本发明涉及新型半导体组件及采用这种组件的计算机。 近年来,由于对装有半导体器件的计算机的高速化、小型化的要求,半导体器件年年向高集成化、大型化发展。与此同时,半导体器件与外部的电连接引线电极数也在增多。对应于这样的多引线化情况,在半导体器件的一个主面上,许多电极有规则地排列着,以所谓的CCB(Controlled collapse bonding)方式,使半导体器件上的电极和装载半导体器件用的组件基板上的电极实现电气连接。在这种CCB方式的情况下,装载半导体器件的组件基板的散热问题,如日本昭和(JP-A)62-249429号专利所述,通过将半导体器件没有电极的表面与管帽基板用铅锡合金焊料等热传导性材料相连接的方法而加以解决,但一点而没有注意基板中的布线问题。一般的多层基板内部,由信号传送用导电层、电源供电用导电层和接地用导电层等多数系统的导电层构成。在以往的组件结构中,在基板内,与信号传送用导电层相同,供电用和接地用导电层用截面形状大致均匀的细导线相互交错地进行布线。并与外部连接用端子相连接。此外,为了抑制信号切换时地瞬间电流引起的电压波动,通常在要求高速工作的计算机中装载组件的印制电路板上装有电容器,此电容器连接在组件的附近。如日本昭和(JP-A)62-169461号专利就采用使电容器成为组件的一部分的结构。
进而,在高密度、高集成度器件中代替现在主要采用的DIP(双列直插式封装)型组件,作为适合于多引线连接的结构,往往采用在组件基板的四个端面上将外部连接用引线配置成一列的扁平型封装。或采用外部连接用引线端子在组件基板的一面上平面配置的PGC型封装组件。
例如,扁平型封装组件,如“FACOMM-780的部件和封装技术”(富士通.37.2.pp.116~123(1986)中所示,已出现了200引线级的组件。
另一方面,在高速性方面,至今虽然没有特别成为问题,但在以往的组件中还是不能满足所要求的性能。流过组件的电流大体上可分为两类,所要求的特性也不相同。第1为信号电流,要求尽可能快地上升和下降。若将此要求转换为对传送路径的要求,则要尽量减小电感成分和电容成分。在组件中流动的另一类电流为电源电流。在电源中,当负载变动时,要求电压变动尽可能小。因此,在电源电流的传送路径中,要使电感成分较小,而希望使电容成分较大。在以往的组件中,由于不能确保充分的电容成分,所以在组件中不求电压的稳定功能,而专心寻求降低电感成分的手段。实现的手段是使电源电流的传送路径短于信号电流的传送路径,即,将电源引线设在距半导体器件较近的位置上(换言之,四个端面的中央附近)。然而,采用这种方法虽然可降低电源线的电感成分,但存在着同时也会减少电容成分的问题。并且,带来信号线的电感成分和电容成分相对地变大的弊病。
在以往的组件中,还没有能同时满足上述电源线和信号线中不同要求的结构。
当将电容器外加在组件附近时,由于从半导体器件到电容器的布线长度变长,所以不能充分地抑制电源电压的波动。于是,由于供电用和接地用导电层的布线较细,当外部的电源电压波动时,可较轻微地成为误动作的一个原因。此外,随着信号传送用导电层在组件基板内扩大到外周部分。用于组件外部连接的接线端子的位置就与供电用和接地用端子的位置混在一起了。因此,在介电常数较高的陶瓷基板内的布线长度较长,使得信号传输延迟时间变大。此外,如日本昭和(JP-A)62-169461号专利所示的将电容器做成组件一部分的结构中,由于是在半导体器件产生的热散出的侧面上形成电容器,所以组件内的热阻增大,近年来,越来越高集成化、大型化,当装载发热量日益增加的半导体器件时,散热就不充分了。
本发明的目的在于提供用于具有高速信号传送特性、可靠性高的半导体器件的组件封装技术。
本发明涉及一种半导体组件,它具有装载半导体器件的绝缘基板、将半导体器件与外部空气隔绝密封起来的绝缘管帽,并备有将电源供给半导体器件的电源线和将半导体器件的信号传至外部的信号线,其特征为布线方式可使信号线不受基板介电常数的影响。
并且,在本发明中,电源线在绝缘基板内由平行于半导体器件安装面的导电层所形成,而信号线在绝缘基板内没有平行的导电层,或者电源线经过绝缘基板的内部与外部引线连接,而信号线既不经过绝缘基板的内部也不经过绝缘管帽的内部即与外部引线连接。
此外,绝缘基板内的导电层与半导体器件在绝缘基板的半导体器件安装面上用细金属线进行电连接,导电层和半导体组件的外部引线在绝缘基板的侧面上进行电连接,信号线的布线是将半导体器件和外部引线用细金属线连接起来而形成。细金属线可采用Au、Ag、Al或Cu,或者以这些金属为主的合金。其直径约为20~60μm。
