用于材料应用的方法和基底.pdf

上传人:e1 文档编号:726775 上传时间:2018-03-08 格式:PDF 页数:17 大小:616.77KB
返回 下载 相关 举报
摘要
申请专利号:

CN201180060206.8

申请日:

2011.10.14

公开号:

CN103348069A

公开日:

2013.10.09

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):E04D 13/18申请日:20111014|||公开

IPC分类号:

E04D13/18; E04D13/17; H02N6/00

主分类号:

E04D13/18

申请人:

赛普里安·埃米卡·尤佐; 埃米卡·奇克伍比

发明人:

赛普里安·埃米卡·尤佐; 埃米卡·奇克伍比

地址:

美国加利福尼亚州

优先权:

2010.10.15 US 61/455,060; 2010.10.15 US 61/455,061

专利代理机构:

中国专利代理(香港)有限公司 72001

代理人:

方世栋;王忠忠

PDF下载: PDF下载
内容摘要

本发明提供了用于制造合成材料的方法和装置。所述合成物能够通过将粘合剂和物理性质增强材料相混合以形成混合物而被形成。所述粘合剂能够是沥青,诸如中间相沥青。所述物理性质增强材料能够是玻璃纤维。所述混合物能够通过层压过程、稳定/交联过程以及碳化而被处理。所述合成材料能够被应用在电子元件和绿色技术的领域中,诸如光伏电池的基底。

权利要求书

1.  一种制造合成材料的方法,包括:
a)基于所述合成材料的所选择的材料性质选择要被添加的第一材料;
b)将所述第一材料与粘合剂材料相结合以形成混合物;以及
c)稳定或交联所述粘合剂材料,以便形成所述合成材料。

2.
  根据权利要求1所述的方法,其中,所述粘合剂材料包括沥青、煤灰或其组合。

3.
  根据权利要求2所述的方法,其中,所述沥青包括中间相沥青。

4.
  根据权利要求1所述的方法,其中,所述选择的材料性质包括导电率或柔性。

5.
  根据权利要求1所述的方法,其中,所述第一材料包括玻璃纤维。

6.
  根据权利要求1所述的方法,进一步包括形成层压制品。

7.
  根据权利要求1所述的方法,进一步包括碳化所述混合物。

8.
  根据权利要求7所述的方法,其中,所述碳化包括:在700℃以上的温度中加热所述混合物。

9.
  根据权利要求1所述的方法,进一步包括:在稳定或交联所述粘合剂材料之前添加硫磺。

10.
  一种包括由沥青和材料性质增强材料形成的层压制品的合成材料。

11.
  根据权利要求10所述的合成材料,其中,所述沥青包括中间相沥青。

12.
  根据权利要求10所述的合成材料,其中,所述沥青包括新中间相沥青。

13.
  根据权利要求10所述的合成材料,其中,所述材料性质增强材料包括玻璃纤维、氧化物毫微颗粒、金属氧化物、金属毫微颗粒或其组合。

14.
  根据权利要求10所述的合成材料,其中,所述材料性质增强材料包括导体。

15.
  根据权利要求14所述的合成材料,其中,所述导体包括金属或合金。

16.
  根据权利要求10所述的合成材料,其中,所述材料性质增强材料包括煤灰、磨碎的玻璃、磨碎的石英、玻璃珠、玻璃纤维、石英纤维或其组合。

17.
  根据权利要求10所述的合成材料,其中,所述材料性质增强材料包括绝缘体。

18.
  一种形成合成材料的方法,包括
a)将玻璃纤维材料与粘合剂材料相组合以形成混合物;
b)层压所述混合物以形成层压制品;
c)在第一温度稳定或交联所述粘合剂材料;以及
d)在第二温度碳化所述层压制品。

