,起到促进 排铅的作用。大蒜和洋葱头中的硫化物能化解铅的毒性作用。沙棘、刺梨和猕猴桃中富含 维生素C,可阻止铅吸收,降低铅毒性。维生素B1,B2,B6,B12和叶酸对于加强排毒和促进器 官恢复有一定的帮助。硫辛酸,被称为“万能抗氧化剂”,亦是一种重金属螯合剂,早期也 被当作是食物中毒或是金属中毒的解毒剂来使用。谷胱甘肽为体内一种重要的抗氧化剂, 由谷氨酸、半胱氨酸及甘氨酸组成,半胱氨酸上的巯基为其活性基团(简写为G-SH),易 与毒素(如自由基、铅、汞、砷等重金属)等结合,而具有解毒作用。硒对重金属中具有 排毒解毒的作用,被誉为“重金属的天然解毒剂”。硒作为带负电荷的非金属离子,在生物 体内可以与带正电荷的有害重金属离子相结合,形成金属硒蛋白质络(复)合物(配体化合 物),从而达解毒和排毒作用。又据路透社健康新闻纽约讯最新的研究结果显示,多吃豆 腐将有助于降低人体血液中金属铅的浓度。研究人员目前尚不知道豆腐是如何降低血液中 金属铅浓度的机制,但是他们怀疑是由于豆制品中的钙离子抑制了人体对金属铅的吸收, 加强对金属铅的防护。胡萝卜是有效的排汞食物,含有的大量果胶,可以与汞结合,从而 可有效降低血液中汞离子的浓度。
上述这些天然食物和抗氧化剂,发明专利蕨菜黄酮提取物,发明专利含水苏糖的排铅 保健品以及低分子柑橘果胶之功能仅显示它们吸附、螯合或络合游离的重金属,进肠蠕动、 促进排泄,能尽快地将重金属排出体外,但无科学根据或反应机理证明它们能将对食品安 全有危害的重金属,主要包括铅、镉、砷、铜、汞的浸出毒性浓度有显着的降低作用并形 成无害的、化学性质不活泼的形态的重金属稳定物之功效,亦即排至环境后仍可能大多还 原成具危害性的可溶解、游离态重金属,经由环境中的迁移、扩散、转化再回到食物链、 终究又回到餐桌。金属络合物是由一个金属离子(或原子)如(Cu+2、Zn+2)和配位体以 共价键相结合所形成的复杂离子或分子。配位体是指那些含有可提供孤对电子原子的分 子,有机分子中的N、O、S都可以提供孤对电子,这些供体可与金属离子发生配位作用, 从而形成复合物。螯合物是一种特殊的络合物,它是指一个或多个基团与一个金属离子进 行配位反应而生成的具有环状结构的络合物。螯合物也称作内络合物,由于它的环状结构, 通常比络合物更稳定。然根据填埋螯合剂加水泥固化重金属污染物的实际经验,于温度、 湿度、pH多变化填埋场环境中,螯合剂会因老化或与异物(如酸雨)反应而分解,结果是 无法键结重金属阳离子,让重金属阳离子还原成重金属原子而浸出回环境。
自宏观言,如此吸附、螯合或络合游离的重金属后将其排出体外的方式并非治本的做 法,而只是转移和散播式的于食物链循环,加上经济持续发展,恐将造成生态环境积累的 以及食物链富集并放大的重金属污染只会越来越严重,潜在地威胁农业的持续发展,可能 通过食物链蔓延危害更多动物和人们的生命和健康,影响到人民群众生存环境质量以及社 会、国家及全体经济。食物链富集、蔓延扩散的重金属污染亦是全球关注的食品安全问题。
另者,随着我国经济的快速发展,城市化水平和人们生活水平的不断提高,城市生活 垃圾的产量与日俱增。其中易降解的厨余类垃圾在城市生活垃圾中占主体地位占城市生活 垃圾总量的40-80%。厨余垃圾是指食物残余和食品加工废料,主要为餐厨垃圾中的固体 残留物。
因此,创新、开发出一种低成本的食品级稳定化方法或产品适用于国人主要的粮食, 如米饭,以及各种食物、食品、中药于其浸泡,冲泡,烹煮,或调味过程中添加、搅拌即 能吸附、螯合或络合食物、食品、中药中所含重金属,包括铅、镉、砷、铜、汞,并且能 在食物、食品、中药进入人体舌尖、胃肠前有效地降低游离的重金属的浸出毒性浓度并将 其转换为化学性质不活泼的形态、无害化的稳定物,人体或生物对其不吸收并其自人体排 出后或经由厨余或餐厨垃圾随地丟弃、堆放或填埋后,降低对环境的危害且不易于环境中 迁移、扩散和转化,从而阻止、减少重金属再回到食物链,以维护环境质量,落实重金属 污染物防治,保育自然生态安全,是当前中国以及食物链受重金属污染的世界各地区所迫 切需要的。
发明内容
本发明所要解决的技术问题是提供一种降低食物、食品、中药中重金属浸出毒性,提 升食安、环保的稳定剂及其制备方法,避免重金属再回到食物链且改进现有技术的不足。
本发明的一种降低食物、食品、中药中重金属浸出毒性,提升食安、环保的稳定剂, 所述稳定剂的原料由磷酸或磷酸盐、酸度调节剂和氯化物组成。
所述磷酸或磷酸盐为中华人民共和国食品安全国家标准GB2760允许使用食品添加 剂中的磷酸三钙、磷酸二氢钙、磷酸氢钙、焦磷酸钠、六偏磷酸钠、三偏磷酸钠、三聚磷 酸钠、磷酸三钠、磷酸三钾、磷酸二氢钠、磷酸二氢钾、磷酸氢二钠、磷酸氢二钾、焦磷 酸二氢二钠、磷酸二氢铵、磷酸氢二铵、焦磷酸四钾、焦磷酸一氢三钠、聚偏磷酸钾、酸 式焦磷酸钙、酸性磷酸铝钠,中华人民共和国食品安全国家标准GB14880允许使用营养 强化剂中的磷酸氢镁、甘油磷酸钙、焦磷酸铁、酪蛋白磷酸肽,以及含磷酸盐的食品包括 骨粉、大骨汤粉、鱼粉中的一种或几种。所述磷酸盐包括非可溶性磷酸钙盐。优选为磷酸 钙盐,包括磷酸三钙、磷酸二氢钙、磷酸氢钙,因为它们接触碱性物质或环境能大部份迅 速转変成羟基磷钙,Ca5(PO4)3(OH),即矿物HydroxyApatite(简称HA),其为溶解游离性重 金属发生取代及沉淀反应形成无害的、稳定的,且即使于极端异常自然环境如酸雨的侵蚀 下,也不易溶解、分解之络合式磷盐矿物以及络合式重金属矿物的基源。此外,磷酸二氢 钙、磷酸氢钙同时亦可用做膨松剂,磷酸三钙、磷酸氢钙则是可增加食品钙成分的营养强 化剂。
所述酸度调节剂为中华人民共和国食品安全国家标准GB2760允许使用食品添加剂 中的磷酸盐、所述酸度调节剂为磷酸三钙、磷酸二氢钙、焦磷酸钠、三偏磷酸钠、三聚磷 酸钠、磷酸三钠、磷酸三钾、磷酸二氢钠、磷酸二氢钾、磷酸氢二钠、磷酸氢二钾、焦磷 酸二氢二钠、磷酸氢镁、磷酸三镁、硫酸钙、氢氧化钙、氢氧化钾、氧化镁、乳酸、乳酸 钙、乳酸钠、碳酸钠、碳酸钾、碳酸氢钾、碳酸氢钠、碳酸氢三钠、乙酸钠、柠檬酸钠、 柠檬酸一钠、柠檬酸钾中的一种或几种。优选氢氧化钾,碳酸钠,碳酸钾,碳酸氢钾,碳 酸氢钠,碳酸氢三钠,因为它们易溶水并提供有利迅速合成羟基磷酸钙所需要的氢氧根。 次优选为氢氧化钙,乳酸钠,三聚磷酸钠和磷酸二氫钠与磷酸氢二钠之组合,因为氢氧化 钙能提供有利迅速合成羟基磷酸钙所需要的钙。三聚磷酸钠溶液、磷酸二氫钠与磷酸氢二 钠之组合则具有缓冲能力减缓pH改变而保持pH于弱碱性,其为有利反应并降解重金属浸 出毒性浓度且形成无害的络合式磷盐矿物稳定物的碱性环境。乳酸钠则是不但可以作为酸 度调节剂,亦具有抗氧化剂、增稠剂等多重功能,其将更有利络合式磷盐矿物稳定物的生 成。
所述氯化物为氯化钠、中华人民共和国食品安全国家标准GB2760和GB14880允许使 用的氯化钾、氯化钙、氯化镁中的一种或几种。优选为氯化钠。氯化钠是常用的食品防腐 剂,具渗透的功能,可以将食物组织中的重金属,特别是铅(Pb),和有毒化学物质浸出, 提高重金属流动性,即增加被膳食纤维捕获吸附以及与磷酸盐或合成羟基磷酸钙接触并反 应的机会。食品级氯化物亦可提供氯络合离子,其能加速络合式氯磷酸钙稳定物的沉淀反 应或取代羟基磷酸钙中的羟基(OH)而合成氯磷酸钙,并进而与溶解、游离重金属反应形 成无害、稳定化的络合氯磷矿物如氯磷铅矿物、氯磷镉矿物(Pb5(PO4)3(Cl)、Cd5(PO4)3(Cl)) 等。
所述稳定剂的原料还包括含有膳食纤维、胶质、粘液质或丰富、能增加益生菌的食物 或经加工制成的食品、食品级铁化物、抗氧化剂、增稠剂、营养强化剂、防腐剂的一种或 几种。
