具有误差校正功能的差分检测器 本发明一般地涉及一种具有误差校正功能的差分检测器,该检测器被用于数字移动通信系统的射频接收器中以解调差分相位调制或移相信号。更具体地说,本发明涉及一种差分检测器,该差分检测器具有误差校正功能,用于利用四符号差分检测信号来纠正两个符号差分检测信号,并随后利用正确的两个符号差分检测信号来纠正一个一符号差分检测信号。
在诸如数字蜂窝移动电话系统的数字移动通信中,采用了一种差分移相信号,诸如经历了π/4-DQPSK(π/4差分正交移相键控)等。该差分移相信号可借助同步检测器或差分检测器而得到检测。虽然差分检测器的电路配置比较简单,差分检测器的误比特率比同步检测器高。在这种情况下,为了减小误比特率,采用了带有误差校正功能的差分检测器。
为了更好地理解本发明所基于的原理,首先描述具有误差校正功能的传统差分检测器。图8是示意显示具有误差校正功能的传统差分检测器的结构的功能框图。参见图8,标号1表示用于在一个当前输入信号与相对于当前输入信号超前一个符号的一个输入信号之间进行相位比较从而输出一个相位差信号的一符号差分检测电路,标号2表示在一个当前输入信号与相对于该当前输入信号超前两个符号的一个输入信号之间进行相位比较以输出一个相位差信号的两个符号差分检测电路,且标号3表示一个误差校正电路。而且,图9是一个功能框图,示意显示了一符号差分检测电路1的典型结构。
在以图8的配置实施的、具有误差校正功能的差分检测器中,输入信号4首先被输入到一符号差分检测电路1,以与超前一个符号(以下也称为一符号超前输入信号,以便于描述)进行相位比较,从而获得一个一符号差分检测信号5。一般地,该一符号差分检测电路1由用于把输入信号4延迟一个符号的延迟电路8和一个数字多路复用器9组成,如图9所示,其中一符号差分检测信号5能够通过用一符号超前输入信号乘当前输入信号4而得到导出。
类似地,输入信号4也被输入到两个符号差分检测电路2,以经历与超前两个符号的输入信号(以下也称为两符号超前输入信号,以便于描述)的比较,从而获得一个两符号差分检测信号6。在此,应该提到的是,两个符号差分检测电路2与一符号差分检测电路1地不同,在于提供了用于使输入信号4延迟两个符号的延迟电路来代替用于使输入信号4延迟一个符号的延迟电路,因而能够在与一符号差分检测电路1类似的一种电路结构中实施两符号差分检测电路2。
最后,一符号差分检测信号5和两符号差分检测信号6被输入到误差校正电路3,其中一符号差分检测信号5经历了误差校正处理,从而获得经过误差校正的差分检测输出信号7,如图8所示。
图10是示意电路图,显示了误差校正电路3的典型结构。在此图中,标号91和92分别表示相位鉴别或判定电路,标号12表示一个数字加法器,标号13、14和17分别表示数字减法器,标号11和15分别表示用于使输入信号4延迟一个符号的延迟电路,且标号16表示一个重合检测电路。
以下结合图10描述误差校正电路3。首先,借助相位判定电路71对一符号差分检测信号的相位进行鉴别判定,从而使一符号差分检测信号5被延迟电路11延迟一个符号,从而获得一个延迟信号18。用(n)表示输入信号4的相位,则与一符号差分检测信号5相应的相位差信号D1(n)和与上述信号18相应的延迟相位差信号D1(n-1)分别能够用以下的表达式(1)和(2)给出:
DΦ1(n)=Φ(n)-Φ(n-1) ... (1)
DΦ1(n-1)=Φ(n-1)-Φ(n-2) ... (2)
其中n(=0,1,2……)分别表示符号出现的时刻。
假定一符号差分检测信号5包含误差e(n),则上述表达式(2)可写成:
DΦ1(n-1)=Φ(n-1)-Φ(n-2)+e(n) … (3)
相继地,一符号差分检测信号5和延迟信号18借助数字加法器12而被加在一起,从而获得一个信号19。信号19可用以下表达式给出:
DΦ1(n)+DΦ1(n-1)={Φ(n)-Φ(n-1)}
+{Φ(n-1)-Φ(n-2)+e(n)}
=Φ(n)-Φ(n-2)+e(n) … (4)