19.
  根据权利要求18所述的方法,其中,所述粘合剂材料包括沥青。

20.
  根据权利要求18所述的方法,其中,所述合成材料包括导电材料,所述导电材料形成与具有比所述导电层的导电率更低的导电率的材料的层相结合的导电层。

说明书

用于材料应用的方法和基底
对相关申请的交叉引用
本申请要求来自于2010年10月15日提交的并且标题为“用于材料应用的新颖的基底”的序列号为61/455,060的美国临时专利申请和2010年10月15日提交的并且标题为“用于光伏应用的新颖的基底”的序列号为61/455,061的美国临时专利申请的优先权,其由此为了全部的目的而被以引用的方式整体并入此处。
技术领域
本发明涉及材料科学的领域。更特别地,本发明涉及用于制造新颖的材料的合成物的领域。
背景技术
典型地,工业废弃物是不需要的并且经常被置之不用。近年来,环境保护和能源节约的意识的上升导致人们寻求方法以更好地使用资源并减少浪费。包括废物防止、废物最小化、废物再利用、废物再循环、能量回收和废物处理的方法和策略已经被开发,用于废物管理。在所述废物管理方法和策略之中,废物再利用是有吸引力的废物管理方法中的一个,因为其包括将不需要的废物转化成其他有用的产品。废物再利用被描述为变废为金。因此,如下是期望的:开发用于将废物转化并且合并成有用的产品和材料的方法和装置。
发明内容
提供了用于制造合成材料的方法和装置。所述合成物能够通过将粘合剂和物理性质增强材料相混合以形成混合物而被形成。所述粘合剂能够是沥青,诸如中间相沥青。所述物理性质增强材料能够是纤维玻璃。所述混合物能够通过层压工艺、稳定化/交联工艺以及碳化而被处理。所述合成材料能够被应用在电子元件和绿色技术的领域中,诸如光伏电池的基底。
在第一方面中,制造合成材料的方法包括基于所述合成材料的所选择的材料性质选择要被添加的第一材料,将所述第一材料与粘合剂材料相结合以形成混合物,以及稳定或者交联所述粘合剂材料,以便形成所述合成材料。
在一些实施例中,所述粘合剂材料包括沥青、煤灰或其组合。在其他的实施例中,所述沥青包括中间相沥青。在一些其他的实施例中,所选择的材料性质包括导电率或柔性。在一些实施例中,所述第一材料包括玻璃纤维。在其他实施例中,所述方法进一步包括形成层压制品。在一些其他的实施例中,所述方法进一步包括将所述混合物碳化。在一些实施例中,所述碳化包括在700℃之上的温度下加热所述混合物。在其他实施例中,所述方法进一步包括在稳定或交联所述粘合剂材料之前添加硫磺、有机硫、有机金属化合物、氧化物的毫微颗粒或金属。
在第二方面中,合成材料包括由沥青和材料性质增强材料形成的层压制品。在一些实施例中,所述沥青包括中间相沥青。在其他实施例中,所述沥青包括新中间相沥青。在一些其他实施例中,所述材料性质增强材料包括玻璃纤维、氧化物毫微颗粒、金属氧化物、金属毫微颗粒或其组合。在一些其他实施例中,所述材料性质增强材料包括导体。在一些实施例中,所述导体包括金属或合金。在其他实施例中,所述材料性质增强材料包括煤灰、磨碎的玻璃、磨碎的石英、玻璃珠、玻璃纤维、石英纤维或其组合。在一些其他实施例中,所述材料性质增强材料包括绝缘体。
在第三方面中,形成合成材料的方法包括将玻璃纤维材料与粘合剂材料组合以形成混合物,层压所述混合物以形成层压制品,在第一温度下稳定或交联所述粘合剂材料,并且在第二温度下碳化所述层压制品。
在一些实施例中,所述粘合剂材料包括沥青。在其他实施例中,所述合成材料包括导电材料,所述导电材料形成与具有比所述导电层的导电率更低的导电率的材料的层相结合的导电层。
附图说明
图1示出了根据一些实施例的制造材料的方法。
图2A和图2B示出了根据一些实施例的用于制造基底材料的装置。
图3示出了根据一些实施例的光伏电池。
图4示出了根据一些实施例的光伏电池制造方法。
图5示出了根据一些实施例的中间相沥青板制造方法。
图6示出了根据一些实施例的中间相沥青板制造方法。
具体实施方式
在本发明的一些方面中,廉价的和/或重复利用的工业废弃物被用于制造各种材料。所述材料在工业中具有广泛的应用。例如,所述材料能够被用作光伏电池的基底的一部分。在此处被使用的工业废弃物包括来自石油化学工业的沥青和来自煤炭工业以及燃煤发电厂的煤灰。上面提及的废产物(诸如沥青和煤灰)能够被用做用于柔性的和非柔性的薄膜光伏电池的基底材料。上面所列出的工业废弃物是被用于说明目的的实例。其他工业废产物是可适用的。
在本发明的一些其他方面中,使用各向同性的、各向异性的中间相沥青、石墨化沥青或从沥青(包括商业上可获得的沥青)获得的液晶作为粘合剂或粘结材料与其他的含碳的和或不含碳的材料形成材料和合成结构。
在下文中,根据一些实施例公开了用于制造材料的方法和装置。图1示出了根据一些实施例的制造所述材料的方法100。所述方法100能够包括添加期望的/预先选择的材料、用所述添加的材料生成层压制品、稳定和/或交联粘合剂材料、以及碳化。方法100的所述步骤是可选择的。附加的步骤能够被添加到所述方法100。执行方法100的所述步骤的序列能够按照任何顺序。下面说明了执行方法100的更多的细节。所述方法100能够从步骤102开始。
在步骤104处,基于所述材料的所选择的材料性质添加选择的材料/成分。在一些实施例中,通过喷射、辊涂、浸渍、刷涂或其组合用粘合剂材料浸渍织成的玻璃纤维材料(基于二氧化硅和/或基于碳的材料)。与所述粘合剂材料相组合的玻璃纤维材料形成粘合剂材料涂敷的玻璃纤维材料。本领域的普通技术人员理解:其他的方法能够被用于组合所述粘合剂材料和所述添加的材料以获得预定的物理交互作用和性质,诸如混合、掺和和按压。在其他实施例中,非织成的玻璃纤维材料被用于与所述粘合剂材料相组合。此处所描述的粘合剂材料能够是沥青、煤灰或能够被用作粘合剂材料的任何其他材料。本领域的普通技术人员理解:所述粘合剂材料能够是具有粘附的性质的任何材料,诸如粘结剂、胶水、水泥和涂料。所述粘附的性质包括在预先定义的条件(诸如温度、压力、溶剂、共反应物或其组合)下显示这样的性质的材料。例如,当粘合剂材料在诸如10 psi的压力下证明了所述粘附的性质,并且在正常的大气压(例如,1 atm)下没有粘合性时,所述粘合剂材料处于本发明的范围内。能够基于所述产品的预先选择的性质在步骤104处添加各种其他成分。在下面的段落中讨论了所述实施例中的一些。
在步骤106处,生成包括所述添加的材料的层压制品。在一些实施例中,上面形成的粘合剂材料涂敷的玻璃纤维材料被辊轧或者被挤压以形成层压制品。在一些实施例中,所述层压制品的厚度比20微米更薄。在一些其他的实施例中,所述层压制品的厚度比2000微米更厚。在一些其他的实施例中,所述层压制品的厚度处在20微米和2000微米之间。在一些实施例中,所述层压制品的宽度处在10cm和1m之间的范围内,以便层压制品材料板能够适合于进一步切割。在一些其他的实施例中,所述层压制品的宽度处在0.5cm和3cm之间的范围内,以便为准备好使用而形成电池/矩形形式的基底。本领域的普通技术人员将理解:取决于所述基底的所选择的用途,所述层压制品的任何宽度是可应用的。
在一些实施例中,所述层压制品包括具有由中间相沥青层的顶面和底面上的玻璃纤维层夹在中间的中间相沥青层的结构。例如,通过如下方式形成夹层结构/层压制品:准备具有1m2的大小和3mm的厚度的玻璃纤维板的第一层,在所述第一层的顶部上添加具有1m2的大小和5mm的厚度的粘合剂材料(诸如中间相沥青)的第二层,添加具有1m2的大小和2mm的厚度的玻璃纤维板的第三层,以及用压力挤压机挤压以形成具有7mm的厚度的夹层的层压制品。在其他实施例中,所述层压制品包括由两个沥青层夹在中间的玻璃纤维的层。在一些实施例中,所述沥青是低分子量新中间相沥青或者是任何其他的粘合剂。
在步骤108处,在氧气环境中在软化温度以下稳定或交联所述粘合剂材料以形成处理过的材料。在一些实施例中,所述温度处在200℃ 到 450℃的范围内。本领域的普通技术人员理解:其他的温度范围是可应用的。在一些实施例中,所述温度接近所述软化温度。在一些其他实施例中,所述温度高于所述软化温度。