绝缘基板和管帽由陶瓷烧结体构成,要求其特性为近似于硅的热膨胀系数,室温下的热传导率为100W/m°K以上。1MHz的介电常数为8.8以上。此外,基板和管帽的热膨胀系数应相近似。在这种烧结体中,主要成分为碳化硅、氮化铝、富铝红柱石系的烧结体较好。并且,也可以采用聚酰亚胺玻璃、环氧玻璃。
此外,还应做到,用玻璃将绝缘基板和绝缘管帽封接起来,从而可与外部空气隔绝密封,半导体组件的外部连接用端子为多个金属管脚。这些金属管脚的末端位于半导体组件的电绝缘性管帽一侧,将金属管脚置于半导体组件的外周部,分为电源线和信号线各自一列。信号线用外部引线的金属管脚的末端不经过电绝缘性基板和管帽构件的内部而与电连接路径相接。该末端与印制电路板上的导电片表面接触并用钎焊方法与印制电路板进行电连接,经过电绝缘性基板构件内部的导电层与电连接路径连接的上述电源线用外部引线的金属管脚的末端。与印制电路板上的导电片表面接触,并加以钎焊,或者插入在印制电路板上所形成的贯通孔内与印制电路板进行电连接,与信号线用金属管脚相比较,电源线用金属管脚较粗,并且管脚的间隔也较大,具有在机械上支撑该半导体组件的功能。
本发明所涉及的装载半导体器件的电绝缘性基板。与电绝缘性管帽一起构成作为气密容器的半导体组件,该电绝缘性基板的特征是,内部具有多个相互绝缘的导电层,这些导电层具有平面状的扩展部分,基板上设有与任意某一个导电层电连接。而不与其他导电层接触,并且与该电气连接导电层直交但不贯通该导电层的线状导电通路。
基板由室温的热传导率为100W/m°K以上、热膨胀系数近似于硅的陶瓷构成,高熔点金属构成的导电层是与陶瓷同时烧结形成的,基板以碳化硅、氮化铝、富铝红柱石等的烧结体较好。
本发明涉及的半导体组件中的半导体器件,具有将电绝缘性基板和组件内部与外部空气隔绝密封的电绝缘性管帽,在外周部分具有与外部布线连接的金属管脚,而此外部布线与经过电绝缘性基板内部的电源线和不经过电绝缘性基板和电绝缘性管帽内部的信号线这2个系统的电连接路径相连接,其特征为电源线和信号线连接用接合片在半导体器件外周部至少分开配置成2列,并将电源用接合片设置在最外周部分。
上述本发明的半导体组件可用于具有散热器、在散热器上通过连接器安装有多层印制电路板、在电路板上安装有逻辑用半导体组件和主存用半导体组件的计算机。
并且,在本发明的上述半导体组件中,信号线垂直地布置在基板内因而不受基板的介电常数的影响,电源线通过基板内所形成的平行于半导体器件装载面的导电层而与外部引线连接,或者电源线通过基板内所形成的导电层与外部引线连接。同时导电层长于基板的厚度并且具有足够的长度以使得外部电压的波动不会导致误动作,信号线由基板内与基板厚度相同长度的导电通路形成,电源线和信号线用外部端子在基板的半导体器件装载面的对侧里面形成。
特别是,基板上所形成的电源线用端子配置在信号线用端子的外侧。
与半导体组件基板上所形成的外部连接用端子通过焊料凸起与半导体器件电源线用或接地用电极部分及信号线用电极部分相连接,这些电极交互地配置多列。
将半导体器件上装有电极的表面的反面与电绝缘性管帽用热传导性材料相接合。
在电绝缘性基板上的半导体器件装载面上设置薄膜布线层,特别是,该布线层是由树脂层所形成的组合体。
在本发明的上述半导体组件中,其特征为:信号线在基板内垂直地布线以使受基板介电常数的影响为最小,电源线通过基板内所形成的平行于半导体器件装载面的导电层与外部引线连接,信号线及电源线和半导体器件的电极部分用细金属线连接起来。
在装载半导体器件的半导体组件中,由组件内部到组件外部的电气通路至少有2个系统以上,其中至少有1个系统为该半导体器件的电源系统,它经由装载该半导体器件的电绝缘性基板内部,而且在电绝缘性基板内的布线方向具有平行于该电绝缘性基板的成分,同时其余的系统为该半导体器件的信号系统。为了使信号线不受该电绝缘性基板的介电常数的影响,特别要做到使信号线没有平行于该电绝缘性基板的成分而垂直于基板地设置布线,从而在利用陶瓷等介电常数较大的材料作基板时,由于将通过基板的信号传输路径抑制在最小限度内,所以传输时间的延迟可以限制在最小限度内。
也就是说,作为信号电流用,在设置传输路径时应尽量使电感成分和电容成分较小并且不受基板的介电常数的影响,同时作为电源电流用,在设置传输路径时一方面要使电感成分变小,另一方面要使电容成分变大,并且要最大限度地利用基板介电常数的效果,从而可显著地缩短信号传输延迟时间和减轻随电压波动产生的误动作。
作为电绝缘性基板,由于采用1MHz的介电常数为8.8以上的材料,所以可特别增大上述的效果。并且以1MHz的介质损耗在5×10-4以上的材料为好。