所述含有膳食纤维、胶质或粘液质或丰富、能增加益生菌的食物为蔬菜水果,谷类杂 粮,豆类及菌藻类食物如蓝绿藻,食用菌/蕈类包括酵母菌、黑木耳、灵芝、香菇、蘑菇、 和茯苓等,藻类包括褐藻、红藻、绿藻和硅藻等,无花果,南瓜,木瓜,地瓜,地瓜叶, 苦瓜,竹笋,冬笋,芦笋,胡萝卜,白萝卜,洋葱,莲子,莲藕,菠菜,芹菜,香菜,皇 宫菜,西兰花(青花菜),花椰菜,卷心菜,豆芽菜,红凤菜,韭菜,茄子,鳄梨,柠檬, 山楂,葛根,山药,紫苏,果仁,姜,大蒜,辣椒,胡椒,花椒,青椒,紫薯,马铃薯, 芋头,葫芦巴,纳豆,眉豆,棉豆,大豆,红豆,绿豆,黑豆,青豆类,大米包括白米、 糙米和胚芽米等,亚麻籽,玉米,小米,燕麦,薏仁,秋葵,芝麻,牛蒡,黄豆浆,黑豆 浆,小扁豆,葡萄,葡萄柚,番石榴,红枣,酸枣,青梅等;所述具膳食纤维、胶质、粘液 质、或丰富、能增加益生菌之食品为植物,蔬菜果,谷类杂粮,豆类及菌藻类食物,或牛 奶为原料所加工制成的食物,保健食品,调味料或增稠剂,如茶多酚,金属硫蛋白,鸡粉,麦绿 素粉,参粉,酵母粉,酸奶(优格、优酪乳),味噌,泡菜,豆豉,蓝绿藻类制品如发菜、 螺旋藻等,绿藻类制品如浒苔、石莼等,褐藻类制品如海带、昆布、海藻酸钠等,红藻类 制品如紫菜,红藻胶质制品如卡拉胶、琼脂等,益生元食品如水苏糖、菊糖(菊粉)、可溶 性大豆多糖、聚葡萄糖、抗性糊精等,亚麻粉籽,芋泥,小麦胚芽粉,茯苓粉,葛根粉, 绿豆粉,红豆粉,黑豆粉,豆芽粉,杏仁粉,核桃粉,海带粉,五香粉,丁香粉,甘草粉, 咖哩粉,姜黄粉,孜然粉,小茴香粉,辣椒粉,胡椒粉,椒盐,七味粉(七味唐辛子),葫 芦巴粉,南瓜粉,木瓜粉,椰子粉,苦瓜粉,花粉,胡萝卜粉,鹰嘴豆粉,黑木耳粉,香 菇粉,蘑菇粉,豌豆粉,青大豆粉,花生粉,五谷粉,可可粉,菠菜粉,香菜粉,山药粉, 紫苏粉,山楂粉,梅子粉,柠檬粉,山药粉,土瓜根粉,紫薯粉,食用淀粉包括地瓜粉, 木薯粉,太白粉,以及藕粉,百合粉,马铃薯全粉,魔芋粉,苹果粉,葡萄粉,红枣粉, 酸枣粉,姜粉,蒜粉,豆浆粉,豆奶粉,薏仁粉,芝麻粉,河粉,米饭,米粉,面条,面 粉,果汁如木瓜汁、甘蔗汁、葡萄汁、菠萝汁、柠檬汁、橙汁、西柚汁、西梅汁、芒果汁、 西红柿汁,蔓越莓汁,布丁,蜂蜜,糖浆,即食谷物,拌饭酱,拌面酱,甜面酱,烧烤酱, 海鲜酱,果冻,果酱,蔓越莓酱,炸酱,西红柿酱,芝麻酱,花生酱,辣椒酱,芥末酱, 鳄梨酱,色拉酱,沙茶酱,沙嗲酱,照烧酱,酱油等,果胶,瓜尔胶,葫芦巴胶,槐豆胶 等中的一种或几种。
所述含有膳食纤维、胶质、粘液质或丰富、能增加益生菌的食物或经加工制成的食品 优选为pH范围含括6.0或以上(以避免消耗过多游离的氢氧根而有利磷酸盐合成羟基磷酸 钙)的食品,包括海藻酸钠、菊粉、碱化可可粉、藕粉、香菇粉、苦瓜粉、海带粉、咖哩粉、 辣椒粉、黑木耳粉、香菜粉、椰子粉、红豆粉、黑豆粉、薏仁粉、小麦胚芽粉、山药粉、 核桃粉、木薯粉、紫薯粉、魔芋粉等中的一种或几种。
所述食品级铁化物为中华人民共和国食品安全国家标准GB2760允许使用食品添加 剂中的氧化铁黑,氧化铁红以及中华人民共和国食品安全国家标准GB14880允许使用的铁 质营养强化剂化合物,包括硫酸亚铁、葡萄糖酸亚铁、柠檬酸铁铵、富马酸亚铁、柠檬酸 铁、柠檬酸亚铁、乳酸亚铁、氯化高铁血红素、焦磷酸铁、铁卟啉、甘氨酸亚铁、还原铁、 乙二胺四乙酸铁钠、羰基铁粉、碳酸亚铁、延胡索酸亚铁、琥珀酸亚铁、血红素铁、电解 铁等中的一种或几种。优选为硫酸亚铁,盖其极易溶于水,可提供铁络合离子以及硫酸根 离子而能加速络合式铁磷铅矿(Corkite)稳定物的生成,其溶解度为目前已知所有络合式磷 铅盐矿物中者最低的。
所述抗氧化剂为中华人民共和国食品安全国家标准GB2760允许使用食品添加剂中的 维生素E、乙二胺四乙酸二钠、乙二胺四乙酸二钠钙、二氧化硫、焦亚硫酸钾、焦亚硫酸 钠、亚硫酸钠、亚硫酸氢钠、低亚硫酸钠、抗坏血酸(维生素C)、D-异抗坏血酸及其钠盐、 抗坏血酸钠、抗坏血酸钙、抗坏血酸棕榈酸酯、磷脂、没食子酸丙酯(PG)、甘草抗氧化物、 植酸、植酸钠、竹叶抗氧化剂、迷迭香提取物、茶多酚、茶多酚棕榈酸酯,以及硫辛酸、 L-蛋氨酸、谷胱甘肽、半胱氨酸、牛磺酸等中的一种或几种。
所述增稠剂为中华人民共和国食品安全国家标准GB2760允许使用食品添加剂中的 丙二醇、刺云实胶、醋酸酯淀粉、羧甲基淀粉钠、酸处理淀粉、磷酸酯钠淀粉、辛烯基琥 珀酸铝淀粉、氧化淀粉、氧化羟丙基淀粉、β-环状糊精、阿拉伯胶、瓜尔胶、卡拉胶、决 明胶、明胶、可得然胶、果胶、槐豆胶、海萝胶、黄蜀葵胶、黄原胶、沙蒿胶、田菁胶、 亚麻籽胶(富兰克胶)、皂荚糖胶、结冷胶、琼脂、海藻酸丙二醇酯、甲壳素(几丁质)、 脱乙酰甲壳素(壳聚糖)、海藻酸、海藻酸钠、海藻酸钾、麦芽糖醇、乳糖醇、山梨糖醇、 普鲁兰多糖、可溶性大豆多糖、罗望子多糖胶、羟甲基纤维素、丙基甲基纤维素、羧甲基 纤维素钠、聚甘油脂肪酸酯、磷酸酯双淀粉、磷酸化二淀粉磷酸酯、乙酰化二淀粉磷酸酯、 乙酰化双淀粉己二酸酯等中的一种或几种。
所述营养强化剂为中华人民共和国食品安全国家标准GB14880允许使用的食品营养强 化剂,包括碳酸钙、葡萄糖酸钙、柠檬酸钙、乳酸钙、L-乳酸钙、磷酸氢钙、L-苏糖酸钙、 甘氨酸钙、天门冬氨酸钙、柠檬酸、苹果酸钙、醋酸钙(乙酸钙)、氯化钙、磷酸三钙 (磷酸钙)、维生素E、琥珀酸钙、甘油磷酸钙、氧化钙、硫酸钙、骨粉(超细鲜骨粉)、 亚硒酸钠、硒酸钠、硒蛋白、富硒食用菌粉、L-硒-甲基硒代半胱氨酸、硒化卡拉胶、富硒 酵母、酪蛋白磷酸肽、酪蛋白钙肽、牛磺酸、L-蛋氨酸、L-赖氨酸、左旋肉碱、维生素B1, B2,B6,B12、叶酸等中的一种或几种。优选为磷酸氢钙,磷酸三钙(磷酸钙),碳酸钙。 磷酸氢钙、磷酸三钙(磷酸钙)可提供形成羟基磷钙的来源。碳酸钙则能提供有利迅速合 成羟基磷酸钙所需要的钙,尤其是应用于含钙量不高的食物、食品。此外,碳酸钙因为其 分子小临床上比其它补钙的保健品较易为人体骨骼吸收。
所述防腐剂为肉桂酸钾,肉桂醛,ε-聚赖氨酸盐酸盐,ε-聚赖氨酸,乳酸链球菌素,双 乙酸钠,山梨酸及其钾盐等中的一种或几种。优选为ε-聚赖氨酸盐酸盐,ε-聚赖氨酸,肉 桂酸钾。
使用适当的防腐剂亦有助益提升食安。美国食品药物管理局(FoodandDrug Administration,FDA)依危害程度的大小,将食品安全问题依序分为下列六项:产毒及病 原性微生物丶营养危害、环境污染物、天然毒性成分、农药残留和食品添加物。其中名列 第一项的「产毒及病原性微生物」居首要严重危害,由于微生物在大自然中无所不在,也 是微生物性食品安全问题较为严重的主要原因。
ε-聚赖氨酸盐酸盐或ε-聚赖氨酸pH使用范围广(在pH2~9),对热稳定(120℃,20min 或以上)不分解,能抑制耐热菌,故加入食物、食品后可热处理,不仅可以抑制真菌和革 兰氏阳性菌,而且对革兰氏阴性菌中的产气杆菌、恶臭假单孢菌、铜绿假单孢菌、普通变 形杆菌、大肠杆菌、空肠弯曲杆菌、鼠伤寒沙门氏菌等引起食物中毒与腐败的细菌也有强 烈的抑制作用。ε-聚赖氨酸盐酸盐、ε-聚赖氨酸不仅对其他天然防腐剂(如Nisin)不易抑制 的革兰氏阴性的大肠杆菌、沙门氏菌抑菌效果非常好,而且其对一些病毒包括保加利亚乳 杆菌、嗜热链球菌、酵母菌的生长也有抑制作用。ε-聚赖氨酸盐酸盐、ε-聚赖氨酸是由赖 氨酸组成的同聚物,能在人体内分解为赖氨酸,可以完全被人体消化吸收。赖氨酸是人体 必需的8种氨基酸之一,能促进人体发育、增强免疫功能,并有提高中枢神经组织功能的 作用酸。因此ε-聚赖氨酸盐酸盐、ε-聚赖氨酸是一种营养型抑菌剂,安全性高于其他化学 防腐剂,其急性口服毒性为LD50为5g/kg。由于谷物食品中的赖氨酸含量甚低,且在加工 过程中易被破坏而缺乏,故称为第一限制性氨基酸,也是世界各国允许在食品中添加的强 化氨基酸。肉桂酸钾、山梨酸都是国际粮农组织和卫生组织推荐的高效安全的防腐保鲜剂, 在推荐时对山梨酸钠用量作了严格的要求,并倡导逐步加以取消,却认为肉桂酸钾属于无 毒品,对其用量以及每日摄入量不作任何限制。我国也对乳制品中苯甲酸、山梨酸的使用 范围、用量均有严格规定,但对肉桂酸钾未作任何要求。