在步骤110处,所述处理过的材料被加热处理以碳化所述混合物。在一些实施例中,步骤110的温度处在800℃ 到 1700℃的范围内。在一些其他实施例中,所述温度处在700℃到 3000℃的范围内。在一些实施例中,在惰性环境(诸如氮气)下,用在2psi和40psi之间的压力执行所述步骤110。在一些实施例中,在降温步骤期间保持所施加的压力,以致所述板结构的收缩和翘曲能够被最小化。所述方法100能够在步骤112处停止。
针对不同的应用选择不同的材料性质,诸如热的、声音、电的、振动的、信号和光传导性/绝缘、材料强度以及材料耐久性。各种材料能够被添加在所述合成材料中以增强所述预定的性质。在一些实施例中,切碎的或微粒的导电材料被用作增强剂或材料,以致能够增强所生产的材料的导电率。在一些其他实施例中,切碎的或微粒的非导电材料被用作增强剂或材料,以致所生产的材料的绝缘的性质被增强。在一些实施例中,被合并的材料包括煤灰、磨碎的玻璃、磨碎的石英、玻璃珠、切碎的玻璃纤维、切碎的石英纤维云母片、陶瓷粉末/珠/片以及不含碳的材料。在一些其他实施例中,被合并的材料包括导电金属或金属合金粉末、片或纤维。在一些实施例中,被合并的材料包括毫微颗粒,诸如金属毫微颗粒和金属氧化物毫微颗粒(例如,Cr2O3毫微颗粒被合并作为用于成核(neucleation)的催化剂)。本领域的普通技术人员理解:任何导电材料能够被添加,包括铜、铬、碳粉或碳片、石墨片或其组合。
在一些实施例中,选择基底材料(根据所述方法100生产的材料)的电阻率。在一些实施例中,在所述交联步骤之前将小于5%的量的具有或不具有金属氧化物或金属化合物的硫磺或有机硫化合物掺合到中间相沥青粘合剂中,以致在所述高温碳化步骤期间形成玻璃碳。能够被添加例如以控制纹理或强度并且增加或降低所述基底材料的电阻率的任何其他材料在本发明的范围内。
在下文中,公开了用于制造所述基底材料的装置。图2A和图2B示出了根据一些实施例的用于制造所述基底材料的装置200和211。反应物(诸如玻璃纤维216和粘合剂材料218)能够分别地通过漏斗210和212被添加到混合装置202中。所述反应物能够是固体和/或液体形式的溶剂和/或合成物。在一些实施例中,所述混合装置202能够是挤压机。所述混合装置202能够混合由混合器217(诸如螺旋式混合器)添加的材料。本领域的普通技术人员理解:任何数量的漏斗能够被包括在所述混合装置 202中。能够在空气气氛、惰性气氛(诸如N2和Ar)或加压的气氛(诸如2-10 psi 和1-3 atm)下执行所述混合装置202和/或所述装置200。所述漏斗210和212能够是气密的腔室、顶部敞开的腔室、有铰链的顶部开放的腔室,用于诸如气体、液体和超临界流体的固体和流体。所述混合装置202能够包括允许输出材料201以期望的形式和厚度(诸如1mm - 10mm)被成型的模具214。在一些实施例中,所述装置200能够包括辊204,诸如拉辊。所述辊204能够使用其滚轮和带子将所述输出材料201压缩至期望的厚度,诸如20到500微米。能够使用此处所描述的所述混合装置202和/或所述辊204以批量模式或根据所述层压制品的厚度的卷至卷方式生产在图1中所描述的层压制品。所述输出材料201能够在烤炉206中以预定的温度被加热,诸如用于稳定或交联所述粘合剂材料的200℃-450℃和用于碳化所述材料的600℃-1700℃。在一些实施例中,在所述稳定和碳化步骤期间,受控的流体环境被用于将所述压力强加在所述基底的两个主要侧面上。例如,所述烤炉/熔炉206能够排有微小的孔205(具有多个加热区域),其中与所述熔炉的宽度或长度相比,炉壁内部的上部和下部之间的间隙是可忽略的。在一些实施例中,在所述碳化过程中,惰性气体通过所述烤炉/熔炉206中的层压制品的两侧上的所述微小的孔205而被引入到所述烤炉/熔炉206中,并且所述流体的压力被控制为在所述层压制品(输出材料201)的两侧上发出,以致所述流体(诸如惰性气体)阻止所述层压制品板接触所述烤炉/熔炉206的主要侧面。在一些实施例中,所述烤炉206的流体出口203的间隙被减小,以致所施加的流体能够在所述交联、碳化或其组合期间被用于将所述压力强加在所述基底上。在一些实施例中,所述装置 200能够包括一个或多个冷却装置 207。所述输出材料201能够被切割器208切割并储存成预定的尺寸,诸如1m2。所述切割器208能够是压力压切机。
与突出式装配装置 202相似,图2B显示了拉挤成型装置220。所述拉挤成型装置220能够连续不断地制造合成材料。纤维板226能够通过沥青熔池224而被拉伸,其通过沥青源222而被供应。与在图2A中描述的过程和其关联的文本相似,图2B中的输出材料201能够进一步被所述辊204紧压、被所述烤炉206加热、被所述冷却器 207降温、以及被所述切割器208确定尺寸。
应用
通过使用根据一些实施例在此处所公开的方法和装置而被制造的材料能够被应用在各种应用中并且以各种方式被使用。例如,在一些实施例中,多于一个的层压制品能够被堆叠并且通过中间相沥青粘合剂的薄层而被结合。在所述交联步骤之前,所述板的方位能够是彼此平行的、斜交的、或者相对于彼此处于任何选择的方位中。单个的板或堆叠的板能够通过已知的方法被切割并且在适当的模中被形成,用于制造预先选择的结构或形状,诸如太阳能电池的基底。
在一些实施例中,选择交替式的导电层结构,其能够通过使用更绝缘的玻璃碳粘合剂将高导电的层压制品彼此结合而被制造。所形成的具有不同的导电率的交替层的材料能够被用作用于低温或高温应用的电容器。例如,所述电容器能够具有包括高绝缘层的第一层、导电层的第二层、高绝缘层的第三层、导电层的第四层和高绝缘层的第五层的结构。通过此处所公开的方法和装置而被制造的基底能够被用作用于光伏电池的柔性基底、电磁屏蔽、用于电子器具的外壳和建筑学上的应用。
  光伏电池
在下文中,根据实施例提供了使用上面制造的材料/基底来制造光伏电池(PV)的方法。
传统上,钠钙玻璃和不锈钢板被用于制造薄膜太阳能电池。问题与使用钠钙玻璃或不锈钢板作为基底的光伏电池相关联。所述钠钙玻璃基底是易碎的,其增加了基底缺陷和PV电池故障的可能性。此外,所述钠钙玻璃基底是刚性的并且不是柔性的,其将其应用限制于仅平坦的表面。此外,所述钠钙玻璃基底是电绝缘体并且是昂贵的,其大约是PV制造成本的40%。此外,钠钙玻璃基底的Tg(玻璃转变温度)限制了硒化温度。将用辊轧的不锈钢板作为基底的典型的PV电池与用钠钙玻璃作为基底的PV电池相比较,所述辊轧的不锈钢板基底具有比所述钠钙玻璃基底更柔性且导电的结构。然而,就所述不锈钢基底具有更粗糙的表面而言,所述辊轧的不锈钢板基底比所述钠钙玻璃基底更差。此外,被包含在所述典型的不锈钢基底中的金属能够是到CIGS半导体的金属杂质(诸如Fe、Ni和 Se)的源,因为所包含的金属(诸如Fe、Ni和液体Se)能够扩散通过Mo晶粒边界以使电池短路。特别地,在惰性气氛下典型的硒化温度处在500℃ 和750℃之间。在这样的温度下, Fe 和Ni的扩散率变得非常迅速并且动力学支持Fe扩散通过Mo晶粒之间的开放的晶粒边界。同样地,在此高温下,所述Mo之上的CIS(铜铟硒化物)或CIGS(铜铟镓(di)硒化物:四面体键合的半导体)层中熔化的Se扩散通过所述Mo晶粒边界以腐蚀所述Mo下方的不锈基底,使所述太阳能电池短路。这些缺陷典型地导致电池具有大大降低的效率并且所述基底经常被废弃。高废弃损失和伴随的低效率电池产生昂贵的太阳能电池,其不是商业上可行的。
在下文中,根据实施例提供了使用上面制造的材料/基底制造光伏电池(PV)的方法。
公开了根据一些实施例的用于制造光伏电池的方法和物质。在一些实施例中,所述光伏电池包括合成的或非合成的含碳的基底,在其中各向同性的或各向异性的中间相沥青、新中间相沥青或其组合被用作粘合剂、粘结材料或用于制造平面的和非平面的板的精整材料,用以制造薄膜太阳能电池。在下文中,根据一些实施例提供了具有使用此处所公开的材料的基底的光伏电池。
