彩色阴极射线管 技术领域:
本发明涉及彩色阴极射线管,特别是涉及一种装有电子枪的彩色阴极射线管,此电子枪由于改善了在整个荧光屏上和全部电子束流通区域内的聚焦特性,从而得到良好的分辨率,该彩色阴极射线管还使用总长度短、成本低的偏转线圈,因此图象显示器的纵深长度也可缩短。
现有技术:
在至少装有由多只电极组成的电子枪、偏转装置和荧光屏(具有荧光粉涂层的屏面)的阴极射线管中,到目前为止,下述技术仍被视为在荧光屏上从中心到周边都能得到良好再现图象的方法。
校正彗差的技术,即在使用一字形排列三根电子束的阴极射线管的管颈部的偏转线圈左右两侧装有彗差校正线圈(日本实用新案公开NO.40944/1985)。
能分别调整中心电子束和二根侧边电子束的偏转量的技术,即在使用一字形排列的三根电子束的电子枪中,把磁性材料的窄片装在屏蔽杯底面上能通过三根电子束中两根边束的孔附近(日本特许公开82770/1973)。
在另一种技术中,装有上下两个平行平板电极,它们面向主透镜,三根电子束在它们之间穿过,这上下二个平行平板电极安装在使用一字形排列的三个电子束的电子枪的屏蔽杯地底面(日本特许公开NO.52586/1992)。
在电子束进入偏转磁场前使电子束成形所用的技术是,在使用一字形排列的三根电子束的电子枪中,安装上下二个平行平板电极,使其从与主透镜相对的部分指向荧光屏,三根电子束均从平行于一字形方向的上下二片平行平板之间通过(美国专利4,086,513,日本特许公开NO.7345/1985)。
尚有其他技术可供引用,如在电子枪某一部分电极之间形成静电四极透镜,而静电四极透镜的强度可根据电子束的偏转而动态变化,以使图象在整个屏面上均匀化(日本特许公开NO.61776/1976,);又如在构成一个附加的聚焦透镜的电极部分(第二电极和第三电极)中形成象散透镜,(日本特许公开NO.18866/1978,);又如在使用一字形排列三根电子束的电子枪中使第一电极和第二电极上通过电子束的孔横向增大,或把电极做成不同形状,或者使通过中心电子枪的电子束的孔的纵向-横向比率比侧边电子枪的小一些(日本特许公开NO.64368/1976);又如在一字形排列的电子枪中,在第三电极面向阴极侧刻有沟槽以形成非对称透镜,这些沟槽沿电子枪轴线方向朝向中心束之侧的深度比朝向边束侧的深度更深些,所以电子束至少在一处通过非对称透镜投射到荧光屏上(日本特许公开NO.81736/1985)。
阴极射线管的聚焦特性应使在屏的中心处和整个电子束电流范围内都能得到良好分辨率,而且在整个屏上所有电流范围内分辨率必须是均匀的。
当阴极射线管用于图象显示器中,要求容纳图象显示器的外壳的纵深长度要短,才能放置于狭窄的空间,还要求使用价格低廉的偏转线圈和驱动电路,以使之在市场中具有竞争力。在设计阴极射线管时,需要使用成熟的技术,才能同时满足这许多特性。
为得到满足上述特性的阴极射线管,根据本发明人进行的研究得知,关键是做出能够校正偏转误差,而且具有大直径的主透镜的电子枪,电子枪还应能缩短主透镜至荧光屏之间的距离,并且能局部调节偏转磁场。
根据上述技术,在电子枪聚焦电极上必须施加动态聚焦电压,并在电子枪中使用象散透镜以校正偏转误差,还使用一个电极来产生非对称透镜,以期在整个屏面得到良好分辨率。
图31示出使用一字形排列三根电子束的彩色阴极射线管中电子枪的部分剖面图,其中参考数1是第一电极(G1),2是第二电极(G2),3是第三电极(G3),4是第四电极(G4),5是第五电极(G5),6是第六电极(G6),30是屏蔽电极,38是主透镜,符号K是阴极。