如上所述,同时实现电感成分和电容成分都较小的导电通路和电感成分较小而电容成分较大的导电通路可以得到下述的效果。也就是说,由于对基板布置信号线时不受电感成分和电容成分的影响,所以信号的延迟时间可以抑制在最小限度。此外,由于电感成分较小,而且由于对基板布置电源线时受基板内的电容成分的影响,所以可将由于信号开关引起的电源电压波动抑制在最小限度。并且,作为相乘效果,即使同时驱动多个运算部件也可以将电源电压的波动抑制在最小限度,同时可以提高并行驱动的综合运算速度。
附图的简单说明如下。
图1为表示本发明第1实施例的半导体组件的截面图。
图2为表示本发明第2实施例的半导体组件的截面图。
图3为图2半导体组件的金属管脚平面图。
图4和图5为说明图2半导体组件用的截面图。
图6为表示图2半导体组件的热阻与风速的关系的曲线图。
图7为表示用于信号布线和电源布线的器件侧的接合片的平面图。
图8为表示本发明第3实施例的半导体组件的截面图。
图9为图8半导体组件基板的A部分放大图。
图10表示本发明半导体组件的第4实施例。
图11(a)和(b)为表示本发明第5实施例的半导体组件的截面图和表示布线路径的简图。
图12为表示图11(a)半导体器件的电极形成图形的平面图。
图13为表示本发明第6实施例的半导体组件的截面图。
图14为表示本发明第7实施例的半导体组件的截面图。
图15为表示本发明第8实施例的半导体组件的截面图。
图16表示将图13的本发明半导体组件装入计算机内时的第9实施例。
实施例的说明如下。
〔实施例1〕
图1为表示本发明第1实施例的半导体组件的截面图,1为半导体器件,2为绝缘基板,3为绝缘管帽,4为信号线用金属管脚,5为电源线用金属管脚,6为信号线用导线,7为电源线用导线,8为密封用绝缘材料,9为导电通路。图中的例子表示扁平封装型组件。信号用电流由半导体器件1通过信号线用导线6传送到信号线用金属管脚4,并送至组件外部。该路径的自感应成分大致由信号线用导线6和信号线用金属管脚4的长度和截面积来决定。也就是说,布线路径的尺寸、形状是决定因素。与此相对应,对于电容成分,布线本身的尺寸、形状也是重要因素,此外,由于至对方电极(如电源布线)的距离,布线途中绝缘物的介电常数也会有较大的变化。在图示的情况下,布线路径的周围大部分是空气,只有一部分包围在密封用绝缘材料8的周围,因此,电容成分较小。
其次,对电源用电流的路径进行说明。电源用电流由半导体器件1通过电源线用导线7引入导电通路9,并进入绝缘基板2的内部。接着传导至绝缘基板2端部的电源线用金属管脚5,并输出到组件外部。该路径的自感应成分由电源线用导线7、导电通路9和电源用金属管脚4的长度与截面积来决定。也就是说,与信号用电流的路径相同,由布线路径的尺寸、形状来决定。与此相对应,导电路通9的周围被介质包围着,由于电位不同的两个路径以较近的距离相对地设置,因此,电容成分会变大。
如上所述,作为信号电流用,设置传送路径时要尽量地不受电感成分和电容成分的影响,同时作为电源电流用,设置传送路径时,一方面要使电感成分变小,一方面要使电容成分变大。
采用本实施例,由于信号线与陶瓷基板的接触部分非常小,所以可以将信号传输延迟时间缩短30%。
〔实施例2〕
参照图2和图3~图7对本发明第2实施例进行说明。边长为15mm的半导体器件1位于AlN基板10(由氮化铝烧结体构成的绝缘基板)的大致中央部分,将其背面用芯片接合部件20固定在基板上。这里与已经说明的图1不同,AlN基片10位于组件整体的上部。这种配置有利于提高散热性,将这样的配置称为空腔朝下配置。与此相对应,图1的配置称为空腔朝上配置,其散热性不如空腔朝下配置,但这种结构易于制造,成本较低。AlN基板10为边长30mm的正方形,其厚度为1mm。在AlN基板10的内部,具有两层钨制的平面状导电层15。平面间的距离约为0.1mm。在AlN基板10的端面上,通过科瓦铁镍钴合金管脚接合部分21连接着200根电源用科瓦铁镍钴合金管脚14(截面尺寸:250μm宽×250μm厚)。在AlN基板10的对面位置上,设置边长30mm、厚1mm的AlN管帽11,通过密封用钎焊部分22,连接着AlN环12。AlN环12通过密封用玻璃17与400根信号线用科瓦铁镍钴合金管脚13(断面尺寸:125μm宽×100μm厚)、AlN基板10相连接。