图3示出了根据一些实施例的光伏电池300。在一些实施例中,所述光伏电池300包括基底302、粘合层304、Mo层306、吸收器层308、缓冲层310(诸如CdS层)和TCO(透明的导电氧化物)层312。所述光伏电池300的基底302能够包括中间相/新中间相沥青构架基底。在一些实施例中,所述基底302的厚度能够是20微米到1mm或更厚。在一些其他实施例中,所述基底302的厚度能够比5mm更厚。本领域的普通技术人员理解:任何厚度的基底302是可应用的。通过基于应用添加预先选择的填料,所述基底302的物理和材料性质是可调节的。用于所述基底302的刚性/柔性、导电率、热膨胀的程度和表面粗糙度全部是可调节的和可控制的。例如,能够通过在制造过程期间将导电材料、催化剂、毫微颗粒和金属氧化物(例如,填料)添加到所述粘合剂材料中来制造导电基底302。当想要绝缘基底302时,能够通过在制造过程期间将绝缘材料添加到所述粘合剂材料来制造所述绝缘基底。相似地,能够通过调节所述粘合剂材料的硬度或刚度或者要被添加的材料的类型来制造柔性的基底302。使用此处所公开的方法和材料制造的基底302能够比通过典型的方法制造的基底承受更高的硒化温度范围。由于使用此处所公开的方法和材料制造的基底302已最小化到没有不期望的金属杂质,当在高温下加热所述光伏电池时能够避免所述电池的短路。
在一些实施例中,所述光伏电池300包括粘合层304。所述粘合层304能够是Cr层并且通过溅射和其他已知的方法被涂敷在所述基底302的顶部上。所述粘合层304的厚度能够在20nm到1000nm之间。本领域的普通技术人员理解:任何厚度的粘合层304是可应用的,诸如2mm或更厚。
在一些实施例中,所述光伏电池300包括Mo层306。所述Mo层306能够处在所述粘合层304的顶部上。所述Mo层306能够充当后触点并且将大部分未被吸收的光反射回所述吸收器层308(诸如CIGS层)中。所述Mo层306能够是通过PVD(物理气相沉积, 诸如溅射和蒸发以及其他已知的方法,诸如CVD(化学气相沉积))沉积的薄膜。所述Mo层306的厚度能够在100nm到2000nm之间。本领域的普通技术人员理解:任何厚度的Mo层306是可应用的,诸如2微米或更厚。在一些实施例中,多个Mo层306能够被包括以获得预定义的Mo薄膜厚度。在一些实施例中,薄层Mo合金(诸如2nm到10nm MoSi层)被插入到所述Mo层压制品中以修正被涂敷在所述合金层之上的Mo薄膜的晶粒结构。
在一些实施例中,所述光伏电池300包括吸收器层308,诸如CIGS层或CIG/CIS层。能够通过在所述Mo层306上沉积/溅射/蒸发前体材料/层(诸如Cu、In、Ga或其组合)随之硒化来形成所述吸收器层308。能够使用形成CIGS层的典型方法形成所述吸收器。在一些实施例中,能够在过量硒环境中(诸如H2Se或Se(g)) 在500℃和800℃的温度之间持续5分钟到120分钟在惰性环境中在所述硒化步骤之前用氟化钠的薄层涂敷所述前体材料/层。
在一些实施例中,所述光伏电池300包括缓冲层310。所述缓冲层310能够是n-型CdS。能够通过典型的方法将所述缓冲层涂敷在所述吸收器层308上。在一些实施例中,所述光伏电池300包括透明的导电氧化物层(TCO) 312。所述TCO 层312能够被掺杂有Al。所述TCO 层能够收集电子并且将电子移出所述电池同时吸收尽可能少的光。在一些实施例中,所述光伏电池300包括所述TCO层312上的电接线元件314,用于传导电子信号和电流。在一些实施例中,能够用聚合物薄膜层压所述光伏电池300以形成柔性的太阳能电池。
图4示出了根据一些实施例的光伏电池制造方法400。所述方法400能够从步骤402开始。在步骤404处,粘合层被涂敷在基底上。能够使用上面所描述的方法制造所述基底。在一些实施例中,所述粘合层包含Cr或Cr板/层。在一些实施例中,所述基底是中间相粘结基底。所述中间相粘结基底能够是所述光伏电池的底电极。在一些其他实施例中,所述基底是合成的含碳基底。在其他实施例中,所述基底是非合成的含碳基底。所述基底能够是各向同性的或各向异性的中间相沥青、新中间相沥青或其组合。本领域的普通技术人员理解:粘合的或在预定的条件下粘合的其他材料是可应用的。在步骤406处,Mo层被涂敷在所述粘合层上,其能够将所述基底与吸收器层结合。在步骤408处,前体材料(诸如Cu、In、Ga和Se(铜铟镓硒化物))被涂敷在所述Mo层上。在步骤410处,硒化被执行。在所述硒化的过程中,能够在高温以气相(例如作为H2Se或元素的Se)供应Se,并且通过吸收和随后的扩散变得将所述Se并入到所述薄膜中。通过执行所述硒化,能够形成所述光伏电池的吸收器。在步骤412处,执行在所述吸收器(CIGS)层上形成CdS层。在步骤414处,TCO的层被涂敷在所述CdS层上。在步骤416处,在所述TCO上制造接线元件。所述方法400能够在步骤418停止。在下文中,提供了能够在上面描述的方法400中被用作基底的形成中间相沥青板的方法。
图5示出了根据一些实施例的中间相沥青板制造方法500。所述方法500从步骤502开始。在步骤504处,沥青被添加。所述沥青能够是来自煤的来自阿什兰(Ashland)240或260(石油沥青)的可石墨化的各向同性含炭沥青。本领域的普通技术人员理解:所述沥青能够来自于各种源,诸如直接来自于工业废弃物。在步骤506处,用所述沥青执行溶剂萃取和热处理。在步骤508处,中间相或新中间相材料被形成。在一些实施例中,所述中间相或新中间相材料包含多于50%成分的液晶。在步骤510处,所述中间相或新中间相材料被干燥并且执行磨碎。在步骤512处,在250℃到300℃的惰性环境气氛下执行板挤压。在步骤514处,通过在250℃到300℃加热所述板来执行板稳定。在步骤516处,在600℃到3000℃的惰性环境下执行高温处理。所述方法500能够在步骤518停止。在下文中,提供了将填料材料并入所述基底材料/中间相板材料中的方法。
图6示出了根据一些实施例的中间相沥青板制造方法600。所述方法600从步骤602开始。在步骤604处,沥青被添加。所述沥青能够是来自煤的来自阿什兰(Ashland)240或260(石油沥青)的可石墨化的各向同性含炭沥青。本领域的普通技术人员理解:所述沥青能够来自于各种源,诸如直接来自于工业废弃物。在步骤606处,执行溶剂萃取和热处理。在步骤608处,形成中间相或新中间相材料。在一些实施例中,所述中间相或新中间相材料包含多于50%成分的液晶。在步骤610处,所述中间相或新中间相材料被干燥并且执行磨碎。在步骤611处,填料材料被添加。能够基于预先选择的所述基底(产品)的物理/化学性质选择要被添加的填料。在步骤612处,在250℃到300℃的惰性环境气氛下执行板挤压。在步骤614处,通过在250℃到300℃加热所述板来执行板稳定。在步骤616处,形成低熔点和/或低分子量中间相沥青,其能够被用来层压多个板材料。所述方法600能够在步骤618停止。
上面所描述的所有步骤是可选择的。能够按照任何顺序执行被包括在上面的方法中的步骤的序列。附加的步骤能够被添加。
能够在制造用于工业应用(诸如太阳能电池的基底)的各种材料中利用本申请。在操作中,具有用此处所提供的方法制造的柔性基底的光伏太阳能电池能够被弯曲成期望的形状并且应用在非平坦的表面上。
此处所使用的术语沥青能够包括焦油、沥青烯、粘弹性的聚合物、柏油、地沥青、二硫化碳和树脂。在一些实施例中,所选择的粘合剂(诸如沥青)或所添加的材料的高粘度提供了将金属颗粒保持在所述基底中并且防止它们使所述PV电池短路的功能。在一些实施例中,使用此处所公开的方法和合成物制造的材料/基底能够被用作热绝缘装置,如测温漆,其能够被安装在或涂敷在建筑结构(诸如房屋或谷仓)的屋顶或墙壁上或者作为建筑结构(诸如房屋或谷仓)的屋顶或墙壁的一部分。在一些实施例中,所述材料/基底包括具有高导电率的导电材料,由此所述材料/基底能够被用于传导电流。在一些其他实施例中,所述材料/基底具有热和/或光的高反射率,并且所述基底和所述材料能够被用作建筑结构上的镜子。此处所描述的镜子能够反射/绝缘/隔绝热、光或其组合。在一些实施例中,所述基底/材料能够反射多于90%的入射光或所选择的光的波长,诸如IR和UV。
已经关于合并了细节的特定的实施例描述了本发明,以有助于理解本发明的构造和操作的原理。此处对特定的实施例和其细节的这样的引用不是意在限制附于此的权利要求的范围。如下对本领域技术人员而言将是显而易见的:可以在被选择用于说明的实施例中进行其他各种修改,而不背离如由权利要求所限定的本发明的精神和范围。

