定位蜂窝电话和类似的发射机 的装置和方法 本发明一般涉及定位蜂窝电话和类似移动发射机的功能,尤其涉及一种方法和设备,它们使用到达信号的时间差技术,并为此目的使用移动电话和类似发射机所用的多个信道。
随着蜂窝电话,及它们的技术与使用的迅速增长,许多应用需要具有定位蜂窝电话和类似发射机的能力。这些应用场合包括“911”呼叫,旅游和交通信息,跟踪未授权的蜂窝电话地使用和非法活动,和定位商业机构和政府机关的车辆,还可举出一些例子。基本的蜂窝电话系统只能确定最近的蜂窝电话基站,这些基站可在3—10英里范围内定位蜂窝电话。
与移动电话一起使用的任何定位系统的一个目的是尽可能多地使用已有的设备或至少与已有设备相兼容。例如与不加改进的移动电话一起使用并与现有蜂窝基站相兼容。
现在已有许多技术可以跟踪或定位无线发射机,一种已知的定位发射机的方法是利用到达信号的时间差即tdoa技术,该技术已经使用了许多年,至少在LORAN和GPS等应用中使用。这种定位蜂窝电话的过程包括测量同一信号到达多个基站的时间并比较这些时间以确定信号到达的时间差从而已就确定了信号从蜂窝电话或发射机发射后传输的时间差。因为它是对发射的普通信号而操作的,所以并不要求对发射机做任何改进。tdoa技术与寻向相结合应用于蜂窝电话的应用在美国专利No.5,317,323中描述。在那里描述的系统在接收机端使用GPS定时信号以确定信号接收的时间。寻向用于减少多径干扰和同信道干扰。不幸的是,使用寻向技术要求使用方向性可控天线和天线阵列,这就与现有的全向天线结构不兼容。该专利阐述了去除多径干扰的重要性。任何移动电话定位系统的一个目的是能够区分蜂窝电话发射来的直达信号与同样的发射信号经过建筑和其它反射体反射向到达的多径反射信号。经过较长和不确定路径到达接收机的反射信号提供较低精度的信息。
相应地,本发明的一个目的是提供一种设备和方法以通过在多个蜂窝电话基站使用到达信号测量的时间差确定移动电话的位置。
本发明的另一个目的是既使在一个或多个基站接收的信号甚至无法与噪声和其它同信道干扰相区分时仍能进行位置确定。
本发明的另一个目的是在存在较强多径反射信号的情况下进行位置确定。
本发明还有一个目的是采用多个蜂窝电话信道的频率分离来进行位置确定以改善位置定位的精度。
本发明还有一个目的是使用一般用于典型蜂窝电话运作中的天线和天线结构进行位置确定。
本发明的一种形式是提供一种方法用于在一对基站确定从移动电话,蜂窝电话、或类似发射机发射的信号到达的时间差,tdoa,该方法包括步骤:在一对基站,在具有不同频率的多个信道上,同时采样蜂窝电话或类似发射机发射来的信号,在每个信道对在基站采样的相应的信号进行相关以确定每个信道间的tdoa值;对每个信道确定的tdoa值取平均;从每个确定信道的tdoa值减去平均tdoa值以确定每个信道的tdoa的相位余量;根据每个信道的tdoa的相位余量确定一对基站间的总的tdoa相位余量;平均tdoa值加上总的tdoa相位余量以确定该对基站间的总的tdoa值。
本发明的另一种形式是提供一种方法用于在第一个蜂窝电话基站收集从一个特定蜂窝电话发射来的信号以使用到达信号的时间差,tdoa,确定蜂窝电话的位置,该方法包括步骤:在宽带的蜂窝电话基站的所有信道上接收发射的信号,工作频段包括已知的反向控制信道;数字化接收的宽带频谱信号,把数字化信号作为数字数据存贮在延迟存贮器中;监视已知的对于蜂窝电话发射的反向控制信道信号,包括监视对应于定位一个蜂窝电话或呼叫一个电话号码的预定号码;通过监视反向控制信道识别出预定号码;并存贮延迟存贮器中的数据以响应识别出的预定号码,包括载有识别预定号码数据的接收信号部分。