对电流的路径进行说明。首先,信号用电流由半导体器件1经过器件侧接合片23通过信号线用导线6,再经过管脚侧接合片19传送到信号线用科瓦铁镍钴合金管脚13,并向组件外部输出。该路径的电感成分即自感应由信号线用导线6和信号线用科瓦铁镍钴合金管脚13的长度和截面积来决定。实测的结果,最长路径的电感为8nH。其次,测定了电容成分即电容。如上所述,电容不仅随着布线本身的尺寸、形状变化,而且随着至对电极(如电源布线)的距离、布线途中绝缘物的介电常数也会有较大的变化。在本结构中,在布线路径的周围大部分是空气,只不过是一部分被密封用玻璃17所包围,因此,电容较小,最长路径的电容为0.9pF。其次,电源用电流从半导体器件1经过器件侧接合片23通过电源线用导线7,经过基板侧接合片18输入AlN基板10的内部。在AlN基板的内部,设有烧结时与AlN同时烧结形成的钨导电通路。电流首先流过与基板侧接合片18相连并垂直穿入基板的线状导电通路16。线状导电通路16与基板内配置的两个面状导电层15之中的一个相连接。面状导电层15的末端延伸到AlN基板10的端面,因此,电源用电流沿着该路径可达到AlN基板10的端面。在端面上,为了与面状导电层15连接,形成科瓦铁镍钴合金管脚结合部21,由于结合部21与电源线用科瓦铁镍钴合金管脚14连接着,所以电源用电流可达到电源线用科瓦铁镍钴合金管脚14。对该路径的自感应进行说明。由于在AlN基板10的内部形成有面状导电层15,所以电感通过该层时的增加量是非常少的,实际上可以忽略不计。此外,由于线状导电通路16与面状导电层15是垂直连接的,因此,这种连接也不会引起自感应的增加。其结果,有效布线长比信号电流路径短,即使最长的路径,其自感应也只有4nH,实现了非常小的值。此外,如上所述,电容随着布线周围的状况而有很大的变化。在本实施例中,采用介电常数较大(约10)的AlN,而且相隔0.1mm相对放置保持着电源电压的导电面,因此,可以得到较大的电容(约300pF)。
这里所使用的材料,选择其热膨胀系数接近于构成半导体器件1的硅的材料,可提高其可靠性。也就是说,硅的热膨胀系数约为2×10-6/℃,AlN约为4×10-6/℃,科瓦铁镍钴合金(含重量比为镍29%、含钴17%的合金)约为4.5×10-6/℃,玻璃(重量比为氧化锌15%、氧化硼55%、氧化铅10%、氧化硅16%、其他为氧化铝和氟化锌)约为5×10-6/℃,这些值都接近于硅。特别是由于热膨胀系数差产生的影响在较大的构件中较为显著,因此,AlN基板10和AlN管帽11选用相同的材料。
作为密封绝缘材料,采用可靠性最好的玻璃。如下所述,由于工艺上的原因,不能象图1绝缘管帽3那样将AlN管帽制成整体的,而是制成与AlN环的复合体。AlN基板的1MHz的介电常数为8.8~10。0,Sic中含Be的基板的介电常数约为42。
此外,1MHz的室温介质损耗,AlN烧结体为5~20,掺Be的SiC烧结体为500,这些材料用作本发明的基板都是有效的。
对本实施例的制造工艺进行说明。
①将AlN的生片层迭起来,在1800℃~1900℃中烧结,制作AlN基板10。在制作生片时,在穿过板厚度方向的布线,即线状导电通路16相应的部位上开设贯通孔,并用钨膏填充于内部。此外,在各板上按照面状导电层15的圆形印刷钨膏。
②在AlN基板10的端面的钨图形上,即在科瓦铁镍钴合金管脚接合部的钨211和AlN基板10表面所表示的钨图形上,也就是芯片接合部的钨层201和基板侧接合片的钨层181上,用电解电镀方法覆上镍。其结果,分别形成科瓦铁镍钴合金管脚接合部的镍层212、芯片接合部的镍层202和基片侧接合片的镍层182。
③电源线用科瓦铁镍钴合金管脚14和信号线用科瓦铁镍钴合金管脚13,由1个科瓦铁镍钴合金片用化学腐蚀方法形成。图3示出信号线用科瓦铁镍钴合金管脚13的腐蚀后形状。将信号线用科瓦铁镍钴合金管脚13的端部用框架35相互连接在一起,从而可改善以后的操作性。
④使用银焊料〔共晶焊料(含铜28%的银)〕,将AlN基板10和电源线用科瓦铁镍钴合金管脚14接合起来。以830℃为最高温度,在氮气气氛中进行接合。其结果,完成图中所示的科瓦铁镍钴合金管脚接合部21。
⑤外周的尺寸与AlN基板10相同,为边长30mm的正方形,宽度为2mm、厚度为0.5mm的AlN环12用烧结法制作,在其一面上涂覆以钼和锰为主要成分的涂膏。以约900℃为最高温度进行加热处理,使之与AlN接合,并形成密封用钎焊部分的钼-锰层221。在钼-锰层221的表面上进行电镀镍,以形成镍层222。