用于材料应用的方法和基底.pdf_第1页
第1页 / 共17页
用于材料应用的方法和基底.pdf_第2页
第2页 / 共17页
用于材料应用的方法和基底.pdf_第3页
第3页 / 共17页
点击查看更多>>
资源描述

《用于材料应用的方法和基底.pdf》由会员分享,可在线阅读,更多相关《用于材料应用的方法和基底.pdf(17页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN103348069A43申请公布日20131009CN103348069ACN103348069A21申请号201180060206822申请日2011101461/455,06020101015US61/455,06120101015USE04D13/18200601E04D13/17200601H02N6/0020060171申请人赛普里安埃米卡尤佐地址美国加利福尼亚州申请人埃米卡奇克伍比72发明人赛普里安埃米卡尤佐埃米卡奇克伍比74专利代理机构中国专利代理香港有限公司72001代理人方世栋王忠忠54发明名称用于材料应用的方法和基底57摘要本发明提供了用于制造合成材料的方。

2、法和装置。所述合成物能够通过将粘合剂和物理性质增强材料相混合以形成混合物而被形成。所述粘合剂能够是沥青,诸如中间相沥青。所述物理性质增强材料能够是玻璃纤维。所述混合物能够通过层压过程、稳定/交联过程以及碳化而被处理。所述合成材料能够被应用在电子元件和绿色技术的领域中,诸如光伏电池的基底。30优先权数据85PCT申请进入国家阶段日2013061486PCT申请的申请数据PCT/US2011/0564802011101487PCT申请的公布数据WO2012/051602EN2012041951INTCL权利要求书1页说明书8页附图7页19中华人民共和国国家知识产权局12发明专利申请权利要求书1页说。

3、明书8页附图7页10申请公布号CN103348069ACN103348069A1/1页21一种制造合成材料的方法,包括A)基于所述合成材料的所选择的材料性质选择要被添加的第一材料;B)将所述第一材料与粘合剂材料相结合以形成混合物;以及C)稳定或交联所述粘合剂材料,以便形成所述合成材料。2根据权利要求1所述的方法,其中,所述粘合剂材料包括沥青、煤灰或其组合。3根据权利要求2所述的方法,其中,所述沥青包括中间相沥青。4根据权利要求1所述的方法,其中,所述选择的材料性质包括导电率或柔性。5根据权利要求1所述的方法,其中,所述第一材料包括玻璃纤维。6根据权利要求1所述的方法,进一步包括形成层压制品。7。

4、根据权利要求1所述的方法,进一步包括碳化所述混合物。8根据权利要求7所述的方法,其中,所述碳化包括在700以上的温度中加热所述混合物。9根据权利要求1所述的方法,进一步包括在稳定或交联所述粘合剂材料之前添加硫磺。10一种包括由沥青和材料性质增强材料形成的层压制品的合成材料。11根据权利要求10所述的合成材料,其中,所述沥青包括中间相沥青。12根据权利要求10所述的合成材料,其中,所述沥青包括新中间相沥青。13根据权利要求10所述的合成材料,其中,所述材料性质增强材料包括玻璃纤维、氧化物毫微颗粒、金属氧化物、金属毫微颗粒或其组合。14根据权利要求10所述的合成材料,其中,所述材料性质增强材料包括。

5、导体。15根据权利要求14所述的合成材料,其中,所述导体包括金属或合金。16根据权利要求10所述的合成材料,其中,所述材料性质增强材料包括煤灰、磨碎的玻璃、磨碎的石英、玻璃珠、玻璃纤维、石英纤维或其组合。17根据权利要求10所述的合成材料,其中,所述材料性质增强材料包括绝缘体。18一种形成合成材料的方法,包括A)将玻璃纤维材料与粘合剂材料相组合以形成混合物;B)层压所述混合物以形成层压制品;C)在第一温度稳定或交联所述粘合剂材料;以及D)在第二温度碳化所述层压制品。19根据权利要求18所述的方法,其中,所述粘合剂材料包括沥青。20根据权利要求18所述的方法,其中,所述合成材料包括导电材料,所述。

6、导电材料形成与具有比所述导电层的导电率更低的导电率的材料的层相结合的导电层。权利要求书CN103348069A1/8页3用于材料应用的方法和基底0001对相关申请的交叉引用本申请要求来自于2010年10月15日提交的并且标题为“用于材料应用的新颖的基底”的序列号为61/455,060的美国临时专利申请和2010年10月15日提交的并且标题为“用于光伏应用的新颖的基底”的序列号为61/455,061的美国临时专利申请的优先权,其由此为了全部的目的而被以引用的方式整体并入此处。技术领域0002本发明涉及材料科学的领域。更特别地,本发明涉及用于制造新颖的材料的合成物的领域。背景技术0003典型地,工。

7、业废弃物是不需要的并且经常被置之不用。近年来,环境保护和能源节约的意识的上升导致人们寻求方法以更好地使用资源并减少浪费。包括废物防止、废物最小化、废物再利用、废物再循环、能量回收和废物处理的方法和策略已经被开发,用于废物管理。在所述废物管理方法和策略之中,废物再利用是有吸引力的废物管理方法中的一个,因为其包括将不需要的废物转化成其他有用的产品。废物再利用被描述为变废为金。因此,如下是期望的开发用于将废物转化并且合并成有用的产品和材料的方法和装置。发明内容0004提供了用于制造合成材料的方法和装置。所述合成物能够通过将粘合剂和物理性质增强材料相混合以形成混合物而被形成。所述粘合剂能够是沥青,诸如。

8、中间相沥青。所述物理性质增强材料能够是纤维玻璃。所述混合物能够通过层压工艺、稳定化/交联工艺以及碳化而被处理。所述合成材料能够被应用在电子元件和绿色技术的领域中,诸如光伏电池的基底。0005在第一方面中,制造合成材料的方法包括基于所述合成材料的所选择的材料性质选择要被添加的第一材料,将所述第一材料与粘合剂材料相结合以形成混合物,以及稳定或者交联所述粘合剂材料,以便形成所述合成材料。0006在一些实施例中,所述粘合剂材料包括沥青、煤灰或其组合。在其他的实施例中,所述沥青包括中间相沥青。在一些其他的实施例中,所选择的材料性质包括导电率或柔性。在一些实施例中,所述第一材料包括玻璃纤维。在其他实施例中。

9、,所述方法进一步包括形成层压制品。在一些其他的实施例中,所述方法进一步包括将所述混合物碳化。在一些实施例中,所述碳化包括在700之上的温度下加热所述混合物。在其他实施例中,所述方法进一步包括在稳定或交联所述粘合剂材料之前添加硫磺、有机硫、有机金属化合物、氧化物的毫微颗粒或金属。0007在第二方面中,合成材料包括由沥青和材料性质增强材料形成的层压制品。在一些实施例中,所述沥青包括中间相沥青。在其他实施例中,所述沥青包括新中间相沥青。在说明书CN103348069A2/8页4一些其他实施例中,所述材料性质增强材料包括玻璃纤维、氧化物毫微颗粒、金属氧化物、金属毫微颗粒或其组合。在一些其他实施例中,所。

10、述材料性质增强材料包括导体。在一些实施例中,所述导体包括金属或合金。在其他实施例中,所述材料性质增强材料包括煤灰、磨碎的玻璃、磨碎的石英、玻璃珠、玻璃纤维、石英纤维或其组合。在一些其他实施例中,所述材料性质增强材料包括绝缘体。0008在第三方面中,形成合成材料的方法包括将玻璃纤维材料与粘合剂材料组合以形成混合物,层压所述混合物以形成层压制品,在第一温度下稳定或交联所述粘合剂材料,并且在第二温度下碳化所述层压制品。0009在一些实施例中,所述粘合剂材料包括沥青。在其他实施例中,所述合成材料包括导电材料,所述导电材料形成与具有比所述导电层的导电率更低的导电率的材料的层相结合的导电层。附图说明001。

11、0图1示出了根据一些实施例的制造材料的方法。0011图2A和图2B示出了根据一些实施例的用于制造基底材料的装置。0012图3示出了根据一些实施例的光伏电池。0013图4示出了根据一些实施例的光伏电池制造方法。0014图5示出了根据一些实施例的中间相沥青板制造方法。0015图6示出了根据一些实施例的中间相沥青板制造方法。具体实施方式0016在本发明的一些方面中,廉价的和/或重复利用的工业废弃物被用于制造各种材料。所述材料在工业中具有广泛的应用。例如,所述材料能够被用作光伏电池的基底的一部分。在此处被使用的工业废弃物包括来自石油化学工业的沥青和来自煤炭工业以及燃煤发电厂的煤灰。上面提及的废产物(诸。