另一方面,在假定在两符号差分检测信号6中不包含误差的情况下,与两符号差分检测信号6相应的一个相位差信号Dφ2(n)由以下表达式(5)给出:
DΦ2(n)=Φ(n)-Φ(n-2) … (5)
随后,经历了在相位判定电路92中的相位鉴别的两符号差分检测信号6,数字减法器13,而被从信号19中减去,其结果是获得了与数字减法器13的输出信号20相应的信号s(n)。信号s(n)可由以下表达式给出:
s(n)={Φ(n)-Φ(n-2)+e(n)}-{Φ(n)-Φ(n-2)}
=e(n) … (6)
随后,借助数字减法器14,从信号20中减去与一个误差模式信号23相应的信号error(n),从而使信号21在从数字减法器14以一个信号si(n)的形式输出一个符号之前不受误差的影响。该信号si(n)随后借助一个延迟电路15—其输出信号22用si(n-1)表示一而被延迟了一个符号。
现在,分别与信号20和信号22相对应的信号s(n)和si(n-1)被输入到重合检测电路16,从而导出作为误差模式信号23的信号error(n)。与误差模式信号23相应的信号error(n)被定义如下: error(n)=0 in case s(n)=si(n-1)=0
… (7) error(n)=0 in case s(n)≠0 and si(n-1)=0
… (8)error(n)=0 in case s(n)=c and si(n-1)≠0
… (9)error(n)=m in case s(n)=si(n-1)=m≠0
… (10)
最后,误差模式信号23借助数字减法器17而被从信号18中减去,从而能够获得经过误差校正的差分检测输出信号7。
借助具有上述误差校正功能的传统差分检测器,在两符号差分检测信号中没有误差的情况下,能够对一符号差分检测信号进行误差校正。然而,当两符号差分检测信号有误差时,对于一符号差分检测信号不能正确地进行误差校正,而是将进行错误的误差校正,从而造成误差由于错误的校正而变得更为严重的情况,因而误比特率特性降低而不是改善。
在此方面,在日本未审查专利申请公开第8908/1979(JP-A-54-8908)中公布了一种差分检测误差校正方案,它基于与用于m值数字载波传送系统(诸如m相差分移相键控(DPSK)方案)或m值连续相频移键控(CPFSK)方案。根据上述差分检测误差校正方案,误差检测和误差校正能够利用一种固有冗余来进行,该固有冗余即包含在用于传送的数据中的符号代表了包含在与上述符号相关的时隙中的信息符号与超前一个时隙的信息符号的模数m的和值。然而,当构成校正子si(n)和si(n-1)的四个元素中的两或更多个包含误差时,误差检测和误差校正象在上述传统差分检测器中一样是不可能的。
考虑到上述的现有技术,本发明的一个目的是提供一种具有误差校正功能的、用于解调差分移相信号的差分检测器,该检测器能够更为有效地校正包含在信号中的误差,从而显著地改善误差率特性。
与上述和其他的目的—它们将随着描述的进行而变得更为显而易见—相联系,根据本发明的一个一般的方面,提供了一种具有误差校正功能的差分检测器,它包括:第一检测电路,用于使一个输入信号延迟基本上一个符号周期,以获得一个第一差分输入信号,从而产生与上述输入信号和该第一差分(或延迟)输入信号之间的相位差相对应的一个第一检测信号;一个第二检测电路,用于使该输入信号大体上延迟两个符号周期,以获得一个第二差分(延迟)输入信号,从而产生与输入信号和第二差分输入信号之间的相位差相应的一个第二检测信号;一个第三检测电路,用于使输入信号大体上延迟四个符号周期,以获得一个第三差分输入信号,从而产生与该输入信号同上述第三差分(或延迟)输入信号之间的相位差相应的一个第三检测信号;一个第一误差校正电路,用于利用第三检测信号对第二检测信号进行误差校正;一个延迟电路,用于使第一检测信号大体上延迟两个符号周期;以及,一个第二误差校正电路,用于利用第一误差校正单元的输出信号对从延迟电路输出的第一检测信号进行误差校正。