⑥将如上完成的AlN环12、信号线用科瓦铁镍钴合金管脚13和AlN基板10用密封用玻璃17接合起来。为了确保可靠性,作为玻璃,要求其热膨胀系数接近于其他的构成材料。所用的玻璃(重量比为氧化锌15%、氧化硼55%、氧化铅10%、氧化硅16%、其他为氧化铝和氟化锌),其热膨胀系数约为5×10-6/℃,硅的热膨胀系数约为3×10-6/℃,AlN的约为4×10-6/℃,科瓦铁镍钴合金的约为4.5×10-6/℃,都很接近。并且,一般的玻璃必须在氧气气氛中进行接合,但由于AlN基板10或AlN环12表面的镍容易氧化,从而使钎焊性变坏,所以特别选择能在氮中接合的材料。此外,作业温度也必须是不会使已接合的银焊料再熔化的温度。上述的玻璃可以全部满足以上的要求,接合在最高温度约为600℃的氮气气氛中进行。此外,共晶焊料的熔点为779℃。
⑦其次,为了将芯片接合部20、基板侧接合片18和引脚侧接合片19的表面覆上金,用电镀法进行覆金。
⑧将AlN基板10在约400℃中加热,将硅半导体器件1压贴在芯片接合部20的表面金层上(图中未示出),一边喷射氮气一边进行摩擦。使硅-金熔合一起形成金-硅共晶层203,接合工序结束。
⑨使用直径20μm的细铝线,用超声波焊接法进行引线焊接。
⑩准备一片边长30mm、片厚1mm的AlN烧结板。在其一面的周边2mm宽度处,进行与AlN环12相同的钼-锰金属化,形成密封用钎焊部分的钼-锰层225。在钼-锰层225的表面上电镀镍,形成镍层224。为了改善钎焊性,在镍层224的表面上用电镀法进行覆金(图中未示出)。
(11)将厚度100μm的金-锡共晶焊料(含20%重量比锡的金)的箔夹入AlN环12和AlN管帽11之间,在约300℃的氮气气氛中加热以形成密封用钎焊部22。此时,镍层222和镍层224表面的金与金-锡焊料熔合,如图1所示,完成金-锡焊料的接合。
(12)将固定信号线用科瓦铁镍钴合金管脚13周边的框架35在切断部36处切开来,根据需要将信号线用科瓦铁镍钴合金管脚13折弯。对于电源线用科瓦铁镍钴合金管脚14进行同样的操作。
按以上的步骤完成本实施例的半导体组件。
运算速度较高的半导体器件的发热量较多。因此,在以高速传送为目的的组件中,热阻要小是必需的条件。图4为说明热阻的组件截面图。半导体器件37不是全部发热,而是在非常狭窄区域发热。例如,在双极型器件中,主要是在反向偏置的Pn结部分(电流从n向P流动的部分)发热。这样,将集中发热的部分称为结38。彼处的温度为Tj。由于半导体器件37(的结38)上所发生的热的传导,因此,组件39的表面温度上升。但是,不同位置,温度也不同。图中Tc1>Tc2,Tc4>Tc3。并且,热向周围散射。其结果,周围空气的温度也上升。设组件产生的热不传导,温度未升高的区域空气的温度为Ta。用Tj与其他部分的温差除以半导体器件所消耗的能即可求得热阻。有由Tj与Tc1~Tc4的温差所求得的热阻,和由Tj与Ta的温差所求得的热阻。在本发明中,规定由Tj与Ta的温差所求得的热阻称为热阻。在本实施例中,所用的AlN的热传导率较大,约为200w/mk,因此,本实施例的组件具有热阻较小的效果。并且,在本实施例中,采用如上所述的散热性良好的空腔朝下结构,因而从结构上来看还会提高AlN的热传导率。这里对空腔朝上结构和空腔朝下结构的散热特性不同的理由进行叙述。图5对半导体器件所发生的热散射到组件外部的路径,就空腔朝上结构(图5(a)和空腔朝下结构(图5(b)进行了比较。用箭头表示热流。在空腔朝上结构中,由于热流在组件内沿着较长的路径传送,所以热阻较大。此外,内部的气体24在组件的内部容积范围内不会产生对流,因而与固体相比较,几乎无助于热的传递。因此,热阻较大。与此相比,在空腔朝下结构中,由于热直接传送到散热片25上,所以可以将热阻抑制到较小程度。
图6为对于空腔朝上结构和空腔朝下结构进行比较的热阻数据曲线图。若增加风速则热阻降低,这种现象在空腔朝上结构和空腔朝下结构中都是相同的。空腔朝下结构的热阻通常比空腔朝上结构的小,空腔朝下结构中风速2m/s和空腔朝上结构中风速8m/s时,可得到相同程度的热阻。
本实施例的半导体器件具有600个接合片。在以往的扁平型组件中,不可能在与边长30mm的组件尺寸中实现600个管脚。但是,在本实施例中,由于将管脚排成两列,所以信号线用的管脚间距为250μm,电源线用的管脚间距为500μm,从而可较容易地实现600个管脚的引出操作。
图2所示实施例的半导体组件装在印制电路板40上。特别是在信号线用的管脚13中,由于间距较小,所以将其末端弯曲后,用铅-锡共晶焊料42钎焊在印制电路板40的表面铜箔41上。与此相对应,电源线用管脚的间距比较大,截面积也较大,因此,一般最多采用的组装形式就是将管脚插入印制电路板上开设的导电性贯通孔内。但是,在本实施例中,印制电路板的制作采取较容易的形式,即采用把电源线用管脚14也接合在印制电路板表面上的形式。