12、如沥青和煤灰)能够被用做用于柔性的和非柔性的薄膜光伏电池的基底材料。上面所列出的工业废弃物是被用于说明目的的实例。其他工业废产物是可适用的。0017在本发明的一些其他方面中,使用各向同性的、各向异性的中间相沥青、石墨化沥青或从沥青(包括商业上可获得的沥青)获得的液晶作为粘合剂或粘结材料与其他的含碳的和或不含碳的材料形成材料和合成结构。0018在下文中,根据一些实施例公开了用于制造材料的方法和装置。图1示出了根据一些实施例的制造所述材料的方法100。所述方法100能够包括添加期望的/预先选择的材料、用所述添加的材料生成层压制品、稳定和/或交联粘合剂材料、以及碳化。方法100的所述步骤是可选择的。。

13、附加的步骤能够被添加到所述方法100。执行方法100的所述步骤的序列能够按照任何顺序。下面说明了执行方法100的更多的细节。所述方法100能够从步骤102开始。0019在步骤104处,基于所述材料的所选择的材料性质添加选择的材料/成分。在一些实施例中,通过喷射、辊涂、浸渍、刷涂或其组合用粘合剂材料浸渍织成的玻璃纤维材料(基于二氧化硅和/或基于碳的材料)。与所述粘合剂材料相组合的玻璃纤维材料形成粘合剂材说明书CN103348069A3/8页5料涂敷的玻璃纤维材料。本领域的普通技术人员理解其他的方法能够被用于组合所述粘合剂材料和所述添加的材料以获得预定的物理交互作用和性质,诸如混合、掺和和按压。在。

14、其他实施例中,非织成的玻璃纤维材料被用于与所述粘合剂材料相组合。此处所描述的粘合剂材料能够是沥青、煤灰或能够被用作粘合剂材料的任何其他材料。本领域的普通技术人员理解所述粘合剂材料能够是具有粘附的性质的任何材料,诸如粘结剂、胶水、水泥和涂料。所述粘附的性质包括在预先定义的条件(诸如温度、压力、溶剂、共反应物或其组合)下显示这样的性质的材料。例如,当粘合剂材料在诸如10PSI的压力下证明了所述粘附的性质,并且在正常的大气压(例如,1ATM)下没有粘合性时,所述粘合剂材料处于本发明的范围内。能够基于所述产品的预先选择的性质在步骤104处添加各种其他成分。在下面的段落中讨论了所述实施例中的一些。002。

15、0在步骤106处,生成包括所述添加的材料的层压制品。在一些实施例中,上面形成的粘合剂材料涂敷的玻璃纤维材料被辊轧或者被挤压以形成层压制品。在一些实施例中,所述层压制品的厚度比20微米更薄。在一些其他的实施例中,所述层压制品的厚度比2000微米更厚。在一些其他的实施例中,所述层压制品的厚度处在20微米和2000微米之间。在一些实施例中,所述层压制品的宽度处在10CM和1M之间的范围内,以便层压制品材料板能够适合于进一步切割。在一些其他的实施例中,所述层压制品的宽度处在05CM和3CM之间的范围内,以便为准备好使用而形成电池/矩形形式的基底。本领域的普通技术人员将理解取决于所述基底的所选择的用途,。

16、所述层压制品的任何宽度是可应用的。0021在一些实施例中,所述层压制品包括具有由中间相沥青层的顶面和底面上的玻璃纤维层夹在中间的中间相沥青层的结构。例如,通过如下方式形成夹层结构/层压制品准备具有1M的大小和3MM的厚度的玻璃纤维板的第一层,在所述第一层的顶部上添加具有1M的大小和5MM的厚度的粘合剂材料(诸如中间相沥青)的第二层,添加具有1M的大小和2MM的厚度的玻璃纤维板的第三层,以及用压力挤压机挤压以形成具有7MM的厚度的夹层的层压制品。在其他实施例中,所述层压制品包括由两个沥青层夹在中间的玻璃纤维的层。在一些实施例中,所述沥青是低分子量新中间相沥青或者是任何其他的粘合剂。0022在步骤。

17、108处,在氧气环境中在软化温度以下稳定或交联所述粘合剂材料以形成处理过的材料。在一些实施例中,所述温度处在200到450的范围内。本领域的普通技术人员理解其他的温度范围是可应用的。在一些实施例中,所述温度接近所述软化温度。在一些其他实施例中,所述温度高于所述软化温度。0023在步骤110处,所述处理过的材料被加热处理以碳化所述混合物。在一些实施例中,步骤110的温度处在800到1700的范围内。在一些其他实施例中,所述温度处在700到3000的范围内。在一些实施例中,在惰性环境(诸如氮气)下,用在2PSI和40PSI之间的压力执行所述步骤110。在一些实施例中,在降温步骤期间保持所施加的压力。

18、,以致所述板结构的收缩和翘曲能够被最小化。所述方法100能够在步骤112处停止。0024针对不同的应用选择不同的材料性质,诸如热的、声音、电的、振动的、信号和光传导性/绝缘、材料强度以及材料耐久性。各种材料能够被添加在所述合成材料中以增强所述预定的性质。在一些实施例中,切碎的或微粒的导电材料被用作增强剂或材料,以致能够增强所生产的材料的导电率。在一些其他实施例中,切碎的或微粒的非导电材料被用作增强剂或材料,以致所生产的材料的绝缘的性质被增强。在一些实施例中,被合并的材料包括说明书CN103348069A4/8页6煤灰、磨碎的玻璃、磨碎的石英、玻璃珠、切碎的玻璃纤维、切碎的石英纤维云母片、陶瓷粉。

19、末/珠/片以及不含碳的材料。在一些其他实施例中,被合并的材料包括导电金属或金属合金粉末、片或纤维。在一些实施例中,被合并的材料包括毫微颗粒,诸如金属毫微颗粒和金属氧化物毫微颗粒(例如,CR2O3毫微颗粒被合并作为用于成核(NEUCLEATION)的催化剂)。本领域的普通技术人员理解任何导电材料能够被添加,包括铜、铬、碳粉或碳片、石墨片或其组合。0025在一些实施例中,选择基底材料(根据所述方法100生产的材料)的电阻率。在一些实施例中,在所述交联步骤之前将小于5的量的具有或不具有金属氧化物或金属化合物的硫磺或有机硫化合物掺合到中间相沥青粘合剂中,以致在所述高温碳化步骤期间形成玻璃碳。能够被添加。

20、例如以控制纹理或强度并且增加或降低所述基底材料的电阻率的任何其他材料在本发明的范围内。0026在下文中,公开了用于制造所述基底材料的装置。图2A和图2B示出了根据一些实施例的用于制造所述基底材料的装置200和211。反应物(诸如玻璃纤维216和粘合剂材料218)能够分别地通过漏斗210和212被添加到混合装置202中。所述反应物能够是固体和/或液体形式的溶剂和/或合成物。在一些实施例中,所述混合装置202能够是挤压机。所述混合装置202能够混合由混合器217(诸如螺旋式混合器)添加的材料。本领域的普通技术人员理解任何数量的漏斗能够被包括在所述混合装置202中。能够在空气气氛、惰性气氛(诸如N2。