所述重金属为铅、镉、铜、砷、汞等可溶解离子中的一种或几种。
本发明产品基本组成质量百分比范围为:
磷酸盐0.5~90%;
酸度调节剂0.5~65%;
(食品级)氯化物0.5~40%;
含有膳食纤维、胶质、粘液质或丰富、能增加益生菌的食物或经加工制成的食品 0~98%;
食品级铁化物0~5%;
抗氧化剂0~5%;
增稠剂0~5%;
营养强化剂0~5%;
防腐剂0~2%。
常温常压下将上述原料按比例均匀搅拌、混合。
本发明原料的组成质量百分比有很大的选择与范围,取决于许多因素:
本发明产品本身所利用具有膳食纤维、胶质、粘液质、或丰富、能增加益生菌的加工 制成食品的用途与一般习惯用量,举例,如果本发明产品选用香菇粉作为面食如一般方便 面的调味料(每碗面汤仅加少量,如1克),基本组成质量百分比范围可为:
香菇粉40~70%;
磷酸盐5~50%;
酸度调节剂5~20%;
食品级氯化物(氯化钠)0.5~20%。
常温常压下将上述原料按比例均匀搅拌、混合。
如果本发明产品选用南瓜粉用来做固体饮料(10克南瓜粉直接溶于250ml热水中冲饮) 作为补充膳食纤维的食品,基本组成质量百分比范围可为:
南瓜粉75~98%;
磷酸盐0.5~20%;
酸度调节剂0.5~10%;
食品级氯化物(氯化钠)0.5~5%;
常温常压下将上述原料按比例均匀搅拌、混合。
如果本发明产品应用到本身纤维丰富的蔬菜以制成泡菜做为配料,如果配料添加量不 超过10%,按泡菜中的食盐一般含量为2%到4%,则基本组成质量百分比范围可为:
磷酸盐0.5~60%;
酸度调节剂0.5~10%;
食品级氯化物(氯化钠)20~40%。
添加本发明产品至浸泡,冲泡,烹煮,或调味的食物、食品、中药中所含重金属种类(单 一或多重)和污染程度(各类重金属浸出毒性浓度的轻重),譬如,镉、铜污染生蚝,砷污染 大米,或含过量汞、铅中药八宝粉,所含重金属种类越多,或所含重金属浸出毒性浓度越 高,相对上需较多量的磷酸盐或以及氯化物;铅(Pb)污染越重的食品,可添加需较多量的 食品级铁化物。
添加本发明产品至浸泡,冲泡,烹煮,或调味的食物、食品之本身组成,譬如是否已 含足量的钙、食盐或氯化物、铁离子、硫酸根离子以及膳食纤维、胶质、粘液质或丰富、 能增加益生菌;以含微量钙、膳食纤维污染食物为例如大米及米制品,相对上需较多量的 磷酸钙盐和具有膳食纤维或胶质、粘液质、增稠剂的食品。
添加本发明产品至浸泡,冲泡,烹煮,或调味的食物、食品松软度,坚硬的油炸食物、 干果类可以使用较多量的具膨松功能的原料或配料如磷酸钙盐。
添加本发明产品至浸泡,冲泡,烹煮,或调味的食物、食品pH值,pH值越低,碱性酸 度调节剂相对上需较多的量。
本发明产品的添加量取决于食物、食品、中药的量、所含重金属种类多寡以及所含重 金属浸出毒性浓度等。
本发明产品在冲泡,烹煮,或调味过程中降解食物、食品、中药中所含重金属浸出毒 性并将其稳定化和无害化的反应机理如下:
主要关键反应机理乃是:一连串的吉布斯自由焓效应产生自发性的取代及沉淀反应。 自均匀搅拌、混合组成原料,灭菌后封装袋/罐起,磷酸或部份磷酸盐与碱性调节剂以及氯 化物即开始因悬殊差距的溶解度、吉布斯自由焓而产生转化为羟基磷酸钙、氯磷酸钙(氯磷 灰石)的反应,于浸泡,冲泡,烹煮,或调味的添加水中,余尚未完成转化反应的磷酸盐亦 将迅速与氢氧根、钙离子、氯离子合成羟基磷酸钙、氯磷酸钙,并又基于羟基磷酸钙、磷 氯酸钙与「络合式磷氯重金属、络合式羟基磷重金属物质」有着悬殊差距的溶解度、吉布 斯自由焓而与物、食品、中药中所含游离性重金属产生重金属取代及沉淀反应形成不易分 解、化学性质不活泼的形态、稳定化、无害之「络合式重金属矿物」,如磷氯铅矿Pyromorphite Pb5(PO4)3(Cl),羟基磷铅矿HydroxypyromorphitePb5(PO4)3(OH),CorkitePbFe3(PO4)(OH)6SO4, 镉羟基磷灰石CadmiumHydroxyapatiteCd5(PO4)3(OH),磷氯镉矿CadmiumChloroapatite Cd5(PO4)3(Cl),铜羟基磷灰石CopperHydroxyapatiteCu5(PO4)3(OH),磷氯铜矿Copper ChloroapatiteCu5(PO4)3(Cl),JohnbaumiteCa5(AsO4)3(OH),TurneaureiteCa5(AsO4)3(Cl),以及 汞磷酸矿Mercury(II)PhosphateHg3(PO4)2等。其次,利用具有膳食纤维、胶质、粘液质或 丰富益生菌,或以及铁化物,增稠剂,抗氧化剂、营养强化剂等物质之吸附、螯合或络合固 定住游离重金属,加上缠绕、编结作用,可形成「热动力」平衡效应而加速吉布斯效应产 生重金属取代及沉淀反应。
本发明产品中优选使用的酸度调节剂为碳酸钠,碳酸钾,碳酸氢钾,碳酸氢钠,碳酸 氢三钠和氢氧化钾易溶水并提供有利磷酸盐迅速合成羟基磷酸钙所需要的氢氧根。
自化学反应热力学角度看,在一定温度、压力条件下,反应可能进行的方向是吉布斯 自由能(焓)减少(△G<0)的方向。而且△G的负值越大,反应的热力学推动力也越大。 磷酸钙盐如Ca3(PO4)2比羟基磷酸钙Ca5(PO4)3(OH)较不稳定,即羟基磷酸钙Ca5(PO4)3(OH) 的吉布斯自由焓比磷酸钙盐如Ca3(PO4)2的吉布斯自由焓低,此由于Ca3(PO4)2溶解度 Ksp/25℃为2.07x10-33,而羟基磷酸钙Ca5(PO4)3(OH)的溶解度Ksp/25℃为6.8x10-37或~ 1x10-36(参考自LideD.R.HandbookofChemistryandPhysics.82ndedition.BocaRaton:CRC Press,2001)。又羟基磷酸钙Ca5(PO4)3(OH)比氯磷酸钙Ca5(PO4)3(Cl)较不稳定,即氯磷酸 钙的吉布斯自由焓比羟基磷酸钙的吉布斯自由焓低,此由于氯磷酸钙Ca5(PO4)3(Cl)的溶解 度Ksp/25℃为10-46.89(参考自B.S.Crannelletal./WasteManagement20(2000))。故一旦有氢 氧根以及食盐(NaCl)或氯化物提供的氯离子,磷酸钠盐和磷酸钙盐将由于吉布斯效应产生 以下自发反应:
磷酸钠盐+碳酸钙+OH-(aq)→Ca5(PO4)3(OH)(s),羟基磷酸钙
磷酸钙盐+OH-(aq)→Ca5(PO4)3(OH)(s),羟基磷酸钙
羟基磷酸钙Ca5(PO4)3(OH)(s)+食盐(NaCl)或氯化物--------->Ca5(PO4)3(Cl)(s)氯磷酸 钙(氯磷灰石)
同理,由于吉布斯效应羟基磷酸钙Ca5(PO4)3(OH)或氯磷酸钙Ca5(PO4)3(Cl)对Pb、Cd、 Cu、Hg、As等的吸引力非常强。譬如,当重金属如溶解、游离铅接触羟基磷酸钙、氯磷 酸钙时将会被其吸附、产生以下取代钙及沉淀自发反应而另形成更稳定、吉布斯自由焓较 低、溶解度极低的「络合式磷盐矿物」,其对人体或生态环境无害。
5Pb+2+Ca5(PO4)3(OH)→5Ca+2+Pb5(PO4)3(OH),羟基磷铅矿
5Pb+2+Ca5(PO4)3(Cl)→5Ca+2+Pb5(PO4)3(Cl),磷氯镉矿
同理,如果同一溶液中含有铁离子以及硫酸根离子,则羟基磷酸钙容易形成更稳定、 吉布斯自由焓较低、溶解度超极低的「络合式铁磷铅矿」(Corkite)PbFe3(PO4)(OH)6SO4, 溶解度Ksp/25℃=10-112.6比氯磷铅矿Pb5(PO4)3(Cl)(溶解度10-84.43)较稳定约1028倍。