本发明的另一种形式是提供一种装置用于在第一个蜂窝电话基站收集从一个特定蜂窝电话发射来的信号以使用到达信号的时间差,tdoa,确定蜂窝电话的位置,该装置包括:用于在宽带蜂窝电话基站的所有信道上接收发射信号的装置,工作频谱包括已知的反向控制信道;用于数字化接收的宽带频谱信号的装置;用于把数字化的信号作为数字化数据存贮在延迟存贮器中的装置;用于监视已知的用于蜂窝电话传输的反向控制信道信号的装置,所述传输包括要定位的蜂窝电话或被叫号码的预定号码;用于通过监视反向控制信道识别出预定号码的装置;和用于存贮在延迟存贮器中的数据以响应预定号码的识别的装置,该号码包括载有预定号码的识别数据的接收信号部分。
本发明结合附图示意性地描述,其中:
图1是按照本发明的一种实施方式构造的设备的系统方框图;
图2是图1部分的一个实施方式的方框图;
图3是图1部分的第二个实施方式的方框图;
图4是tdoa确定过程的一些结果的信号图;
图5是tdoa过程的附加结果的框图;和
图6是tdoa过程的附加结果的另一个信号图。
图1显示了采用现有蜂窝电话基站和天线的蜂窝电话定位系统10的一个实施方式。系统10一般包括多个现有蜂窝基站12—14,并加上本发明的装置。基站12—14使用的发射和接收天线16在形式和功能上与现有的天线相同。每个基站加上一个附加的GPS(全球定位系统)天线18,它可以接收现有的用于定位功能的民用GPS发射的定时信号。每个基站也包括执行以下描述的定位功能的设备。所示的通信线路19将至少两个远端基站12,13连接到中心基站14。中心基站14包括远端基站12,13的toda结构的CPU20中没有配置的设备,用于处理从所有基站12—14接收的信号。Tdoa CPU20可以位于任一基站中或位于与这样的基站相分离的位置。这种分离位置可以包括基站和tdoa CPU20之间的所有通信线路19的直接互连。一个处在基站12—14范围内的蜂窝电话21也由本实施方式的设备定位。具有tdoa CPU20的基站14,被显示为通过计算机22,如一个便携式计算机,使用一条通信链路,如蜂窝电话调制解调器24,来获得定位信息和对一个蜂窝电话(如21)的定位操作性能。
图2显示了建立在图1中远端基站12—14之一的系统方框图。所示的系统30通常包括一个接收机部分32,一个处理部分34和一个控制和通信部分36。接收机部分32连接到已有的蜂窝电话天线16和GPS天线18,从已有蜂窝电话天线16接收的信号通过一个滤波器和低噪声放大器40送至下变频器42和接收机44用于蜂窝电话系统的反向控制信道。变频器42输出从接收的整个蜂窝电话频带上输出的信号。接收机44的模拟输出通过一个用于提供数字格式的TTL转换器45馈入控制部分36。
下变频器42也以每秒一个脉冲和每秒一千个脉冲从连接到GPS天线18的GPS接收机接收解调的GPS定时信号或时间标记。下变频器42包括一个计数器(没有显示),它以千脉冲信号(thekilopulse)计时并由每秒一个脉冲信号复位,这样就产生了用于与接收的蜂窝电话信号相关联的时间标记。这样在所有本地基站都相同的GPS时间标记被用来测量在反向控制信道和反向话音信道上由天线16接收的信号到达的时间。从下变频器42接收的蜂窝电话信号和线路49上的时间标记信号通过模拟到数字,A/D,转换器48,同步地送到处理部分34。另外,A/D转换器根据GPS信号触发,使得时间标记与A/D转换器48进行采样的时间点准确对应。