借助该设置一其中第二检测信号的误差校正是利用第三检测信号而进行的且同时第一检测信号的误差校正是利用校正的第二检测信号而进行的,能够实现这样的差分检测器一它能够有效地减小第一检测信号中包含的误差并增强误差校正能力,从而使误差率特性得到显著的改善。
本发明的上述和其他的目的、特征和优点,通过以下仅以例子的方式而结合附图对最佳实施例所进行的描述,将变得更容易理解。
在以下的描述中,参见了附图。在附图中:
图1是功能框图,示意显示了根据本发明的第一实施例的具有误差校正功能的差分检测器的结构;
图2是功能框图,显示了根据本发明的第一实施例的差分检测器中用于对两符号差分检测信号进行误差校正的一种误差校正电路;
图3显示了根据本发明的第一实施例的差分检测器的计算机模拟的结果;
图4是功能框图,显示了根据本发明的第二实施例中用于对一符号差分检测信号进行误差校正的一种误差校正电路;
图5是功能框图,显示了根据本发明的第三实施例的差分检测器中用于对两符号差分检测信号进行误差校正的一种误差校正电路;
图6是功能框图,显示了根据本发明的第四实施例的差分检测器中用于对一符号差分检测信号进行误差校正的误差校正电路;
图7是功能框图,显示了根据本发明的第五实施例的差分检测器中用于对两符号差分检测信号进行误差校正的误差校正电路;
图8是功能框图,示意显示了具有误差校正功能的传统差分检测器的结构;
图9是示意框图,显示了以前知道的传统差分检测器中的一符号差分检测电路的典型结构;
图10是示意框图,显示了传统的差分检测器中的误差校正电路的典型结构。
现在结合目前被认为是最佳或典型的实施例并结合附图来详细描述本发明。
实施例1
本发明的第一实施例涉及一种差分检测器,它具有误差校正功能以利用一种四符号差分(或延迟)检测信号来校正包含在一种两符号差分(或延迟)检测信号中的误差,并随后利用该校正的两符号差分检测信号来校正包含在一种一符号差分(或延迟)检测信号中的误差。
现在,结合图1和2,来描述根据本发明的第一实施例的具有误差校正功能的差分检测器;其中图1是框图,示意显示了具有误差校正功能的差分检测器的结构。参见图1,标号1表示用于在一个当前输入信号4与相对于该当前输入信号超前一个符号的输入信号之间进行相位比较的一符号差分检测电路,标号2表示用于在该当前输入信号4与比该当前输入信号超前两个符号的一个输入信号之间进行相位比较的一个两个符号差分检测电路,标号24表示用于在当前输入信号4与比该当前输入信号超前四个符号的一个输入信号之间进行相位比较的四符号差分检测电路,且标号25和27表示误差校正电路。
首先,输入信号4被输入到一符号差分检测电路1,以经历与超前一个符号(以下称为一符号超前输入信号,以便于描述)的相位比较,从而获得一个一符号差分检测信号5—它表示了该输入信号与该一符号超前输入信号之间的相位比较。一符号差分检测电路1能够在如图9所示的结构中实现。类似地,输入信号4分别被输入到两个符号差分检测电路2和四符号差分检测电路24,以分别经历与一个两符号超前输入信号和一个四符号超前输入信号的相位比较,从而能够分别获得一个两符号差分检测信号6和一个四差分检测信号28。在此,应该注意的是两个符号差分检测电路2与一符号差分检测电路1的不同,在于提供了用于使输入信号4延迟两个符号(这与延迟电路26类似)的延迟电路来代替用于使输入信号4延迟一个符号的延迟电路8。因此,两个符号差分检测电路2能够在与一符号差分检测电路1类似的电路结构中实现。类似地,四符号差分检测电路24能够在与一符号差分检测电路1类似的电路结构中实施,只是提供了用于使输入信号4延迟四个符号的延迟电路来代替用于使输入信号4延迟一个符号的延迟电路8。
随后,两符号差分检测信号6和四差分检测信号28被输入到误差校正电路25,其中两符号差分检测信号6经历了误差校正处理。因此,能够从两符号差分检测信号6的校正,导出一个误差校正信号29。一符号差分检测信号5通过延迟电路26而被延迟了两个符号,从而获得了信号30。最后,信号30和29被输入到一个误差校正电路27,其中信号30经历了误差校正。以此方式,能够获得一个得到误差校正的差分检测输出信号31。