同理,对重金属镉而言,镉稳定化和无害化的钙取代反应如下:
5Cd+2+Ca5(PO4)3(OH)→5Ca+2+Cd5(PO4)3(OH),镉羟基磷灰石
5Cd+2+Ca5(PO4)3(Cl)→5Ca+2+Cd5(PO4)3(Cl),磷氯镉矿
同理,对重金属铜而言,铜稳定化和无害化的钙取代反应如下:
5Cu+2+Ca5(PO4)3(OH)→5Ca+2+Cu5(PO4)3(OH),铜羟基磷灰石
5Cu+2+Ca5(PO4)3(Cl)→5Ca+2+Cu5(PO4)3(Cl),磷氯铜矿
对重金属汞而言,吉布斯效应促使汞稳定化和无害化的钙取代反应如下:
3Hg+2+磷酸钙盐,包括磷酸三钙Ca3(PO4)2→3Ca+2+Hg3(PO4)2,汞磷酸矿
对重金属砷而言,重金属砷稳定化和无害化的反应学理主要是砷酸盐离子AsO4-3取代 Ca5(PO4)3(OH)或Ca5(PO4)3(Cl)中的磷酸盐离子的吉布斯效应,反应如下:
3AsO4-3+Ca5(PO4)3(OH)→3PO4-3+Ca5(AsO4)3(OH)Johnbaumite
3AsO4-3+Ca5(PO4)3(Cl)→3PO4-3+Ca5(AsO4)3(Cl)Turneaureite
以上基元化学反应说明本发明产品在浸泡,冲泡,烹煮,或调味过程中降解食物、食 品、中药中所含重金属,包括铅、镉、铜、砷、汞等,浸出毒性并将其稳定化和无害化的 主要反应机理。
总结概述整体反应原理:
在浸泡,冲泡,烹煮,或调味过程中,利用直接添加本发明产品于含水或加水的食物、 食品、中药中并经搅拌或加热而均匀混合的方式;利用浸泡、冲泡、烹煮本身或加以具膨 松功能的原料或配料如磷酸氢钙、乳酸钠、碳酸钙使食物、食品、中药增加膨松、柔软、 多孔,使一些藏在深处的可溶性重金属较易溶解出;利用食品级氯化物如食盐(氯化钠)具 渗透,可以将重金属,特别是铅(Pb),和有毒化学物质自食物组织中浸出的功能,提高重 金属溶解性与流动性与被稳定剂如磷酸盐捕获、接触并反应的机会;并利用食品级氯化物 产生氯离子;利用含有丰富膳食纤维、胶质、粘液质或丰富益生菌的食物、食品,或增稠 剂将物、食品、中药中的有害物质包括溶解游离性重金属吸附粘定住;或加上利用抗氧化 剂如硫化物、抗坏血酸或抗坏血酸盐,植酸钠,茶多酚,其具化解铅的毒性,阻止铅吸收, 或与金属离子有极强的螯合作用,将食物、食品、中药中溶解游离性重金属螯合固定住并 化解铅的毒性;或利用食品级铁化物产生铁离子;利用酸度(碱性)调节剂如氢氧化钾、碳 酸氢钠、氢氧化钙产生游离的氢氧根或其它酸度调节剂如三聚磷酸钠以缓冲、维持所希望 食物、食品、中药的pH范围;由于吉布斯效应,磷酸或磷酸盐所含磷酸根与钙离子,氢氧 根,氯离子络合成羟基磷酸钙、氯磷酸钙并进而与食物、食品、中药中所含游离性重金属, 或以及铁离子、膳食纤维、胶质、粘液质、丰富益生菌、抗氧化剂、增稠剂、营养强化剂 吸附、螯合或络合固定的重金属发生自发性的应取代及沉淀反应,在食物、食品、中药煮 熟时并进入人体舌尖、胃肠之前,即已形成于酸性强度胜过人体胃酸或极端异常环境如酸 雨的1N盐酸溶液中也不易溶解、分解且无害的络合式磷盐矿物稳定物,如磷氯铅矿、铁磷 铅矿。并利用膳食纤维、胶质、粘液质、或丰富益生菌刺激肠蠕动的作用,大大缩短有害 物质、致癌物质与肠壁接触时间,迅速将体内大部份的有害毒素以及此些络合式重金属稳 定物排出体外。同时,摄取足够的营养强化剂、抗氧化剂、膳食纤维、胶质、粘液质、或 益生菌也可以助于健康,包括改善免疫功能及提升抵抗力、改善肠道健康、预防心血管疾 病、预防癌症、预防糖尿病以及其它疾病等。适当的防腐剂使用亦有助益提升食安。
本发明的一种降低食物、食品、中药中重金属浸出毒性,提升食安、环保的稳定剂的 制备方法,包括:将磷酸或磷酸盐、酸度调节剂、氯化物按比例分别对各原料准确计量, 全部进料入一混合搅拌机之后于常温常压下均匀搅拌、混合,包装(包装前灭菌或不灭菌 皆可)即得。
有益效果
本发明稳定剂直接添加于食物、食品、中药中,于冲泡,烹煮,或调味过程中,在进 入人体舌尖、胃肠之前或于经由厨余或餐厨垃圾随地丟弃、堆放或填埋之前,可降解其中 所含重金属浸出毒性,即降低重金属的浸出溶解量,即使于酸性强度胜过人体胃酸或极端 异常环境如酸雨的1N盐酸溶液中可将重金属形成不易分解、化学性质不活泼的形态之产 物,其不易为人体、农作物吸收而提升食安,并降低其于环境中迁移、扩散和转化,提升 环保进而制止重金属再回到食物链,具有良好的应用前景。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而 不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人 员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定 的范围。
实施例1
选取含铅(Pb)低浸出毒性浓度量的方便面作为本次实施样品,并准备、煮沸一公升 (1,000ml)的纯水。
(1)以适量(如500ml即500g)上述纯水热开水冲泡一包含铅(Pb)低浸出毒性浓度量的方 便面于一净空玻璃瓶内,并加入随附的调味料,均匀搅拌,随即取样一半的面(至少50g的 面)和一半的汤置于另一净空玻璃瓶内封盖后,送检分析测定。采用GB5085.3-2007危险废 物鉴别标准浸出毒性鉴别标准对样品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸 提剂采用1NHCl(以模拟胃酸但酸性强度胜过胃酸)以及面和汤样品于一提取瓶中振荡24 小时(较长的浸提时间),余HJ/T299-2007方法不变。过滤后,采用石墨炉原子吸收仪对浸 出液测定未加入重金属解毒稳定剂前的铅(Pb)浸出毒性浓度。
(2)上述(1)中纯水热开水冲泡含低浸出毒性铅(Pb)方便面以及其调味料并取样一半的 汤和面做测试后,于同一玻璃瓶剩余一半的冲泡面中加入些许0.3g(300mg)配好的重金属 稳定剂(组成质量百分比为:膳食纤维食品(魔芋粉)为40%,磷酸盐(焦磷酸二氢二钠+ 磷酸氢钙)为48%,酸度调节剂(氢氧化钾)为8%,氯化钠为4%)),均匀搅拌后,随即封盖送 检分析测定。采用GB5085.3-2007危险废物鉴别标准浸出毒性鉴别标准对样品进行 HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采用1NHCl(以模拟胃酸但酸性强度 胜过胃酸)以及面和汤样品含重金属稳定剂于一提取瓶中振荡24小时(较长的浸提时间), 余HJ/T299-2007方法不变。过滤后,采用石墨炉原子吸收仪对浸出液测定加入0.3g重金属 解毒稳定剂后的铅(Pb)浸出毒性浓度。
经检测,稳定化处理前即(1)以及稳定化处理后即(2)方便面样品重金属铅(Pb)的 浸出毒性浓度列表如下:
检测结果显示,稳定化处理前方便面样品重金属铅(Pb)的浸出毒性浓度为4微克/公斤 (即4μg/Kg或0.004mg/Kg),稳定化处理后,即添加0.3g上述实施例1(2)中的重金属稳定 剂后,方便面样品铅(Pb)浸出毒性浓度为1微克/升(即1μg/Kg或0.001mg/Kg),即重金属 铅(Pb)浸出毒性浓度或可谓浸出毒性降解了75%。
实施例2
选取二包同时购买,同一厂牌含铅(Pb)高浸出毒性浓度量的方便面作为本次实施样品, 并准备、煮沸一公升(1,000ml)的纯水。