处理部分的一般包括一个延迟存贮器50,一个滤波器/十取一装置52,一个FIFO缓冲器54和一个时间标记解码器56。存贮器50从接收的蜂窝电话带宽中接收数字化信号及相应的时间标记数据。缓冲器54和解码器56将数据输出到控制部分36的控制CUP60并从中接收告警或触发信号。滤波器/十取一装置52从CPU60接收调谐信号。延迟存贮器50的目的是当控制CPU60确定是否应记录蜂窝电话带宽数据和它相应的时间标记时,存贮来自蜂窝电话带宽的数据。因为延迟存贮器50暂时存贮蜂窝频段中所有的数据,它必须以相当高的频率如25MHz工作以复盖蜂窝电话10MHz的带宽。滤波器/十取一装置52的目的是数字调谐到一个信道,30KHz,并滤掉从延迟存贮器50输入的蜂窝电话频谱的剩余量。因为随后记录在FIFO缓冲器54的数据仅对应于一个信道带宽,所以可以比延迟存贮器50低的速率,即100KHz,工作。控制部分36包括控制CPU60和一个通信CPU62,通信CPU与控制CPU相互通信并使用通过通信线路19的以太网连接64和定位系统10的其它部分通信。通信CPU62也连到各种蜂窝电话接收机66以仅仅监视前向控制和话音信道并记录从基站发向各个蜂窝电话的话音信道分配。在另外一种实现中,通过蜂窝电话系统的直接计算机链路可硬线连接或报告话音信道分配数据,这样就不需要接收机66。
工作时,通信CPU62通过以太网64接收数据来监视要定位的一个特定的预定电话号码。到特定电话号码的蜂窝电话呼叫也可被定义和监控。通信CPU62把这个信息传送给监视接收机44的反向控制信道信号的控制CPU60。控制CPU60也向滤波器/十取一装置52发送调谐信号以使输出的数据就是反向控制信道的内容。当蜂窝电话发出一个呼叫时,它通过反向控制信道传送它自己的号码和被叫的号码。同样地,当呼叫一个蜂窝电话时,它的号码在前向控制信道上发送并使用其电话号码在反向控制信道上予以响应。
当控制CPU60使蜂窝电话发送的号码与要定位的预定号码或被叫特定号码,如“911”匹配时,控制CPU60就产生一个用于FIFO缓冲器54和时间标记解码器56的告警或触发信号。这个触发信号使缓冲器54开始收集数据,使解码器56识别对应于存贮数据开始的特定时间标记。触发信号同时被送到所有周围的基站以使同时地收集接收的信号。周围的基站将收集数据,即使是它们接收到的反向控制信道信号不是很强不能识别预定蜂窝电话号码或被叫号码。
本发明中接收到反向控制信道信号和控制CPU60解码这个信号,产生一个触发信号间的延时大约为20ms或更少。这对应于存贮在延迟存贮器50中的数据量,因此即使在被监视的号码已解码后,存贮器中的数据也可在缓冲区54中被捕获。响应触发信号,缓冲器54收集82毫秒的数据,这些数据作为一个块或分组与来自解码器56的相应的解码的初始时间标记一起送到控制CPU62。
一旦被监视的电话或被叫号码从接收机44的反向控制信道中被识别出来,通信CPU62和接收器66进一步监视前向控制信道以确定基站发来的话音信道分配信息。这些分配信息传送给控制CPU60。在缓冲器54中收集了82毫秒反向控制信道数据之后,控制CPU60重新把滤波器/十取一装置52调谐到分配的反向话音信道上并重新触发缓冲器54和时间标记解码器56以从分配的反向话音信道收集又一个82毫秒的数据。同样这些数据和它的初始的时间标记一起传送给控制CPU60和定位系统用于处理。
在从反向话音信道收集数据的过程中和收集数据之后,接收机66和通信CPU62也监视前向话音信道以进一步检测话音信道分配。当检测到这种分配时,通知控制CPU60和周围的基站改变数据收集信道。这种随后的反向话音信道切换保证了在每个收集期间收集到足够的数据,也提供附加数据以改善tdoa CPU20执行的定位功能的精度。