图2是示意电路图,显示了根据本发明的第一实施例的差分检测器中的误差校正电路25的典型结构。以下结合图2来描述误差校正电路25。在此图中,标号33表示一个数字加法器,标号34、35和38分别表示数字减法器,且标号32和36分别表示用于使输入信号4延迟两个符号的延迟电路,且标号37表示一个重合检测电路。
首先,借助相位鉴别或判定电路93,两符号差分检测信号6的相位得到鉴别或判定,以随后被延迟电路32延迟两个符号,从而获得信号39。用φ(b)来表示输入信号4的相位,与两符号差分检测信号6相应的一个相位差信号Dφ2(n)和与信号39相应的一个相位差信号Dφ2(n-2)可分别由以下的表达式(11)和(12)给出:
DΦ2(n)=Φ(n)-Φ(n-2) … (11)
DΦ2(n-2)=Φ(n-2)-Φ(n-4) … (12)
其中n(=0,1,2,……表示符号出现的时刻。
假定信号39包含误差e(n),上述表达式(12)可被写成:
DΦ2(n-2)=Φ(n-2)-Φ(n-4)+e(n) … (13)
相继地,两符号差分检测信号6和信号39借助数字加法器33而被加到一起,从而获得信号40。信号40可由以下表达式(14)给出:
DΦ2(n)+DΦ2(n-2)={Φ(n)-Φ(n-2)}
+{Φ(n-2)-Φ(n-4)+e(n)}
=Φ(n)-Φ(n-4)+e(n) … (14)
另一方面,假定不包含误差,与信号28相应的一个相位差信号DΦ4(n)可以由以下表达式(15)给出:DΦ4(n)=Φ(n)-Φ(n-4) … (15)
随后,借助数字减法器34,从信号40中减去已经在相位判定电路94中受到了相位鉴别的四差分检测信号28,从而获得了与数字减法器34的输出信号41相应的信号s(n)。信号s(n)可由以下表达式给出:s(n)={Φ(n)-Φ(n-4)+e(n)}-{Φ(n)-Φ(n-4)}
=e(n) … (16)
随后,借助数字减法器35,从信号41中减去与误差模式信号44相应的信号error(n),从而从数字减法器35输出不受出现在两个符号之前的误差影响的一个信号42,作为信号si(n)—它随后借助延迟电路36而被延迟了两个符号,而延迟电路36的输出信号用si(n-2)表示。
分别与信号41和信号43相应形成信号s(n)和si(n-2),被输入到重合检测电路37,从而导出了上述信号error(n),作为误差模式信号44。与误差模式信号44对应的信号error(n)的定义如下:error(n)=0 如果s(n)=si(n-2)=0 ……(17)error(n)=0 如果s(n)≠0且si(n-2)=0 ……(18)error(n)=0 如果s(n)=0且si(n-2)≠0 ……(19)error(n)=m 如果s(n)=si(n-2)=m≠0 ……(20)
最后,借助数字减法器38而从信号39中减去误差模式信号44,从而获得经过了误差校正的两符号差分检测信号。
另外,误差校正电路27能够用基本上与图10所示的相同的结构来实施,并起着与后者基本相同的作用或操作。
从上述描述可见,根据本发明的第一实施例的、具有误差校正功能的差分检测器,利用四差分检测信号28并借助误差校正电路25,进行两符号差分检测信号6的误差校正,并随后利用校正的两符号差分检测信号29并借助误差校正电路27来进行一符号差分检测信号30的误差校正,从而能够减小两符号差分检测信号6的误差并增强一符号差分检测信号5的误差校正能力,进而有效地改善误比特率特性。
图3以曲线图的形式显示了Eb/No(接收器的每位的接收信号能量与噪声密度的比值)与误比特率特性的关系。在此图中,带有圆圈“O”的曲线表示在只采用一符号差分检测器作为差分检测器的情况下的计算机模拟的结果,而带有矩形符号口的曲线表示在不对两符号差分检测信号进行误差校正的情况下差分检测器的计算机模拟结果。另外,带有X的曲线表示对根据本发明的带有误差校正功能的差分检测器的计算机模拟结果。从图3可见,根据本发明的第一实施例的教导,与其中只采用一符号差分检测器作为差分检测器电路的情况下相比,在Eb/No=11dB的情况下,误比特率能够改善两个量级。另外,与其中不对两符号差分检测信号进行误差校正的情况相比,误比特率能够改善一个量级左右。