(1)以500ml即500g上述纯水热开水冲泡一包含铅(Pb)高浸出毒性浓度量的方便面于一 净空玻璃瓶内,并加入随附的调味料,均匀搅拌后,随即取样一半的面(至少50g的面)和 一半的汤置于另一净空玻璃瓶内封盖后,送检分析测定。采用GB5085.3-2007危险废物鉴 别标准浸出毒性鉴别标准对样品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂 采用1NHCl(以模拟胃酸但酸性强度胜过胃酸)以及面和汤样品于一提取瓶中振荡24小时 (较长的浸提时间),余HJ/T299-2007方法不变。过滤后,采用石墨炉原子吸收仪对浸出液 测定未加入重金属解毒稳定剂前的铅(Pb)浸出毒性浓度。
(2)上述(1)中纯水热开水冲泡方便面以及其调味料并取样一半面和汤做测试后,于同 瓶剩余一半的冲泡面中加入1.0g(1,000mg)重金属稳定剂(组成质量百分比为:膳食纤维 食品(香菇粉)为60%,磷酸盐(磷酸氢二钠+磷酸二氢钠)为8%,酸度调节剂(碳酸钠)为20%, 营养强化剂(碳酸钙)为8%,氯化钠为4%),均匀搅拌后,随即封盖送检分析测定。采用 GB5085.3-2007危险废物鉴别标准浸出毒性鉴别标准对样品进行HJ/T299-2007固体废物浸 出毒性浸出实验,但浸提剂采用1NHCl(以模拟胃酸但酸性强度胜过胃酸)以及面和汤样品 含重金属稳定剂于一提取瓶中振荡24小时(较长的浸提时间),余HJ/T299-2007方法不变。 过滤后,采用石墨炉原子吸收仪对浸出液测定加入1.0g重金属解毒稳定剂后的铅(Pb)浸出 毒性浓度。
(3)取另一包上述含高铅(Pb)方便面置于一净空玻璃瓶内加入500ml即500g的上述纯水 热开水冲泡之,并加入随附的调味料,均匀搅拌。之后,随即取样一半的面(至少50g的面) 和一半的汤置于另一净空玻璃瓶内,加入1.0g(1,000mg)配好的重金属稳定剂(组成质量百 分比为:膳食纤维食品(香菇粉)为44%,磷酸盐(磷酸氢二钠+磷酸二氢钠)为8%,酸度调 节剂(碳酸钠)为20%,营养强化剂(碳酸钙)为8%,氯化钠为20%)),均匀搅拌后,随即封盖 送检分析测定。采用GB5085.3-2007危险废物鉴别标准浸出毒性鉴别标准对样品进 HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采用1NHCl(以模拟胃酸但酸性强度 胜过胃酸)以及面和汤样品含重金属稳定剂于一提取瓶中振荡24小时(较长的浸提时间),余 HJ/T299-2007方法不变。过滤后,采用石墨炉原子吸收仪对浸出液测定加入1.0g重金属解 毒稳定剂后的铅(Pb)浸出毒性浓度。
经检测,稳定化处理前即(1)含高铅(Pb)方便面样品以及稳定化处理后即(2)和(3) 含高铅(Pb)方便面样品重金属铅(Pb)的浸出毒性浓度列表如下:
检测结果显示,(1)中方便面样品稳定化处理前重金属铅(Pb)的浸出毒性浓度为0.031 毫克/公斤(即31μg/Kg),(2)中同一包方便面样品稳定化处理后,即添加1.0g上述实施例 2(2)中的重金属稳定剂后,铅(Pb)浸出毒性浓度为0.019毫克/升(即19μg/Kg),即重金属 铅(Pb)浸出毒性降解、减少了约38%。(3)中加入1.0g实施例2(3)中的重金属稳定剂稳 定化处理后方便面样品铅(Pb)浸出毒性浓度为0.005毫克/升(即5μg/Kg),和(1)同时购买, 同一厂牌之方便面稳定化处理前重金属铅(Pb)的浸出浓度31毫克/升相比,重金属铅(Pb)浸 出毒性降解、减少了约84%。实施例2亦显示重金属稳定剂含氯化钠量越多可越降解、減少 重金属铅浸出毒性浓度。
实施例3
选取和实施例2同时购买,同一厂牌含铅(Pb)高浸出浓度量之一包方便面作为本次实施 样品,并准备、煮沸一公升(1,000ml)的纯水。
(1)以500ml即500g上述纯水热开水冲泡一包和实施例二同时购买,同一厂牌含铅(Pb) 高浸出浓度量的方便面于一净空玻璃瓶内,并加入随附的调味料,均匀搅拌后,随即取样 一半的面(至少50g的面)和一半的汤加入0.5g(500mg)和实施例一(2)所用相同重金属稳 定剂(组成质量百分比为:膳食纤维食品(魔芋粉)为40%,磷酸盐(焦磷酸二氢二钠+磷 酸氢钙)为48%,酸度调节剂(氢氧化钾)为8%,氯化钠为4%)),均匀搅拌后,随即取样汤和 面置于另一净空玻璃瓶内封盖,送检分析测定。采用GB5085.3-2007危险废物鉴别标准浸 出毒性鉴别标准对样品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采用1N HCl(以模拟胃酸但酸性强度胜过胃酸)以及面和汤样品含重金属稳定剂于一提取瓶中振荡 24小时(较长的浸提时间),余HJ/T299-2007方法不变。过滤后,采用石墨炉原子吸收仪对 浸出液测定加入0.5g重金属解毒稳定剂后的铅(Pb)浸出毒性浓度。
(2)上述(1)中纯水热开水冲泡含低量铅(Pb)方便面以及其调味料并取样一半的面和汤 做测试后,于同瓶剩余一半的冲泡面中加入1.0g和实施例一(2)以及实施例三(1)所用 相同的重金属稳定剂(组成质量百分比为:膳食纤维食品(魔芋粉)为40%,磷酸盐(焦磷 酸二氢二钠+磷酸氢钙)为48%,酸度调节剂(氢氧化钾)为8%,氯化钠为4%),均匀搅拌后, 随即封盖送检分析测定。采用GB5085.3-2007危险废物鉴别标准浸出毒性鉴别标准对样品 进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采用1NHCl(以模拟胃酸但酸性 强度胜过胃酸)以及面和汤样品含重金属稳定剂于一提取瓶中振荡24小时(较长的浸提时 间),余HJ/T299-2007方法不变。过滤后,采用石墨炉原子吸收仪对浸出液测定加入1.0g重 金属解毒稳定剂后的铅(Pb)浸出毒性浓度。
经检测,稳定化处理前即实施例3(1)以及稳定化处理后即实施例3(2)方便面样品 重金属铅(Pb)的浸出毒性浓度列表如下:
检测结果显示,和实施例2同时购买,同一厂牌之方便面稳定化处理前重金属铅(Pb) 的浸出毒性浓度为31μg/Kg相比较,实施例3(1)加入0.5g重金属稳定剂稳定化处理后方 便面样品铅(Pb)浸出毒性浓度为1μg/Kg,重金属铅(Pb)浸出毒性降解、减少约96%。实施 例3(2)加入1.0g上述相同重金属稳定剂后方便面样品铅(Pb)浸出液浓度为<1μg/Kg*,重 金属铅(Pb)浸出毒性降解、减少>96%。*石墨炉原子吸收仪的铅测值检出限为1ug/L(即1 μg/Kg),低于1ug/L的浓度即无法准确测读。实施例3亦显示添加越多相同重金属稳定剂, 可越降解、減少重金属浸出毒性浓度。自实施例3与实施例2(2)比较,亦显示添加越多 磷酸盐,可越降解、減少重金属浸出毒性浓度。
实施例4
选取二包同时购买,同一厂牌含砷(As)高浸出毒性浓度量的方便面作为本次实施样品, 并准备、煮沸一公升(1,000ml)的纯水。
(1)以500ml即500g上述纯水热开水冲泡一包含高砷(As)浸出毒性浓度量之方便面于一 净空玻璃瓶内,并加入随附的调味料,均匀搅拌后,随即取样一半的面(至少50g的面)和一 半的汤置于另一净空玻璃瓶内封盖后,送检分析测定。采用GB5085.3-2007危险废物鉴别 标准浸出毒性鉴别标准对样品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采 用1NHCl(以模拟胃酸但酸性强度胜过胃酸)以及面和汤样品于一提取瓶中振荡24小时(较 长的浸提时间),余HJ/T299-2007方法不变。过滤后,采用氢化物发生器原子吸收仪对浸出 液测定未加入重金属解毒稳定剂前的砷(As)浸出毒性浓度。