信号线用管脚13的截面积较小,不能指望在机械方面支撑组件。组件的重量主要是由电源线用管脚来支持。
图7示出本实施例半导体器件上的接合片平面图。在边长15mm的四周边上不可能在一列上实现600个接合片。因此在本实施例中,将接合片排成两列。如图2所示,在组件中,在靠近半导体器件的一侧设置电源线用接合片即基板侧接合片18,因此,在半导体器件中,在外周部分上配置与此对应的接合片即电源线用器件侧接合片232。而在内侧配置信号线用器件侧接合片231。
〔实施例3〕
图8为表示本发明第3实施例的半导体组件的截面图。其结构与图2所示实施例2大致相同。以下对其不同点和实施例的效果进行说明。
与实施例2相比,最大的区别是不用AlN基板10而采用SiC基板26,以及将电源用管脚30连接在基板26的表面上。SiC基板26是在SiC(碳化硅)的粉末中加入重量比为10%以下的Beo(氧化铍)粉末(也可加入其他的烧结助剂),在2100~2300℃温度下烧结而成。
SiC的烧结体,其热膨胀系数接近于硅,热传导率较大,这些性质与AlN相同,但是,其特征是介电常数为40~100,与AlN的10相比较大。因此,面状导电层28的电容较大,约为1500PF,可得到电源电压的平滑效果。此外,由于AlN和SiC的热膨胀系数大致相同,加工性良好,因此,本实施例仍使用AlN管帽11和AlN环12。
在结构上有如下两点区别。
①电源用电流的路径不经过SiC基板的端面,而经过组件外部(周边)的表面。其结果,增加了线状导电通路29。这种变更的效果是可以减少电源线用科瓦铁镍钴合金管脚30的弯曲次数,从而可提高管脚的可靠性。在第2实施例中,电源线用科瓦铁镍钴合金管脚14在科瓦铁镍钴合金管脚接合部21处弯曲两次,因此,当管脚受到外力时容易折断。但是,这种结构的缺点是与空气冷却用散热片的接触面积变小。因此,将科瓦铁镍钴合金管脚接合部31配置在SiC基板26的周边部分。
②使电源线用科瓦铁镍钴合金管脚30的末端笔直。制成可直接插入印制电路板内的形状。其结果,电源线用科瓦铁镍钴合金管脚30的弯曲次数总计为1次,从而可提高管脚的可靠性。并且,与印制电路板的连接可靠性也比第2实施例的面连接的较高。这里对采用SiC作基板后所产生的微细结构的区别进行说明。SiC与AlN不同,不能采用钨同时形成烧结布线。因此,在预先烧结的SiC基板上,采用已在第2实施例中叙述的钼-锰金属化方法进行布线。图8中省略了SiC基板的详细结构,但放大了图8的“A”部分,图9示出其详细结构。预先在下层SiC基板261上所开的贯通孔中埋入形成线状导电通路27。在下层SiC基板261的表面上形成面状导电层28,同时在线状导电通路27的表面上也形成钼-锰金属化层,并使线状导电通路27的表面在下层SiC基板261的表面处隆起。同样地,将预先在贯通孔中已埋入形成线状导电通路27的上层SiC基板262,重叠在下层SiC基板261的上部。此时,接合剂与第2实施例所用的相同,即采用玻璃。接合后,留下极薄的玻璃层32。该层的介电常数较小,而且热传导率也较小,因而直接影响着性能。应使其尽量的薄是重要的要求。
如上所述,在微细结构上与第2实施例不同,但作为绝缘基板的基本结构和基本作用与第2实施例相比没有改变。
〔实施例4〕
图10示出本发明的第4实施例。图10为装有本发明半导体组件的巨型计算机的斜视图。实施例1~3所示的半导体组件在多层印制电路板33上进行三维装配,利用连接器连接在散热器上。在本实施例中,构成上部散热器和下部散热器二层,从下部散热器的下方送入冷却用空气,在两散热器之间设置横流栅34,以设法消除冷却所引起的温度不均匀现象。
作为半导体组件,采用逻辑用组件、向量寄存器用组件、主存用组件、扩充存储用组件,并装配在高集成度逻辑散热器上。
在逻辑用组件中采用逻辑LSI(大规模集成电路)、RAM模块,在向量寄存器中用组件采用逻辑LSI、向量寄存器LSI,在主存用组件中采用DRAM(动态随机存取存储器)等。这些组件利用表面装配、轴向装配、两面装配等方法装配在印制电路板上。采用本实施例可以得到最高速的巨型计算机。
〔实施例5〕