实施例2
现在描述本发明的第二实施例。在具有根据本发明的该实施例的误差校正功能的差分检测器中,提供或鉴别了一个切换电路,用于使一符号差分检测信号的误差校正只在一符号差分检测信号的以判定为目的的相位差超过了一个基准值时才得到确认。
现在结合图4描述根据本发明的第二实施例的、具有误差校正功能的详细描述;图4显示了根据第二实施例的差分检测器中用于对一符号差分检测信号进行误差校正的误差校正电路的功能框图。现在考虑的该电路与上面结合第一实施例描述的电路的不同,在于还提供了一个以判定为目的的相位差信号发生电路45、一个数字减法器46、一个判定电路47和一个切换电路48,其中只有当该以判定为目的的相位差超过了一个基准值时才对一符号差分检测信号进行误差校正。另外,本实施例中上面结合第一实施例描述的相同或等价的部件或信号都用相同的标号表示,并省略了对其的重复描述。另外,应该注意的是,就用于导出误差模式信号23的电路来说,第二实施例基本上与第一实施例相同。
参见图4,信号30是经历相位鉴别或判定之前的相位差信号。更具体地说,信号30经历了相位判定电路91的相位鉴别或判定操作(以下称为相位判定),相位判定电路91的输出信号随后分别被输入到延迟电路11和数字加法器12。
信号30也被提供到以判定为目的的相位差信号发生电路45,从而从电路45输出一个以判定为目的的相位差信号49。借助一个数字减法器46,从以判定为目的的相位差信号49中减去一个基准信号(REF)50,从而导出一个信号51—它随后被输入到判定电路47。因此,作为判定电路47的输出信号,获得了一个控制信号52。切换电路48用于选择误差模式信号23或零信号53。误差模式信号44的输出信号被显示为信号54。借助数字减法器17,从信号18中减去信号54,从而获得一个经过了误差校正的差分检测输出信号55。
以判定为目的的相位差信号发生电路45得到适当设计,以从信号30中减去从相位判定产生的一个信号,其中从该相减中产生的一个信号作为以判定为目的的相位差信号49而得到输出。例如,在π/4-DQPSK系统中,中心相位为±π/4或±3π/4。因此,阈值相位为零、±π/2或±π。现在假定信号30的相位为0.4π。中心相位则为π/4。因此,以判定为目的的相位差信号49为0.15π(=0.4π-0.25π)。因此,当基准信号(REF)50的相位为1/8π时,信号51满足了条件0.15π-0.125π=0.025π>0。由于以判定为目的的相位差信号49超过了基准信号(REF)50,电路47中的判定给出“正或负”。因此,响应于控制信号52,切换电路48被改变到使误差校正有效的位置。除非以判定为目的的相位差信号49超过了基准信号(REF)50,切换电路48被改变到使误差校正无效的位置。
如从上述描述可见,在根据本发明的第二实施例的具有误差校正功能的差分检测器中,只在一符号差分检测信号的以判定为目的的相位差超过了基准值时,才对该一符号差分检测信号进行误差校正。在此方面,应该注意的是以判定为目的的相位差小表示发生误差的概率小。在此情况下,如果进行误差校正,则发生错误的校正的概率将不利地增大。为了避免这种不利的情况,本发明的第二实施例的教导,是只在以判定为目的的相位差大的时候才进行对一符号差分检测信号的误差校正,从而防止在以判定为目的的相位差信号的值很小时对一符号差分检测信号进行错误的校正。借助这种设置,可以在本发明的第一实施例的基础上进一步改善误比特率特性。
实施例3
现在描述本发明的第三实施例。在根据本发明的第三实施例的具有误差校正功能的差分检测器中,提供了一个切换电路,以只在两符号差分检测信号的以判定为目的的相位差超过了一个基准值时才允许对两符号差分检测信号的误差校正得到确认。