(2)上述(1)中纯水热开水冲泡含高砷(As)方便面以及其调味料并取样一半的面和汤做 测试后,于同瓶剩余一半的冲泡面中加入1.0g配好的重金属稳定剂(组成质量百分比为: 调味料(胡椒粉)为67%,磷酸盐(磷酸氢钙+磷酸三钙)为20%,酸度调节剂(碳酸氢钠)为 4%,营养强化剂(碳酸钙)为5%,氯化钠为4%),均匀搅拌后,随即封盖送检分析测定。 采用GB5085.3-2007危险废物鉴别标准浸出毒性鉴别标准对样品进行HJ/T299-2007固体废 物浸出毒性浸出实验,但浸提剂采用1NHCl(以模拟胃酸但酸性强度胜过胃酸)以及面和汤 样品含重金属稳定剂于一提取瓶中振荡24小时(较长的浸提时间),余HJ/T299-2007方法不 变。过滤后,采用氢化物发生器原子吸收仪对浸出液测定加入1.0g重金属解毒稳定剂后的 砷(As)浸出毒性浓度。
(3)取另一包上述含高砷(As)方便面置于另一净空玻璃瓶内,加入500ml即500g的上述 纯水热开水冲泡之,并加入随附的调味料,均匀搅拌。之后,随即取样一半的面(至少50g 的面)和一半的汤置于另一净空玻璃瓶内,加入1.0g配好的重金属稳定剂(组成质量百分 比为:调味料(胡椒粉)为43%,磷酸盐(磷酸氢钙+磷酸三钙)为20%,酸度调节剂(碳酸氢钠) 为16%,营养强化剂(碳酸钙)为5%,氯化钠为16%),均匀搅拌后,随即封盖送检分析测定。 采用GB5085.3-2007危险废物鉴别标准浸出毒性鉴别标准对样品进行HJ/T299-2007固体废 物浸出毒性浸出实验,但浸提剂采用1NHCl(以模拟胃酸但酸性强度胜过胃酸)以及面和汤 样品含重金属稳定剂于一提取瓶中振荡24小时(较长的浸提时间),余HJ/T299-2007方法不 变。过滤后,采用氢化物发生器原子吸收仪对浸出液测定加入重金属解毒稳定剂后的砷(As) 浸出毒性浓度。
经检测,稳定化处理前即实施例4(1)含高砷(As)方便面样品以及稳定化处理后即实 施例4(2)和实施例4(3)含高砷(As)方便面样品重金属砷(As)的浸出毒性浓度列表如下:
检测结果显示,稳定化处理前含高砷(As)浸出浓度量之方便面的含砷浸出浓度为0.142 毫克/公斤(即142μg/Kg),稳定化处理后,即添加1.0g实施例4(2)中的重金属稳定剂后, 方便面样品砷浸出毒性浓度为0.081毫克/升(即81μg/Kg),即重金属砷(As)浸出毒性浓度或 浸出毒性降解、减少42.96%,约43%。实施例4(3)加入1.0g(3)中的重金属稳定剂稳定 化处理后方便面样品砷(As)浸出毒性浓度为0.011毫克/升(即11μg/Kg),和实施例4(1)同 时购买,同一厂牌之方便面稳定化处理前重金属砷(As)的浸出毒性浓度142毫克/升相比, 重金属砷(As)浸出毒性降解、减少了约92%。实施例4亦显示重金属稳定剂含氯化钠以及酸 度调节剂(碳酸氢钠)量越多可越降解、減少重金属砷浸出毒性浓度。
实施例5
选取约500g含砷(As)浸出毒性浓度量大米作为本次实施样品,全部先以纯水一起淘洗。
(1)自上述淘洗过的含砷(As)污染大米取样175g并按常法(如米和水的比例1:1)加入适量 的纯水,之后,置入电锅煮饭。生米煮成饭后,待其冷却十余(10+)分钟后,随即取锅內米 饭至少250g置于一净空玻璃瓶内封盖后送检分析测定。采用GB5085.3-2007危险废物鉴别 标准浸出毒性鉴别标准之振荡式浸出程序对样品进行砷(As)浸出毒性浸出实验,但浸提剂 采用1NHCl(以模拟胃酸但酸性强度胜过胃酸)以及米饭样品于一提取瓶中振荡24小时(较 长的浸提时间),余HJ/T299-2007方法不变。过滤后,采用氢化物发生器原子吸收仪对浸出 液测定未加入重金属解毒稳定剂前的砷(As)浸出毒性浓度。
(2)自和测试(1)中同一袋、一起淘洗过的含砷(As)污染大米取样175g,加入5.0g重金 属稳定剂(组成质量百分比为:膳食纤维食品(南瓜粉)为76%,磷酸盐(磷酸氢二钠+磷酸二 氢钠+磷酸氢钙+磷酸三钙)为13%,酸度调节剂(碳酸氢钠)为4%,氯化钠为3%,氯化镁为 2%,防腐剂(ε-聚赖氨酸)为2%)。之后,加入和测试(1)中所添加等量的纯水,均匀搅拌, 置入电锅煮饭。生米煮成饭后,待其冷却十余分钟后,随即取锅內米饭至少250g置于一净 空玻璃瓶内封盖后送检分析测定。采用GB5085.3-2007危险废物鉴别标准浸出毒性鉴别标 准对样品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采用1NHCl(以模拟胃 酸但酸性强度胜过胃酸)以及米饭样品于一提取瓶中振荡24小时(较长的浸提时间),余 HJ/T299-2007方法不变。余HJ/T299-2007方法不变。过滤后,采用氢化物发生器原子吸收 仪对浸出液测定含重金属解毒稳定剂米饭的砷(As)浸出毒性浓度。
经检测,稳定化处理前即(1)以及稳定化处理后即(2)米饭样品重金属砷(As)浸出 毒性的浓度列表如下:
检测结果显示,未经稳定化处理的砷污染籼米煮成饭后的含砷浸出毒性浓度为0.136 毫克/公斤(即136μg/Kg),经稳定化处理的砷污染籼米,即175g籼米添加5.0g上述实施例 5(2)重金属稳定剂,煮成米饭后砷浸出毒性浓度为0.007毫克/公斤(即7μg/Kg),即砷污 染籼米饭样品之重金属砷(As)浸出毒性浓度减少或可谓浸出毒性降解了约95%。
实施例6
选取约500g含镉(Cd)浸出毒性浓度量大米作为本次实施样品,全部先以纯水一起淘洗。
(1)自上述淘洗过的含镉(Cd)污染大米取样175g并加入175g(米和水的比例1:1)的纯水, 之后,置入电锅煮饭。生米煮成饭后,待其冷却十余(10+)分钟后,随即取锅內米饭至少250 g置于一净空玻璃瓶内封盖后送检分析测定。采用GB5085.3-2007危险废物鉴别标准浸出毒 性鉴别标准对样品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采用1N HCl(以模拟胃酸但酸性强度胜过胃酸)以及米饭样品于一提取瓶中振荡24小时(较长的浸提 时间),余HJ/T299-2007方法不变。过滤后,采用石墨原子吸收仪对浸出液测定未加入重金 属解毒稳定剂前的镉(Cd)浸出毒性浓度。
(2)自和测试(1)中同一袋、一起淘洗过含镉(Cd)污染大米取样175g,加入5.0g重金属 稳定剂(组成质量百分比为:膳食纤维食品(南瓜粉)为78%,磷酸盐(磷酸氢二钠+磷酸 二氢钠+磷酸氢钙+磷酸三钙)为13%,酸度调节剂(碳酸氢钠)为4%,氯化钠为3%,氯化镁 为2%)。之后,加入175g(米和水的比例1:1)的纯水,均匀搅拌,置入电锅煮饭。生米煮成 饭后,待其冷却十余分钟后,随即取锅內米饭至少250g置于一净空玻璃瓶内封盖后送检分 析测定。采用GB5085.3-2007危险废物鉴别标准浸出毒性鉴别标准对样品进行 HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采用1NHCl(以模拟胃酸但酸性强度 胜过胃酸)以及米饭样品于一提取瓶中振荡24小时(较长的浸提时间),余HJ/T299-2007方法 不变。过滤后,采用石墨原子吸收仪对浸出液测定加入重金属解毒稳定剂后的镉(Cd)浸出 毒性浓度。
经检测,镉(Cd)污染大米稳定化处理前即(1)以及大米稳定化处理后即(2)之污染 大米样品重金属镉的浸出毒性浓度列表如下:
检测结果显示,未经稳定化处理的镉污染大米煮成饭后的含镉浸出毒性浓度为5.4微 克/公斤(即5.4μg/Kg),经稳定化处理的镉污染大米,即175g大米添加5.0g上述实施例6 (2)重金属稳定剂,煮成饭后镉浸出毒性浓度为1.0微克/公斤(即1.0μg/Kg),即镉污染米 饭样品之重金属镉(Cd)浸出毒性浓度减少或可谓浸出毒性降解了约81%。
实施例7