图11(a)为表示本发明第5实施例的截面图。图11(b)为表示本发明第5实施例所用的陶瓷绝缘基板62内面状导电层连接的简图。半导体器件1用导热性能良好的填充材料52接合在绝缘管帽基板53上。绝缘管座基板62和绝缘管帽基板53是氮化铝(AlN)烧结体。氮化铝的热膨胀系数为3.4×10-6/℃,与作为半导体器件材料的硅的热膨胀系数近似,因此,与半导体器件1的连接可靠性足够大。并且,氮化铝的导热系数比较大(150W/m·k),因此,半导体器件1所产生的热可以充分地传至由Al、Cu等金属构成的散热片25。此外,此处作为绝缘管帽基板53采用氮化铝,但也可以采用含重量比为10%以下钡的高热传导性碳化硅(SiC)。这种高热传导性碳化硅(SiC)的热膨胀系数为3.7×10-6/℃,接近于作为半导体器件材料的硅的热膨胀系数,因此,与半导体器件1的连接可靠性是足够大的。而且由于其热传导率较高(270W/m·k),所以组件的热阻较小。除上述材料之外,也可以采用热膨胀系数与硅相同而热传导率足够高的绝缘材料。半导体器件1和绝缘管座基板62,采用一种控制通断接合法(CCB)通过焊料来保持电连接部54、55、56。绝缘管座基板62是在氮化铝(AlN)的生片上设置贯通孔,将钨膏压入该贯通孔内,然后将表面印刷有布线图形的多个生片加以层迭,同时进行焙烧而成,并将科瓦铁镍钴合金的外部连接用端子管脚64用钎焊等方法固定在基板上。除上述氮化铝以外,还可以采用氧化铝(Al2O3)、富铝红柱石、环氧玻璃、聚酰亚胺玻璃等材料,在材料内部形成导电部分后用作基板。
当考虑组件气密性的可靠性时,希望绝缘管座基板62和绝缘管帽基板53的热膨胀系数相同。在上述的材料中,组件气密性的可靠性最高的组合是在绝缘管座基板62和绝缘管帽基板53中采用相同性质的材料,特别是采用氮化铝(AlN)的组件较好。为了保持组件的气密性,含有上述导电层57~61的绝缘管座基板62,通过外周部分的组件密封层63与绝缘管帽基板53固定封接在一起。
电连接如下进行。半导体器件1通过采用焊料凸起的CCB方式与绝缘管座基板62上的电极部分(图中未示出)相连。图12示出半导体器件1有电极的一个主表面。供电用或接地用电极68用白圆圈记号表示,信号传送用电极用黑圆圈表示,两者交互而规则地排列着。图中虚线表示省略了这些电极。如图11(b)所示,信号传送用导电层通过由焊料凸起55向正下方延伸的导电通路60,穿过扩大导电层57和58上开设的孔但不与扩大导电层57和58接触,而与外部连接用端子64连接。绝缘管座基板62中的导电通路60将基板的表面和里面以最短距离连接起来,因此,即使利用介电常数较大的陶瓷作为基板,也可以将传输延迟时间抑制在最小限度内。供电用导电层由焊料凸起56通过导电通路59与设置在绝缘管座基板62内的供电用扩大导电层57连接。由供电用扩大导电层57的外周部分,通过在绝缘管座基板62上垂直设置的导电通路59′,不与扩大导电层58接触,而与组件外周部分上所设的外部连接用端子64连接。接地用导电层由焊料凸起54,通过导电通路61,不与扩大导电层57接触,而与绝缘管座基板62内所设的接地用扩大导电层58连接。由接地用扩大导电层58的外周部分,通过绝缘管座基板62上垂直设置的导电通路61′,与组件外周部分上所设的外部连接用端子64连接。图中以两层表示了布线扩大层,但根据需要也可设置两层以上。扩大导电层57和58具有增加接地用和供电用导电层的电容成分的效果。也就是说,由于在半导体器件附近的介电常数较高的绝缘管座基板内形成内部电容器,所以可以减少急剧的电压波动,同时,与外加电容器相比,可以缩短电路的布线长度。因此,可望提高传输波形的质量,同时可减少传输时间。
在这样结构的组件中,半导体器件1所发生的热通过采用了导热性能良好的填充材料的热传导性材料52,传至氮化铝制的绝缘管帽基板53。热在绝缘管帽基板53内扩散,并向固定的散热片25进行散热。这样,由于热传导的路径较短,适合于安装功耗较大的双极型ECL电路芯片等。外部连接用端子管脚64的材料采用科瓦铁镍钴合金(Fe-29Ni-17Co)。科瓦铁镍钴合金的热膨胀系数为4.5×10-6℃,与氮化铝的近似。因此,本实施例的构成材料全部是热膨胀系数与硅近似的材料,在组件的任何部分都不会发生由于部件间的热膨胀系数不同而引起的热疲劳问题。
Al2O3与SiO2的重量比由50∶50到80∶20的富铝红柱石系烧结体,室温的热膨胀系数近似于Si,约为3.7~4.5×10-6/℃,1MHz的介电常数约为7,作为本发明的管帽和管座基板特别有效。富铝红柱石烧结体为3Al2O3·2SiO2的烧结结晶体,这种结晶体具有如上所述的组成范围。
〔实施例6〕