这种用其相应时间标记记录反向控制和语音信道数据的处理过程与每个基站接收蜂窝电话发射信号同时进行。这可以通过响应在每个基站对反向控制信道信号的识别来进行或响应从一个或多个基站产生并通过通信CPU60和以太网连线64传送给周围基站的触发信号来进行。后一种触发的方法就不需要每个基站接收足够强的信号以识别出预定号码或被叫号码。在每个基站记录的82毫秒的记录数据提供了在三组记录数据间确定可比较的到达时间的足够的标识。之后记录的数据传送给tdoa PCU20,在那里经过计算确定到达基站12—14的相对传输时间并把这个数据送到变换软件。这些tdoa计算在以下详细地描述。
图3显示了图2基站系统30的另一个系统实施方式70。在图3中与图2中标号相同的部件形式和功能是一致的。该系统一般包括一个接收机部分72,处理部分74和控制与通信部分76。接收机部分72与图2的不同之处在于它包括一个双下变频器78和一对A/D转换器80,81。目的是用仅以30MHz工作的现有的A/D转换器80,81覆盖整个25MHz的蜂窝电话频谱。这是通过双下变频器78把蜂窝电话频谱分成一对12.5MHz的基带信号并通过一个30MHz的A/D80,81馈送每个基带信号以提供足够的采样来实现的。为了控制A/D转换器80,81和时间标记的产生,一个来自GPS接收机46的10MHz信号由下变频器转换为30MHz的时钟信号送给在处理器部分74中的转换器80,81和时间标记发生器82。
处理器部分74还包括一个延迟存贮器84,一个滤波器/十取一装置54,FIFO缓冲器84和一个FM解调器86,控制和通信部分76包括一个执行图2中两个CPU功能的一个CPU88。在处理器部分74和控制和通信部分76间传送的信号类型与图2中是一样的。
工作时,宽带蜂窝电话频带的所有信道在接收机部分72被接收,下变频和数字化,并作为一对基带信号90,91,和与数字化处理过程同步的时钟和时间标记信号一起传送到处理器部分74。处理器部分74根据监视的反向控制信道的频谱位置,在CPU88的控制下,接收数字化数据信号90,91中的一个。接收的信号90,91直接送到延时存贮器82中并通过延时存贮器82的分路92送到滤波器/十取一装置54中。初始时设置滤波器/十取一装置54以分离反向控制信道并把数据送到FM解调器86,解调器86可以把数据与载波信号相分离以便CPU88可以监视这些数据,这些数据通过缓冲器84的一小部分并送到CPU88用于监测。
当CPU88在解调的反向控制信道上检测到来自预定蜂窝电话,或预定被叫号码的响应时,它产生一个将滤波器/十取一装置54的输入从分路92转换到延迟存贮器82的触发信号。延迟存贮器82保持足够的数据以便在同样的数据出现在延迟存贮器82中时CPU88可以检测到预定的号码。触发信号也使时间标记信号送至CPU88以标记收集数据的开始并使得滤波器/十取一装置的数据输出被存贮在FIFO缓冲器84中。一旦在缓冲器中已收集到一定量的数据(一般320毫秒),它就被送到CPU88。接着CPU88把滤波器/十取一装置重新调谐到分配给蜂窝电话并从接收机66中检测到的反向话音信道上,同时触发另一个时间标记。这使数据从反向话音信道收集到缓冲器84中。在随后的反向话音信道分配中也进行类似的数据收集。数据一旦被收集并送给CPU88,就与相应的时间标记一起送给tdoa CPU20用于tdoa计算。
按照本发明工作的方法和设备的坚强之于在于,仅需一个监视反向控制信道的基站清楚地接收识别预定蜂窝电话或被叫电话。因为可以简单地触发所有周围的基站根据一个或多个识别的控制和话音信道记录和传送数据,甚至一些基站接收到对于识别而言是很弱的信号也可用于tdoa测量。远端触发可以通过在每个基站的延迟存贮器中接收和存贮的数据的宽带宽特性较容易地实现。