选取约500g含铅(Pb)浸出毒性浓度量糙米作为本次实施样品,全部先以纯水一起淘洗。
(1)自淘洗过的含铅(Pb)污染糙米取样175g并加入175g(米和水的比例1:1)的纯水,之后, 置入电锅煮饭。生米煮成饭后,待其冷却十余分钟后,随即取锅內米饭至少250g置于一净 空玻璃瓶内封盖后,送检分析测定。采用GB5085.3-2007危险废物鉴别标准浸出毒性鉴别 标准对样品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采用1NHCl(以模拟 胃酸但酸性强度胜过胃酸)以及米饭样品于一提取瓶中振荡24小时(较长的浸提时间),余 HJ/T299-2007方法不变。过滤后,采用石墨炉原子吸收仪对浸出液测定未加入重金属解毒 稳定剂前的铅(Pb)浸出毒性浓度。
(2)自和测试(1)中同一袋、一起淘洗过含铅(Pb)污染糙米取样175g,加入5.0g重金属 稳定剂(组成质量百分比为:磷酸盐(磷酸氢二钠+磷酸二氢钠+磷酸氢钙)为80%,酸度调 节剂(氢氧化钙)为10%,氯化钠为7%,氯化镁为3%)。之后,加入和测试(1)中所添加等 量(175g)的纯水,均匀搅拌,置入电锅煮饭。生米煮成饭后,待其冷却十余分钟后,随即取 锅內米饭至少250g置于一净空玻璃瓶内封盖后送检分析测定。采用GB5085.3-2007危险废 物鉴别标准浸出毒性鉴别标准对样品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸 提剂采用1NHCl(以模拟胃酸但酸性强度胜过胃酸)以及米饭样品于一提取瓶中振荡24小 时(较长的浸提时间),余HJ/T299-2007方法不变。过滤后,采用石墨炉原子吸收仪对浸出 液测定含重金属解毒稳定剂米饭的铅(Pb)浸出毒性浓度。
经检测,稳定化处理前即(1)以及稳定化处理后即(2)米饭样品重金属铅(Pb)浸出 毒性浓度列表如下:
检测结果显示,含铅糙米煮成饭后未经稳定化处理的含铅浸出毒性浓度为0.010毫克/ 公斤(即10μg/Kg),经稳定化处理的含铅糙米,即175g糙米添加5.0g上述实施例7(2)重金 属稳定剂,煮成米饭后铅浸出毒性浓度为<0.001mg/kg(即<1μg/Kg*),即含铅糙米饭样品 之铅(Pb)浸出毒性浓度减少或可谓浸出毒性降解了90%。*石墨炉原子吸收仪的铅测值检 出限为1ug/L(即约1μg/Kg),低于1ug/L的浓度即无法准确测读。
实施例8
选取约500g含砷(As)以及铅(Pb)浸出毒性浓度量大米作为本次实施样品,全部先以纯水 一起淘洗。
(1)自上述淘洗过的含砷(As)以及铅(Pb)污染大米取样175g并加入175g(米和水的比例1:1) 的纯水,之后,置入电锅煮饭。生米煮成饭后,待其冷却十余(10+)分钟后,随即取锅內米 饭至少250g置于一净空玻璃瓶内封盖后送检分析测定。采用GB5085.3-2007危险废物鉴别 标准浸出毒性鉴别标准对样品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采 用1NHCl(以模拟胃酸但酸性强度胜过胃酸)以及米饭样品于一提取瓶中振荡24小时(较长 的浸提时间),余HJ/T299-2007方法不变。过滤后,采用氢化物发生器原子吸收仪对浸出液 进行测定未加入重金属解毒稳定剂前的砷(As)浸出毒性浓度,以及采用石墨炉原子吸收仪 对浸出液测定未加入重金属解毒稳定剂米饭的铅(Pb)浸出毒性浓度。
(2)自和测试(1)中同一袋、一起淘洗过的含砷(As)以及铅(Pb)污染大米取样175g加入 10.0g重金属稳定剂(组成质量百分比为:膳食纤维食品(薏仁粉)为60%,磷酸盐(磷酸氢 钙+磷酸三钙)为18%,酸度调节剂(氢氧化钙)为10%,氯化钠为10%,增稠剂(可溶性大豆 多糖)为1%,抗氧化剂(抗坏血酸)为1%)。之后,加入和测试(1)中所添加等量(175g)的 纯水,均匀搅拌,置入电锅煮饭。生米煮成饭后,待其冷却十余分钟后,随即取锅内米饭 至少250g置于一净空玻璃瓶内封盖后送检分析测定。采用GB5085.3-2007危险废物鉴别标 准浸出毒性鉴别标准对样品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采用1 NHCl(以模拟胃酸但酸性强度胜过胃酸)以及米饭样品于一提取瓶中振荡24小时(较长的浸 提时间),余HJ/T299-2007方法不变。过滤后,采用氢化物发生器原子吸收仪对浸出液进行 测定含重金属解毒稳定剂米饭的砷(As)毒性浸出浓度,以及采用石墨炉原子吸收仪对浸出 液测定含重金属解毒稳定剂米饭的铅(Pb)浸出毒性浓度。
经检测,稳定化处理前即(1)以及稳定化处理后即(2)米饭样品重金属砷(As)以及 铅(Pb)的浸出毒性浓度列表如下:
检测结果显示,未经稳定化处理的砷以及铅污染大米煮成饭后的含砷浸出毒性浓度 为0.126毫克/公斤(即126μg/Kg),含铅浸出毒性浓度为0.00134毫克/公斤(即1.34μg/Kg)。 175g砷以及铅污染大米添加10.0g上述实施例8(2)重金属稳定剂处理后,煮成饭后砷浸 出液浓度为<0.001mg/kg(即<1μg/Kg*),即米饭样品之重金属砷(As)浸出毒性浓度减少或 毒性降解>99%;煮成饭后铅浸出毒性浓度为<0.001mg/kg(即<1μg/Kg*)。*石墨炉原子吸 收仪的铅、砷测值检出限皆为1ug/L(即约1μg/Kg),低于1ug/L的浓度即无法准确测读。
实施例9
选取约600g含镉、铜(Cd、Cu)浸出毒性浓度量生蚝作为本次实施样品,全部先以纯水 一起淘洗。
(1)取样洗净生蚝250g置于一净空玻璃瓶内封盖后随即送检分析测定。采用 GB5085.3-2007危险废物鉴别标准浸出毒性鉴别标准对样品进行HJ/T299-2007固体废物浸 出毒性浸出实验,但浸提剂采用1NHCl(以模拟胃酸但酸性强度胜过胃酸)以及生蚝样品于 一提取瓶中振荡24小时(较长的浸提时间),余HJ/T299-2007方法不变。过滤后,采用石墨 原子吸收仪对浸出液测定未加入重金属稳定剂前的镉、铜(Cd、Cu)浸出毒性浓度。
(2)自和测试(1)中同一袋、一起淘洗过的生蚝取样250g,加入5.0g重金属稳定剂(组 成质量百分比为:磷酸盐(六偏磷酸钠)为85%,酸度调节剂(氢氧化钙+碳酸氢钠)为12%, 氯化钠为3%),均匀搅拌,随即全部样品置于一净空玻璃瓶内封盖后送检分析测定。采用 GB5085.3-2007危险废物鉴别标准浸出毒性鉴别标准对样品进行HJ/T299-2007固体废物浸 出毒性浸出实验,但浸提剂采用1NHCl(以模拟胃酸但酸性强度胜过胃酸)以及上述生蚝样 品于一提取瓶中振荡24小时(较长的浸提时间),余HJ/T299-2007方法不变。过滤后,采用 石墨原子吸收仪对浸出液测定加入5.0g重金属稳定剂后的镉、铜(Cd、Cu)浸出毒性浓度。
经检测,生蚝稳定化处理前即(1)以及生蚝稳定化处理后即(2)生蚝样品重金属镉、 铜(Cd、Cu)的浸出毒性浓度列表如下:
检测结果显示,未经稳定化处理的生蚝样品重金属镉(Cd)的浸出毒性浓度为0.226毫 克/公斤,经稳定化处理后生蚝样品镉(Cd)浸出液浓度0.010毫克/公斤,即添加5.0g上述实 施例9(2)重金属稳定剂的250g生蚝样品之镉(Cd)浸出毒性浓度减少了约95%。稳定化处 理前生蚝样品重金属铜(Cu)的浸出毒性浓度为31.0毫克/公斤,稳定化处理后生蚝样品铜 (Cu)浸出毒性浓度20.5毫克/公斤,即250g生蚝样品之铜(Cu)浸出毒性添加10g上述重金属 稳定剂后同时降解、减少了约30%。
实施例10
选取约600g含汞(Hg)浸出毒性浓度量的中药当归头作为本次实施样品,全部先以纯水一 起清洗。