现在结合图5来描述根据本发明的第三实施例的具有误差校正功能的差分检测器,而图5是显示了为了对两符号差分检测信号进行误差校正而设计的误差校正电路的功能框图。现在所考虑的电路设置与上面结合第一实施例所描述的电路的不同,在于还提供了一个以判定为目的的相位差信号发生电路56、一个数字减法器57、一个判定电路58以及一个切换电路59,其中只在以判定为目的的相位差信号具有超过一个基准值的值时才对两符号差分检测信号进行误差校正。另外,在本实施例中与上面结合第三实施例描述的部件和信号相同或等价的部件和信号,被用相同的标号表示,且省略了对其的重复描述。另外,用于产生误差模式信号44的处理与在第二实施例中的情况相同。
两符号差分检测信号6也被提供到以判定为目的的相位差信号发生电路56,从而从电路56输出一个以判定为目的的相位差信号60。借助数字减法器57,从以判定为目的的相位差信号60减去一个基准信号(REF)61,从而导出一个信号62—它随后被输入到判定电路58。因此,作为判定电路58的输出信号而获得控制信号63。切换电路59用于选择误差模式信号44或零信号64。误差模式信号44的输出信号被显示为信号65。借助数字减法器38,从信号39中减去信号65,从而获得一个经过误差校正的差分检测输出信号66。一直到产生经过误差校正的差分检测输出信号55,所进行的其余处理与第一实施例情况下的相同。
两符号差分检测信号6代表一个相位差信号。以判定为目的的相位差信号发生电路56从该相位差信号中减去中心相位,从而输出一个以判定为目的的相位差信号60。当该以判定为目的的相位差信号的值很小时,则判定不存在误差。在此情况下,不进行误差校正。另一方面,当以判定为目的的相位差信号的值较大而几乎该阈值时,这意味着发生误差的概率大。因此,进行误差校正。
如从上述描述可见,在根据本发明的第三实施例的具有误差校正功能的差分检测器中,只在两符号差分检测信号的以判定为目的的相位差超过了该基准值时才对该两符号差分检测信号进行误差校正。这样,通过防止当以判定为目的的相位差小时对两符号差分检测信号进行错误的校正,误比特率特性可在第一实施例的基础上得到进一步的改善。
实施例4
本发明的第四实施例涉及的,是一种具有误差校正功能的差分检测器,其中与对一符号差分检测信号进行误差校正的误差校正电路有关的地提供了一种设置,该设置用于使将要同以判定为目的的相位差进行比较的基准值成为可变的。
现在结合图6来描述根据本发明的第四实施例的具有误差校正功能的差分检测器,而图6以功能框图的形式显示了用于对一符号差分检测信号进行误差校正的一种误差校正电路。现在考虑的电路设置与上面结合第二实施例描述的设置的不同,在于在具有误差校正功能的、用于一符号差分检测信号的差分检测器中还提供了一个电平检测电路67、一个数字减法器68、一个判定电路69和一个切换电路70,其中与以判定为目的的相位差相比较的基准值是可变的。另外,与结合第二实施例描述的部件和信号相同或等价的部件和信号都用相同的标号表示,并省略了对其的重复描述。进一步地,一直到以判定为目的的相位差信号49的产生,所进行处理都与在第二实施例情况下的相同。
信号30和校正的两符号差分检测信号29被输入到电平检测电路67,以分别检测一个输入信号电平和一个噪声电平,以导出表示与该噪声电平有关的输入信号电平的一个信号71。信号30和校正的两符号差分检测信号29都代表一个相位差信号。该相位差信号与电平检测电路67检测到的中心相位之差,可被看作是噪声的幅度的表示。因此,通过在适当的时期对上述差进行积分,能够确定该噪声电平。
随后,借助数字减法器68,从信号71中减去基准信号72,从而导出一个信号73。信号73随后经历判定电路69的判定处理,以获得一个控制信号74。控制信号74用于控制切换电路70—它选择基准信号75或76。切换电路70的输出信号用标号77表示。另外,一直到产生经过误差校正的差分检测输出信号78的相继处理都与在第二实施例中的相同。
一般地,当信号/噪声功率比增大时,当发生误差时输入信号的以判定为目的的相位差的概率增大。在此方面,应该注意的是当噪声电平高时,由于噪声的误差发生概率增大。因此,即使当相位差信号接近中心相位(远离阈值相位)而以判定为目的的相位差小时,也有由于大幅度的噪声而产生误差的可能。由于这种情况,较好地是在阈值电平的两侧为误差校正设定宽的范围。与此相对比,当噪声电平低时,由于噪声而发生误差的概率小。因此,通过认为误差的发生限于阈值相位附近,可以抑制误差校正的可能性。