在此电子枪中,第五电极5是聚焦电极,第六电极6是阳极,在这些电极之间形成主透镜38以使电子束成形。屏蔽电极30连接于第六电极6上。当电子枪用于阴极射线管时,屏蔽电极30装在靠近荧光屏的一侧,所以被主透镜38成形后的电子束几乎不受外界环境如偏转磁场和地磁场的影响。
图32为示意剖面图,对聚焦电压施加方法不同时的电子枪主要部分作一比较,其中图(a)示出施加固定聚焦电压的系统,图(b)示出施加动态聚焦电压的系统。
如图32(a)所示的施加固定聚焦电压类型的电子枪中,其电极结构和图31所示的电子枪相同,具有相同功能的部分以同样的参考数来表示。
在如图32(a)所示的施加固定聚焦电压类型的电子枪中,相同的聚焦电压Vf1加于构成第五电极5的电极51和52上。
另一方面,在如图32(b)所示的施加动态聚焦电压类型的电子枪中,不同的聚焦电压Vf1和Vf2施加于由二个电极51和52组成的第五电极5之上。特别是,在单个电极52上施加叠加于Vf2之上的动态聚焦电压dVf。而且使用动态聚焦电压的电子枪,有部分伸入到另一个电极中,以43标识之,因此电子枪的结构比图32(a)所示的电子枪复杂,使用昂贵的零件,而且装配时的效率也要降低。
图33是说明如图32所示电子枪上所施加的聚焦电压的示意图,其中图(a)示出施加固定聚焦电压电子枪中聚焦电压的波形,图(b)示出施加动态聚焦电压的电子枪中聚焦电压的波形。
在图(b)中,在使用固定聚焦电压Vf1的同时还使用了另一电压,后者是将动态聚焦电压Vf2叠加于另一固定聚焦电压Vf20之上而得到的。在施加图32(b)动态聚焦电压的电子枪中,阴极射线管的芯柱上要求用2个管针施加聚焦电压,而且必须与其他管针保持绝缘,这就要求比图32(a)施加固定聚焦电压的电子枪给予更细心的关注。这意味着在电视机中使用的管座必须是特殊结构,而且除了二个产生固定聚焦电压的电源之外还必须具有产生动态聚焦电压电路,此外在电视机装配线上还需要一定的调整时间。
当阴极射线管中电子束的最大偏置角保持不变时,随着荧光屏尺寸加大,荧光屏与电子枪主透镜之间的距离也随之增大,并且由于在此区域内电子束的空间电荷的拒斥作用而使聚焦特性恶化。
所以,如果有方法缩短电子枪主透镜与荧光屏之间的距离,能得到如同荧光屏尺寸减小时那样的精细电子束,则有可能提高阴极射线管的分辨率。
减小电子枪主透镜和荧光屏之间的距离,会使得偏转误差量增大和使得屏面周边的分辨率降低。根据上述技术,这要求进一步提高动态聚焦电压,同时也提高制造驱动电路的成本,并且由于要提高阴极射线管管座的绝缘性能,也增加了图象显示器的技术和经济负担。
本发明的目的是提供一种彩色阴极射线管,装备有一种在整个屏面和全部电子束电流范围内具有改善的聚焦特性的电子枪,勿需施加动态聚焦电压,就能够得到良好的分辨率,消除上述技术中的问题,并且,因在图象显示器中使用上述彩色阴极射线管,也就可能使用低成本的聚焦电源,同时也简化设定聚焦条件的操作。
本发明的另一目的是提供一种彩色阴极射线管,其装备有在整个屏面和全部电子束电流区域内具有改善的聚焦特性的电子枪,尽管使用小的动态电压,也可能得到良好的分辨率。
本发明再一个目的是提供一种彩色阴极射线管,它能消除因在彩色阴极射线管的荧光屏和电子枪主透镜之间的空间电荷拒斥作用引起的聚焦特性的恶化。