分析每个基站的信号数据的目的是计算至少三个基站中的至少二对间的tdoa。这个tdoa数据接着被转换相对距离数据,发射机的位置可以结合地图软件从已知基站的位置中计算出。为了标识和注释,基站标示为a,b,c,蜂窝电话频带上的不同频率的蜂窝电话发射信道标示为X,Y,Z。
用于tdoa计算的信号数据S(t)以数字化信号分组的形式送来,每个分组S,对应于在一个基站a,b,c接收的一个发射信道X,Y,Z,用Sax,Say,Saz,Sbx……表示。每个分组也包括一个时间标记,对应于分组中的第一个样本值,采样频率或样本值的时间间隔是已知的。在每个基站采样两个或多个信道的传输,每个信道传输在三个或更多个基站被采样。
tdoa确定过程的第一步是通过执行FFT把每个数据分组变换到频域以产生S(f),如Sax,Say,Saz,Sbx,Sby,Sbz……。
任意两个基站间的总的tdoa,rab,通过首先确定每个单独发射信道的tdoa函数,Rabx,Raby,Rabz来决定。在频域中,这可通过将基站在发射信道中接收的信号数据Sax与在另一基站接收的同一信道数据的复共轭Sbx*相乘来实现,即
Rabx=Sax×Sbx*
对在每个基站a,b间的每个发射信道X,Y,Z执行同样的相关计算。
这些径计算的ydoa函数通过FFT逆变换转换回时域中,并在两个相关信号的tdoa处出现一个幅值尖峰,正如图4所示。精确的峰值位置一般不是与FFT逆变换产生的一个点对准的,所以要使用相邻点执行二次内插来更精确的确定每个发射信道的峰值振幅和时间延迟,或tdoa。
由于不同的频率间的相差,图4中画出的tdoa信号是在每对基站的发射信道间变化的。但是,在没有多径信号接收时,时域的tdoa振幅是基本相同的。这样,发射信道间tdoa振幅的变化就指示出了多径问题。
两个基站间测量的对所有发射信道的内插时间延迟或tdoa值被平均以确定Avg.rab。
通过使用由于每个信道相位引起的乘法因子,从相关的频率域的tdoa函数中减去平均tdoa以确定剩余相位tdoa,Ph.Rabx。
Ph.Rabx=Rabx×ejzpift,其中t=Avg.rab,
f是相应信道X的中心频率。
剩余tdoa函数的每个频率段的最终相位矢量,Ph.Rabx,Ph,Rabx……,相加起来以确定每个发射信道X,Y,Z的剩余相位tdoa,Ph.Rabx。
两上基站间的所有发射信道的剩余相位tdoa的振幅,随他们各自的发射信道频率变化的曲线如图5所示,并且该曲线的角度确定两个基站间的总剩余tdoa,Ph.rab,这个剩余相位tdoa加上对于各自基站对的平均tdoa,Avg.rab,以确定这些基站间的总的tdoa,rab。
如果图5画出的相位tdoa随频率变化的曲线不是线性的或如果图4中的一对基站间的tdoa函数的蜂值在时间域中是不同的,就表明多径或多个信号被接收。在这种情况下,每个频道的剩余相位tdoa值,如图5所示,与他们各自的从图4 Rabx……得到的内插振幅值组合在一起并在频率域中标注。所有非采样频率被置成零振幅和零相位。所得到的频域数据通过FFT逆变换变换回时域,最后得到的时域数据将显示多个信号的接收,如图7所示。即使后到达的信号96可能更强,也用以前的信号94作为总的剩余相位延迟,Ph.rabx。由于最少三个传输信道不均匀间隔地分布在蜂窝电话频段,则可以容易地确定早到达的信号。所接收的各种多径信号的分辨率也可通过在进行FFT逆变换之前在频域中填零来增强。
以上描述的实施方式是示意性的并且不局限于此,本领域的技术人员在不脱离附加权利要求定义的本发明的范围的前提下可对以上的实施方式进行修改和改进。例如,本发明也可应用于定位蜂窝电话之外的类似发射机和使用不同发射格式的发射机。这些设备包括个人通信系统的发射机,或PCS,和码分分组数据,或CDPD。