21、和AR)或加压的气氛(诸如210PSI和13ATM)下执行所述混合装置202和/或所述装置200。所述漏斗210和212能够是气密的腔室、顶部敞开的腔室、有铰链的顶部开放的腔室,用于诸如气体、液体和超临界流体的固体和流体。所述混合装置202能够包括允许输出材料201以期望的形式和厚度(诸如1MM10MM)被成型的模具214。在一些实施例中,所述装置200能够包括辊204,诸如拉辊。所述辊204能够使用其滚轮和带子将所述输出材料201压缩至期望的厚度,诸如20到500微米。能够使用此处所描述的所述混合装置202和/或所述辊204以批量模式或根据所述层压制品的厚度的卷至卷方式生产在图1中所描述的层。

22、压制品。所述输出材料201能够在烤炉206中以预定的温度被加热,诸如用于稳定或交联所述粘合剂材料的200450和用于碳化所述材料的6001700。在一些实施例中,在所述稳定和碳化步骤期间,受控的流体环境被用于将所述压力强加在所述基底的两个主要侧面上。例如,所述烤炉/熔炉206能够排有微小的孔205(具有多个加热区域),其中与所述熔炉的宽度或长度相比,炉壁内部的上部和下部之间的间隙是可忽略的。在一些实施例中,在所述碳化过程中,惰性气体通过所述烤炉/熔炉206中的层压制品的两侧上的所述微小的孔205而被引入到所述烤炉/熔炉206中,并且所述流体的压力被控制为在所述层压制品(输出材料201)的两侧上。

23、发出,以致所述流体(诸如惰性气体)阻止所述层压制品板接触所述烤炉/熔炉206的主要侧面。在一些实施例中,所述烤炉206的流体出口203的间隙被减小,以致所施加的流体能够在所述交联、碳化或其组合期间被用于将所述压力强加在所述基底上。在一些实施例中,所述装置200能够包括一个或多个冷却装置207。所述输出材料201能够被切割器208切割并储存成预定的尺寸,诸如1M。所述切割器208能够是压力压切机。0027与突出式装配装置202相似,图2B显示了拉挤成型装置220。所述拉挤成型装置220能够连续不断地制造合成材料。纤维板226能够通过沥青熔池224而被拉伸,其通过说明书CN103348069A5/。

24、8页7沥青源222而被供应。与在图2A中描述的过程和其关联的文本相似,图2B中的输出材料201能够进一步被所述辊204紧压、被所述烤炉206加热、被所述冷却器207降温、以及被所述切割器208确定尺寸。0028应用通过使用根据一些实施例在此处所公开的方法和装置而被制造的材料能够被应用在各种应用中并且以各种方式被使用。例如,在一些实施例中,多于一个的层压制品能够被堆叠并且通过中间相沥青粘合剂的薄层而被结合。在所述交联步骤之前,所述板的方位能够是彼此平行的、斜交的、或者相对于彼此处于任何选择的方位中。单个的板或堆叠的板能够通过已知的方法被切割并且在适当的模中被形成,用于制造预先选择的结构或形状,诸。

25、如太阳能电池的基底。0029在一些实施例中,选择交替式的导电层结构,其能够通过使用更绝缘的玻璃碳粘合剂将高导电的层压制品彼此结合而被制造。所形成的具有不同的导电率的交替层的材料能够被用作用于低温或高温应用的电容器。例如,所述电容器能够具有包括高绝缘层的第一层、导电层的第二层、高绝缘层的第三层、导电层的第四层和高绝缘层的第五层的结构。通过此处所公开的方法和装置而被制造的基底能够被用作用于光伏电池的柔性基底、电磁屏蔽、用于电子器具的外壳和建筑学上的应用。0030光伏电池在下文中,根据实施例提供了使用上面制造的材料/基底来制造光伏电池PV的方法。0031传统上,钠钙玻璃和不锈钢板被用于制造薄膜太阳能。

26、电池。问题与使用钠钙玻璃或不锈钢板作为基底的光伏电池相关联。所述钠钙玻璃基底是易碎的,其增加了基底缺陷和PV电池故障的可能性。此外,所述钠钙玻璃基底是刚性的并且不是柔性的,其将其应用限制于仅平坦的表面。此外,所述钠钙玻璃基底是电绝缘体并且是昂贵的,其大约是PV制造成本的40。此外,钠钙玻璃基底的TG(玻璃转变温度)限制了硒化温度。将用辊轧的不锈钢板作为基底的典型的PV电池与用钠钙玻璃作为基底的PV电池相比较,所述辊轧的不锈钢板基底具有比所述钠钙玻璃基底更柔性且导电的结构。然而,就所述不锈钢基底具有更粗糙的表面而言,所述辊轧的不锈钢板基底比所述钠钙玻璃基底更差。此外,被包含在所述典型的不锈钢基底。

27、中的金属能够是到CIGS半导体的金属杂质(诸如FE、NI和SE)的源,因为所包含的金属(诸如FE、NI和液体SE)能够扩散通过MO晶粒边界以使电池短路。特别地,在惰性气氛下典型的硒化温度处在500和750之间。在这样的温度下,FE和NI的扩散率变得非常迅速并且动力学支持FE扩散通过MO晶粒之间的开放的晶粒边界。同样地,在此高温下,所述MO之上的CIS(铜铟硒化物)或CIGS(铜铟镓(DI)硒化物四面体键合的半导体)层中熔化的SE扩散通过所述MO晶粒边界以腐蚀所述MO下方的不锈基底,使所述太阳能电池短路。这些缺陷典型地导致电池具有大大降低的效率并且所述基底经常被废弃。高废弃损失和伴随的低效率电池。

28、产生昂贵的太阳能电池,其不是商业上可行的。0032在下文中,根据实施例提供了使用上面制造的材料/基底制造光伏电池PV的方法。0033公开了根据一些实施例的用于制造光伏电池的方法和物质。在一些实施例中,所述光伏电池包括合成的或非合成的含碳的基底,在其中各向同性的或各向异性的中间相沥说明书CN103348069A6/8页8青、新中间相沥青或其组合被用作粘合剂、粘结材料或用于制造平面的和非平面的板的精整材料,用以制造薄膜太阳能电池。在下文中,根据一些实施例提供了具有使用此处所公开的材料的基底的光伏电池。0034图3示出了根据一些实施例的光伏电池300。在一些实施例中,所述光伏电池300包括基底302。

29、、粘合层304、MO层306、吸收器层308、缓冲层310(诸如CDS层)和TCO(透明的导电氧化物)层312。所述光伏电池300的基底302能够包括中间相/新中间相沥青构架基底。在一些实施例中,所述基底302的厚度能够是20微米到1MM或更厚。在一些其他实施例中,所述基底302的厚度能够比5MM更厚。本领域的普通技术人员理解任何厚度的基底302是可应用的。通过基于应用添加预先选择的填料,所述基底302的物理和材料性质是可调节的。用于所述基底302的刚性/柔性、导电率、热膨胀的程度和表面粗糙度全部是可调节的和可控制的。例如,能够通过在制造过程期间将导电材料、催化剂、毫微颗粒和金属氧化物(例如,。

30、填料)添加到所述粘合剂材料中来制造导电基底302。当想要绝缘基底302时,能够通过在制造过程期间将绝缘材料添加到所述粘合剂材料来制造所述绝缘基底。相似地,能够通过调节所述粘合剂材料的硬度或刚度或者要被添加的材料的类型来制造柔性的基底302。使用此处所公开的方法和材料制造的基底302能够比通过典型的方法制造的基底承受更高的硒化温度范围。由于使用此处所公开的方法和材料制造的基底302已最小化到没有不期望的金属杂质,当在高温下加热所述光伏电池时能够避免所述电池的短路。0035在一些实施例中,所述光伏电池300包括粘合层304。所述粘合层304能够是CR层并且通过溅射和其他已知的方法被涂敷在所述基底3。