本发明还有一个目的是提供一种彩色阴极射线管,它装备有能改善聚焦特性的电子枪,并且能缩短总长度,从而使图象显示器的纵深长度缩短。
现代电视机的纵深长度取决于阴极射线管的总长度。若把电视机视为家庭装饰物,就要其纵深要短。从运输的角度出发,也要求电视机长度要短。
本发明还有一个目的是提供一种彩色阴极射线管,它装备一种电子枪,在彩色阴极射线管偏转角增大时能使图象均匀性在整个屏面上不蒙受损失,还能使图象显示器的纵深长度缩短。
根据上述技术为了对偏转磁场进行部分调整,则电子枪必须装上磁性材料制作的窄片。
本发明另一个目的是提供一种彩色阴极射线管,勿需使用任何磁性材料制作的窄片,而可部分调整偏转磁场,所以可以使用低成本的偏转线圈。
发明概述
本发明应用下述方法以解决前述问题。
也就是涉及包括以下部分的彩色阴极射线管:
电子枪,它包括形成一字形排列三根电子束的阴极,构成使电子束成形的主透镜的电极,沿管轴与构成主透镜的电极相邻的屏蔽电极,这用以防止已成形电子束受到外界环境的影响;
产生偏转磁场的偏转装置,使电子束在一字形排列方向上和与一字形排列垂直的方向上发生偏转;
荧光屏,当偏转的电子束射于其上便发出光线,以形成图象;
其特征在于,电子枪的屏蔽电极安置在偏转装置的偏转磁场中一定区域内,偏转误差校正电极装在屏蔽电极之内,形成非均匀电场,以依据电子束偏转量来改变电子束直径,所以勿需在电子枪聚焦电极上施加动态电压来校正偏转误差,就能够使整个屏面的分辨率均匀一致,校正偏转误差的电极安装于偏转磁场之中,构成非均匀电场,用以分别调整二根侧边电子束和中心电子束的偏转量。因此在偏转磁场中形成的非均匀电场可作为象散电场和/或彗差电场。
根据上述方法,将电子枪主透镜靠近荧光屏以减小空间电荷的拒斥作用,所以屏中心处的分辨率得以提高。同时,彩色阴极射线管的总长度能够缩短。
由于在图象显示器中使用总长缩短的彩色阴极射线管,也就能够减小外壳的纵深长度。
本发明的上述结构也呈现出下述作用。
在由偏转装置产生的偏转磁场中以固定方式形成非均匀电场,以根据偏转量来校正偏转误差。这里,用以形成非均匀电场来根据偏转量校正偏转误差的电极,还能够分别调整中心电子束和二根侧边电子束的偏转量。这样,甚至在使用没有校正彗差功能的低成本偏转线圈时,也能够在整个荧光屏上控制会聚。
由于根据偏转量对偏转误差的校正作用,在整个荧光屏上分辨率的均匀性得以提高,荧光屏至主透镜间的距离缩短,空间电荷的拒斥作用降低,在屏中心处的分辨率改善。此外,不仅其总长度缩短,而且慧差也降低了。
由于在图象显示器中使用这种彩色阴极射线管,就可能降低图象的色彩偏差,得到高质量的图象,并且缩短外壳的纵深长度。
附图简述:
图1为示意剖面图,示出使用一字形排列的三根电子束的彩色阴极射线管;
图2为从屏的方向观察的示意图,示出从阴极射线管的荧光屏发出的光点状态;
图3示出在使用一字形排列的三根电子束的彩色阴极射线管中偏转磁场的磁力线分布;
图4示出偏转量与偏转误差量之间的关系;
图5示出偏转量与偏转误差校正量间的关系;
图6示出象散电场,它是按照本发明实施例校正彩色显象管中偏转误差的一种电场;
图7为磁场结构图,其中图3的桶形垂直偏转磁场被分离为仅供偏转用的对称分量(对称双极磁场)和另一个分量(负的六极磁场);
图8示出当使用如图7所示的磁场时的发光部分,其一为在三根电子束中位于中心的电子束扫描线产生的发光部分,另一为位于二个侧边的电子束扫描线产生的发光部分;