因此,通过随着信号/噪声功率比的增大而与以判定为目的的相位差相比地增大基准值,可以更有效地防止误差校正。换言之,通过即使在以判定为目的的相位差小但噪声电平高的情况下也进行误差校正,而当噪声电平降低时则只在以判定为目的的相位差足够大时确认误差校正,能够在总体上降低误差率。
如从以上描述可见,在根据本发明的第四实施例的具有误差校正功能的差分检测器中,在误差校正电路中提供了电平检测电路67、数字减法器68、判定电路69和切换电路70,以对一符号差分检测信号进行误差校正。其中将要与以判定为目的的相位差进行比较的基准值被设计成可变的。通过当噪声电平低时增大误差校正的基准值,可以比根据本发明的第二实施例的具有误差校正功能的差分检测器更为有效地排除错误的校正。
实施例5
本发明的第五实施例涉及具有误差校正功能的一种差分检测器,其中与对两符号差分检测信号进行误差校正的误差校正电路相关地提供了一种设置—该设置使得将要与以判定为目的的相位差进行比较的基准值成为可变的。
现在结合图7,描述根据本发明的第五实施例的具有误差校正功能的差分检测器,而图7以功能框图的形式显示了用于对两符号差分检测信号进行误差校正的一个误差校正电路。现在考虑的电路设置与上面结合第三实施例所描述的电路设置的不同,在于在对两符号差分检测信号进行误差校正的误差校正电路中,还提供了一个电平检测电路79、一个数字减法器80、一个判定电路81和一个切换电路82,其中用于与以判定为目的的相位差相比较的基准值是可变的。另外,与结合第三实施例所描述的部件和信号相同或等价的部件和信号都用相同的标号表示,并省略了对其的重复描述。进一步地,直到产生以判定为目的的相位差信号60的处理都基本上与在第三实施例中的处理相同。
两符号差分检测信号6和四差分检测信号28被输入到电平检测电路79,以分别检测一个输入信号电平和一个噪声电平,从而导出一个相对于该噪声电平地表示输入信号电平的信号83。随后,借助数字减法器80从基准信号84中减去电平信号83,从而导出一个信号85。信号85随后经历判定电路81的判定处理,以获得一个控制信号86。控制信号86用于控制切换电路82—它选择基准信号87或88以输出一个信号89。当噪声电平高时,用于与以判定为目的的相位差信号60相比较的基准信号89被设定得低,从而允许在一个宽的范围内对两符号差分检测信号进行误差校正,而当噪声电平低时,用于与以判定为目的的相位差信号进行比较的基准信号被设定得高,从而只允许在一个窄的范围内对两符号差分检测信号进行误差校正。一直到产生经过误差校正的差分检测输出信号90的相继处理,与在第二实施例中的相同。
如从上述描述可见,在根据本发明的第五实施例的具有误差校正功能的差分检测器中,在对两符号差分检测信号进行误差校正的误差校正电路中提供了电平检测电路79、数字减法器80、判定电路81和切换电路82,其中将要与以判定为目的的相位差进行比较的基准值是可变的。通过当噪声电平低时增大用于使能误差校正的基准值,与根据本发明的第三实施例的具有误差校正功能的差分检测器相比能够更为有效地排除错误的校正。
从以上描述可见,本发明的教导是,通过利用四差分检测信号对两符号差分检测信号进行误差校正,并随后利用校正的两符号差分检测信号对一符号差分检测信号进行误差校正,而进行误差校正。因此,能够防止由于包含在两符号差分检测信号中的误差而引起的错误校正,从而能够改善误比特率特性。
另外,通过当以判定为目的的相位差小时不进行误差校正并且只在以判定为目的的相位差大时使能误差校正,能够使误差校正在以判定为目的的相位差信号的幅度小时得到禁止,从而使误比特率特性能够得到进一步的改善。
另外,通过当噪声电平高时在大范围中进行误差校正而当噪声电平低时只在一个窄范围中进行误差校正,能够在噪声电平时防止不正确的校正,从而更为显著地改善误比特率特性。