(1)取样洗净500g含汞(Hg)中药当归头,先切片,置入锅内,加适量的纯水煮沸后,开火清煮、 待其煮沸后,取样锅中一半约250g当归头和一半的汤,待其冷却十余分钟后,置于一净 空玻璃瓶内封盖后送检分析测定。采用GB5085.3-2007危险废物鉴别标准浸出毒性鉴别标 准对样品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采用1NHCl(以模拟胃 酸但酸性强度胜过胃酸)以及当归头样品于一提取瓶中振荡24小时(较长的浸提时间),余 HJ/T299-2007方法不变。过滤后,采用原子吸收加氢化物发生器对浸出液测定未加入重金 属解毒稳定剂前的汞(Hg)浸出毒性浓度。
(2)(1)取样一半当归头和一半的汤做测试后,于同锅剩余一半的当归头和一半的汤置 于另一空玻璃瓶内,加入2.0g重金属稳定剂(组成质量百分比为:磷酸盐(磷酸三钙+磷酸 氢钙)为90%,酸度调节剂(碳酸钠)为7%,氯化钠为3%),均匀搅拌后,置于一净空玻璃 瓶内封盖后送检分析测定。采用GB5085.3-2007危险废物鉴别标准浸出毒性鉴别标准对样 品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采用1NHCl(以模拟胃酸但酸 性强度胜过胃酸)以及当归头样品于一提取瓶中振荡24小时(较长的浸提时间),余 HJ/T299-2007方法不变。过滤后,采用原子吸收加氢化物发生器对浸出液测定加入2.0g重 金属稳定剂后的汞(Hg)浸出毒性浸出浓度。
经检测,当归头稳定化处理前即(1)以及当归头稳定化处理后即(2)汞(Hg)的浸出 毒性浓度列表如下:
检测结果显示,未经稳定化处理的当归头样品煮沸后重金属汞(Hg)的浸出毒性浓度为 0.8微克/公斤,稳定化处理后,即约250g煮沸过当归头加上一些汤添加2.0g上述实施例 10(2)重金属稳定剂后,当归头样品汞(Hg)浸出毒性浓度为0.3微克/公斤,即当归头样品 含汞(Hg)浸出毒性降解、减少了约62%。
实施例11
选取约800g含镉(Cd)浸出浓度量的中药当归头作为本次实施样品,全部先以纯水一起 清洗。
(1)取样洗净600g含镉(Cd)中药当归头,先切片,置入锅内,加适量的纯水煮沸后,开火清煮、 待其煮沸后,取样锅中当归头之1/3,约200g,加上1/3的汤,待其冷却十余分钟后,置于 一净空玻璃瓶内封盖后送检分析测定。采用GB5085.3-2007危险废物鉴别标准浸出毒性鉴 别标准对样品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采用1NHCl(以模 拟胃酸但酸性强度胜过胃酸)以及当归头样品于一提取瓶中振荡24小时(较长的浸提时间), 余HJ/T299-2007方法不变。过滤后,采用石墨原子吸收仪对浸出液进行测定未加入重金属 解毒稳定剂前的镉(Cd)浸出毒性浓度。
(2)(1)取样1/3当归头和1/3的汤做测试后,取样同锅剩余当归头汤的一半,亦即含约 200g煮沸的当归头加上同锅剩余一半的汤(即1/3的汤),置于另一净空玻璃瓶内,加入5.0g 重金属稳定剂(组成质量百分比为:膳食纤维食品(香菇粉)20%,磷酸盐(磷酸三钙)为 16%,酸度调节剂(碳酸氢钠+三聚磷酸钠+乳酸钠)60%,氯化钠为4%),待其冷却十余分钟 后,均匀搅拌后,封盖后送检进行分析测定。采用GB5085.3-2007危险废物鉴别标准浸出 毒性鉴别标准对样品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采用1N HCl(以模拟胃酸但酸性强度胜过胃酸)以及当归头样品于一提取瓶中振荡24小时(较长的浸 提时间),其余HJ/T299-2007方法不变。过滤后,采用石墨原子吸收仪对浸出液测定加入5.0g 重金属稳定剂后的镉(Cd)浸出毒性浓度。
(3)上述(1)及(2)取样原锅当归头和汤总量之2/3做测试后,于同锅剩余约1/3的当 归头汤,含约200g煮沸的当归头,置于另一净空玻璃瓶内,加入5g和(2)中重金属稳定剂 所用相同的纯香菇粉,均匀搅拌后,封盖后送检分析测定。采用GB5085.3-2007危险废物 鉴别标准浸出毒性鉴别标准对样品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提 剂采用1NHCl(以模拟胃酸但酸性强度胜过胃酸)以及当归头样品于一提取瓶中振荡24小 时(较长的浸提时间),余HJ/T299-2007方法不变。过滤后,采用石墨原子吸收仪对浸出液 测定加入5.0g仅纯香菇粉后的镉(Cd)浸出毒性浓度。
经检测,当归头稳定化处理前即(1),当归头稳定化处理后即(2),以及(3)当 归头仅加纯香菇粉之镉(Cd)的浸出毒性浓度列表如下:
检测结果显示,稳定化处理前当归头样品重金属镉(Cd)的浸出毒性浓度为1.3微克/公 斤,稳定化处理后当归头样品镉(Cd)浸出毒性浓度0.7微克/公斤,即当归头样品添加5.0g上述 实施例11(2)重金属稳定剂后镉(Cd)浸出毒性降解、减少了约46%。然仅添加5.0g纯香菇 粉但无含任何磷酸盐或酸度调节剂等配方的当归头样品之镉(Cd)浸出毒性不变,仍和稳定 化处理前者相同。实施例11亦显示仅使用具有膳食纤维的食物,如纯香菇粉,但无添加重 金属稳定剂,则无降低重金属浸出毒性浓度的效果。
实施例12
选取约600g含铅、铜(Pb、Cu)浸出浓度量的山药作为本次实施样品,全部先以纯水一 起清洗。
(1)取样洗净500g含铅、铜(Pb、Cu)山药,先切片,置入锅内,加适量的纯水煮沸后,开火清 煮、待其煮沸后,取样锅內山药之1/2,约250g,加上一半的汤,待其冷却十余分钟后,置 于一净空玻璃瓶内封盖后送检分析测定。采用GB5085.3-2007危险废物鉴别标准浸出毒性 鉴别标准对样品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采用1NHCl(以 模拟胃酸但酸性强度胜过胃酸)以及山药样品于一提取瓶中振荡24小时(较长的浸提时间), 余HJ/T299-2007方法不变。过滤后,采用石墨原子吸收仪对浸出液测定未加入重金属解毒 稳定剂前的铅、铜(Pb、Cu)浸出毒性浓度。
(2)(1)取样一半山药和一半的汤做测试后,于同锅剩余一半的山药汤置于另一空玻璃 瓶内,加入5.0g重金属稳定剂(组成质量百分比为:磷酸盐(磷酸氢二钠+磷酸二氢钠+磷酸 氢钙)为60%,酸度调节剂(碳酸氢钠)35%,氯化钠为5%,均匀搅拌后,置于一净空玻璃 瓶内封盖后送检分析测定。采用GB5085.3-2007危险废物鉴别标准浸出毒性鉴别标准对样 品进行HJ/T299-2007固体废物浸出毒性浸出实验,但浸提剂采用1NHCl(以模拟胃酸但酸 性强度胜过胃酸)以及山药样品于一提取瓶中振荡24小时(较长的浸提时间),余 HJ/T299-2007方法不变。过滤后,采用石墨原子吸收仪对浸出液测定加入重金属解毒稳定 剂后的铅、铜(Pb、Cu)浸出毒性浓度。
经检测,山药稳定化处理前即(1),山药稳定化处理后即(2)的铅、铜(Pb、Cu)的 浸出毒性浓度列表如下:
检测结果显示,未经稳定化处理的山药样品重金属铅(Pb)的浸出毒性浓度为0.012毫克 /公斤(即12μg/Kg),经稳定化处理后山药样品铅(Pb)浸出液浓度4微克/公斤,即添加5.0g 上述实施例12(2)重金属稳定剂的山药样品之铅(Pb)浸出毒性浓度减少了约67%。稳定化 处理前山药样品重金属铜(Cu)的浸出毒性浓度为2.42毫克/公斤,稳定化处理后山药样品铜 (Cu)浸出毒性浓度1.28毫克/公斤,即250g山药样品之铜(Cu)浸出毒性添加5.0g上述重金属 稳定剂后同时降解、减少了约47%。