图13为表示本发明第6实施例的截面图。在第6实施例的结构中,与第5实施例主要的不同点是在半导体器件1和绝缘管座基板62之间设置了布线扩大层69。布线扩大层69形成以下的结构。在氮化铝构成的绝缘管座基板62上形成聚酰亚胺等的树脂薄膜。在此树脂薄膜上利用铝线由与半导体器件1电极相连的电极部分向与绝缘管座基板62上电极相连的布线端电极部分进行连线。作为布线材料,由于采用铝而具有较小的电阻。作为布线材料,除铝以外还可以采用铜等导电性好的金属材料。并且,在电极部分以外的部分上形成树脂薄膜,而在电极部分上形成钛(Ti)-白金(Pt)-金(Au)的蒸发膜。本实施例的布线扩大层,由于形成在上述1MHz的介电常数为3~4这样小的树脂薄膜上,所以传输延迟时间较短。在上述结构以外的情况下,如果绝缘管座基板上能得到足够的平滑度,则也可直接形成钛(Ti)-白金(Pt)-金(Au)的蒸发薄膜进行布线。即使在布线图形设计发生变更的情况下,仅变更上述薄膜布线图形就可以了,而不须变更绝缘管座基板62。因此,可容易实现布线图形设计。此外,由于半导体器件1的信号传送用电极较多,当向焊料凸起正下方延伸的绝缘管座基板内的导电通路之间不能获得足够的间隔时,利用布线扩大层69可将布线扩大到所期望的位置。
在这样结构的组件中,半导体器件所发生的热,通过采用了热传导性良好的填充材料的热传导材料52传至氮化铝制的绝缘管帽基板53上。上述绝缘管帽基板53是用高热传导性氮化铝烧结体制成的,与散热片加工成为一体。热在绝缘管帽基板53内扩散放热。这样,由于热传导的路径较短,适合于安装功耗较大的双极型ECL等电路芯片。
〔实施例7〕
图14为表示本发明第7实施例的截面图。半导体器件1固定在由氮化铝烧结体构成的绝缘管座基板62上。半导体器件1的电极和绝缘性管座基板62的电极,利用约30μm的Au、Cu、Al等细金属线构成的引线70连接起来。为了尽量缩短信号传送用导电层60在绝缘管座基板62中的布线长度,将其垂直设置在基板内,并接到位于半导体器件1下周边位置的外部连接用端子64上。供电用导电层59和接地用导电层61,通过扩大层接到绝缘管座基板62外周部分上的外部连接用端子上。即使在安装不要求散热特性的以低功耗驱动的半导体器件的组件中,传输延迟时间也能抑制在最小限度内,并且,由于在半导体器件1附近的绝缘管座基板内形成内部电容器,所以可以减少急剧的电压波动。因此,可望提高传输波形的质量,同时可以减少传输时间,其他方面与实施例4相同。
〔实施例8〕
图15示出本发明第8实施例的半导体组件的截面图。半导体器件1用CCB方式安装在设有布线扩大层69的绝缘管座基板62上。基板上安装有多个半导体器件。按照组件的用途,可以增加半导体器件的数量,或进行更换。
绝缘管座基板62和绝缘管帽基板53的材料为氮化铝(AlN)烧结体。
布线扩大层69与第3实施例具有相同的结构。当将本实施例这样的多个电路芯片装在一个组件内时,由于在电路芯片之间也可通过布线互相传送信号,布线图形变得较为复杂。即使在布线图形设计发生变更的情况下,仅变更上述薄膜布线图形就可以了,而不须变更绝缘管座基板62和绝缘管帽基板53。因此,可容易实现布线图形设计的变更。在布线扩大层69中,由于多个半导体器件之间也互相连接着,与安装单个半导体器件的多个组件互连的情况相比,可减少传输延迟时间。
信号传送用导电层60通过对基片垂直形成的绝缘管座基板62中的导电通路,连接在管脚状的外部连接用端子64上。绝缘管座基板62内的导电通路,由于将基板的表里两面以最短距离连接起来,所以即使采用介电常数较大的陶瓷作为基板,也可将传输延迟时间抑制在最小限度内。
由于绝缘管座基板62和绝缘管帽基板53是相同的材料,所以组件的气密性很好。
在本实施例中,图中未示出冷却散热片,但也可以设置冷却散热片。在这样结构的组件中,半导体器件1所产生的热通过热传导性材料填充层52传至氮化铝制的绝缘管帽基板53上。热在绝缘管帽基板53内扩散。这样,由于热传导路径较短,冷却效率较高,可以将低发热量的半导体器件和高发热量的半导体器件装载在同一组件内,与安装单个半导体器件的组件组合相比,可以提高运算处理能力。
此外,电源层59的一部分如图11(b)所示那样由面状膜形成在基板内,因此,在介电常数较高的氮化铝、碳化硅的情况下,起着电容器的作用,从而可消除电压波动所引起的误动作。
〔实施例9〕
图16为在巨型计算机中装配本发明半导体组件的简图。实施例2~5所示的半导体组件71装配在多层印制电路板72上,通过连接器连接在散热器上。半导体组件的一主表面与导热管73连接,利用该导热管将热传送到热交换部74进行散热。
作为半导体组件,可以使用逻辑用组件、向量寄存器用组件、主存用组件、扩充存储用组件,并接合在高集成度逻辑散热器上。逻辑用组件可采用逻辑LSI、RAM模块,向量寄存器用组件可采用逻辑储辑LSI、向量寄存器LSI,主存用组件可采用主存器模块,扩充存储用组件可采用DRAM(动态随机存取存储器)等,这些组件利用表面装配、轴向装配、两面装配等方法装配在印制电路板上。采用本实施例可以得到最高速的巨型计算机。