31、02的顶部上。所述粘合层304的厚度能够在20NM到1000NM之间。本领域的普通技术人员理解任何厚度的粘合层304是可应用的,诸如2MM或更厚。0036在一些实施例中,所述光伏电池300包括MO层306。所述MO层306能够处在所述粘合层304的顶部上。所述MO层306能够充当后触点并且将大部分未被吸收的光反射回所述吸收器层308(诸如CIGS层)中。所述MO层306能够是通过PVD(物理气相沉积,诸如溅射和蒸发以及其他已知的方法,诸如CVD(化学气相沉积)沉积的薄膜。所述MO层306的厚度能够在100NM到2000NM之间。本领域的普通技术人员理解任何厚度的MO层306是可应用的,诸如2微。

32、米或更厚。在一些实施例中,多个MO层306能够被包括以获得预定义的MO薄膜厚度。在一些实施例中,薄层MO合金(诸如2NM到10NMMOSI层)被插入到所述MO层压制品中以修正被涂敷在所述合金层之上的MO薄膜的晶粒结构。0037在一些实施例中,所述光伏电池300包括吸收器层308,诸如CIGS层或CIG/CIS层。能够通过在所述MO层306上沉积/溅射/蒸发前体材料/层诸如CU、IN、GA或其组合随之硒化来形成所述吸收器层308。能够使用形成CIGS层的典型方法形成所述吸收器。在一些实施例中,能够在过量硒环境中诸如H2SE或SEG在500和800的温度之间持续5分钟到120分钟在惰性环境中在所述。

33、硒化步骤之前用氟化钠的薄层涂敷所述前体材料/层。0038在一些实施例中,所述光伏电池300包括缓冲层310。所述缓冲层310能够是N型CDS。能够通过典型的方法将所述缓冲层涂敷在所述吸收器层308上。在一些实施例中,所述光伏电池300包括透明的导电氧化物层TCO312。所述TCO层312能够被掺杂有AL。说明书CN103348069A7/8页9所述TCO层能够收集电子并且将电子移出所述电池同时吸收尽可能少的光。在一些实施例中,所述光伏电池300包括所述TCO层312上的电接线元件314,用于传导电子信号和电流。在一些实施例中,能够用聚合物薄膜层压所述光伏电池300以形成柔性的太阳能电池。003。

34、9图4示出了根据一些实施例的光伏电池制造方法400。所述方法400能够从步骤402开始。在步骤404处,粘合层被涂敷在基底上。能够使用上面所描述的方法制造所述基底。在一些实施例中,所述粘合层包含CR或CR板/层。在一些实施例中,所述基底是中间相粘结基底。所述中间相粘结基底能够是所述光伏电池的底电极。在一些其他实施例中,所述基底是合成的含碳基底。在其他实施例中,所述基底是非合成的含碳基底。所述基底能够是各向同性的或各向异性的中间相沥青、新中间相沥青或其组合。本领域的普通技术人员理解粘合的或在预定的条件下粘合的其他材料是可应用的。在步骤406处,MO层被涂敷在所述粘合层上,其能够将所述基底与吸收器。

35、层结合。在步骤408处,前体材料(诸如CU、IN、GA和SE(铜铟镓硒化物)被涂敷在所述MO层上。在步骤410处,硒化被执行。在所述硒化的过程中,能够在高温以气相(例如作为H2SE或元素的SE)供应SE,并且通过吸收和随后的扩散变得将所述SE并入到所述薄膜中。通过执行所述硒化,能够形成所述光伏电池的吸收器。在步骤412处,执行在所述吸收器(CIGS)层上形成CDS层。在步骤414处,TCO的层被涂敷在所述CDS层上。在步骤416处,在所述TCO上制造接线元件。所述方法400能够在步骤418停止。在下文中,提供了能够在上面描述的方法400中被用作基底的形成中间相沥青板的方法。0040图5示出了根。

36、据一些实施例的中间相沥青板制造方法500。所述方法500从步骤502开始。在步骤504处,沥青被添加。所述沥青能够是来自煤的来自阿什兰(ASHLAND)240或260(石油沥青)的可石墨化的各向同性含炭沥青。本领域的普通技术人员理解所述沥青能够来自于各种源,诸如直接来自于工业废弃物。在步骤506处,用所述沥青执行溶剂萃取和热处理。在步骤508处,中间相或新中间相材料被形成。在一些实施例中,所述中间相或新中间相材料包含多于50成分的液晶。在步骤510处,所述中间相或新中间相材料被干燥并且执行磨碎。在步骤512处,在250到300的惰性环境气氛下执行板挤压。在步骤514处,通过在250到300加热。

37、所述板来执行板稳定。在步骤516处,在600到3000的惰性环境下执行高温处理。所述方法500能够在步骤518停止。在下文中,提供了将填料材料并入所述基底材料/中间相板材料中的方法。0041图6示出了根据一些实施例的中间相沥青板制造方法600。所述方法600从步骤602开始。在步骤604处,沥青被添加。所述沥青能够是来自煤的来自阿什兰(ASHLAND)240或260(石油沥青)的可石墨化的各向同性含炭沥青。本领域的普通技术人员理解所述沥青能够来自于各种源,诸如直接来自于工业废弃物。在步骤606处,执行溶剂萃取和热处理。在步骤608处,形成中间相或新中间相材料。在一些实施例中,所述中间相或新中间。

38、相材料包含多于50成分的液晶。在步骤610处,所述中间相或新中间相材料被干燥并且执行磨碎。在步骤611处,填料材料被添加。能够基于预先选择的所述基底(产品)的物理/化学性质选择要被添加的填料。在步骤612处,在250到300的惰性环境气氛下执行板挤压。在步骤614处,通过在250到300加热所述板来执行板稳定。在步骤616处,形成低熔点和/或低分子量中间相沥青,其能够被用来层压多个板材料。所述方法600能够在步骤618停止。说明书CN103348069A8/8页100042上面所描述的所有步骤是可选择的。能够按照任何顺序执行被包括在上面的方法中的步骤的序列。附加的步骤能够被添加。0043能够在。

39、制造用于工业应用(诸如太阳能电池的基底)的各种材料中利用本申请。在操作中,具有用此处所提供的方法制造的柔性基底的光伏太阳能电池能够被弯曲成期望的形状并且应用在非平坦的表面上。0044此处所使用的术语沥青能够包括焦油、沥青烯、粘弹性的聚合物、柏油、地沥青、二硫化碳和树脂。在一些实施例中,所选择的粘合剂(诸如沥青)或所添加的材料的高粘度提供了将金属颗粒保持在所述基底中并且防止它们使所述PV电池短路的功能。在一些实施例中,使用此处所公开的方法和合成物制造的材料/基底能够被用作热绝缘装置,如测温漆,其能够被安装在或涂敷在建筑结构(诸如房屋或谷仓)的屋顶或墙壁上或者作为建筑结构(诸如房屋或谷仓)的屋顶或。

40、墙壁的一部分。在一些实施例中,所述材料/基底包括具有高导电率的导电材料,由此所述材料/基底能够被用于传导电流。在一些其他实施例中,所述材料/基底具有热和/或光的高反射率,并且所述基底和所述材料能够被用作建筑结构上的镜子。此处所描述的镜子能够反射/绝缘/隔绝热、光或其组合。在一些实施例中,所述基底/材料能够反射多于90的入射光或所选择的光的波长,诸如IR和UV。0045已经关于合并了细节的特定的实施例描述了本发明,以有助于理解本发明的构造和操作的原理。此处对特定的实施例和其细节的这样的引用不是意在限制附于此的权利要求的范围。如下对本领域技术人员而言将是显而易见的可以在被选择用于说明的实施例中进行其他各种修改,而不背离如由权利要求所限定的本发明的精神和范围。说明书CN103348069A101/7页11图1说明书附图CN103348069A112/7页12图2A说明书附图CN103348069A123/7页13图2B说明书附图CN103348069A134/7页14图3说明书附图CN103348069A145/7页15图4说明书附图CN103348069A156/7页16图5说明书附图CN103348069A167/7页17图6说明书附图CN103348069A17。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 固定建筑物 > 建筑物


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1