图9示出E形线圈的鼓轮形磁场和为形成鼓轮形磁场的装置;
图10示出U形线圈的鼓轮形磁场和为形成鼓轮形磁场的装置;
图11示出依据本发明实施例的彩色阴极射线管的结构示意图;
图12示出依据本发明的校正偏转误差的电极形状,并且特别示出安装校正磁场用的磁性材料的实例;
图13示出使用图12中磁性材料校正偏转磁场的作用;
图14示出依据本发明的校正偏转误差的另一种电极形状,并特别画出安装校正磁场用的磁性材料的另一实例;
图15示出使用图14中磁性材料校正偏转磁场的作用;
图16示出依据本发明校正偏转误差的又一种电极形状,并特别示出安装校正磁场用的磁性材料的又一实例;
图17示出依据本发明的校正偏转误差的再一种电极形状;
图18示出依据本发明实施例的彩色阴极射线管中电子枪的作用;
图19示出与图14相同的电子枪,但没有校正偏转误差的电极;
图20示出不安装磁性材料时校正偏转误差的电极形状;
图21示出进入图6电场并偏离电场中心的电子束轨迹的漂移量与一种长度的关系,此长度为图20中彼此相对并形成方向与一字形排列方向垂直的宽间隙的那部分电极的长度;
图22示出依据本发明的校正偏转误差的又一种电极形状;
图23示出依据本发明的校正偏转误差的再一种电极形状;
图24示出慧差电场,它是依据本发明另一个实施例在偏转磁场中形成的固定的非均匀电场;
图25示出依据本发明的校正偏转误差的又一种电极形状;
图26示出在电子枪主透镜和荧光屏之间的电子束的状态;
图27示出电子束的光点直径和主透镜与荧光屏之间距离的关系;
图28示出偏转线圈沿管轴形成的磁场的实际分布;
图29为具有如图28所示磁场分布的偏转线圈的侧视图;
图30比较了使用本发明彩色阴极射线管的图象显示器和使用普通彩色阴极射线管的图象显示器的尺寸;
图31为使用一字形排列三根电子束的彩色阴极射线管中的电子枪部分的剖面图;
图32为电子枪主要部分的剖面图,它比较了施加聚焦电压方法不同时的电子枪的结构;
图33示出施加于图32中电子枪上的聚焦电压。
实施本发明的最佳方案:
下面将结合附图详细说明本发明的实施例。
图1示出使用一字形排列三根电子束的彩色阴极射线管,其中参考数7表示管颈部分,8表示锥部分,9表示电子枪,10表示电子束,11表示偏转线圈,12表示选色极,13表示荧光粉涂层(荧光屏),14表示屏部分。在下文中,凡具有相同功能的部分均用相同的参考数表示。
参考图1对阴极射线管的工作作一简明介绍,由管颈部分7、锥部分8和屏部分14组成真空外壳,电子枪9发射成形的电子束10,偏转线圈11使电子束10在水平方向和垂直方向上发生偏转。电子束10经偏转后穿过彩色选择电极12飞向并且撞击荧光屏13,于是发射出光线形成通过屏部分14可观察到的图象。
屏部分14通常具有如图2所示的近似于矩形的外形,荧光屏13在屏部分14的内面,也几乎为矩形以与之相匹配。下文将如图2所示的通过屏部分14所看到荧光屏13这种情况统称之为屏。
偏转线圈11产生如图3所示磁力线分布的交变磁场,沿图2中X-X轴方向扫描,并以低于沿X-X轴方向的扫描速度沿Y-Y轴方向扫描,这样扫描了整个荧光屏13,并随时间控制电子束10的量,以在荧光屏13上形成图象,并且具有相应的发光的亮度分布。沿X-X轴扫描的轨迹称为扫描线。
在图3中,符号H表示使电子束向图2中X-X方向偏转的磁力线,并具有鼓轮状分布。在下文中,这被视为水平偏转磁场。在图3中,符号V表示使电子束向图2中Y-Y方向偏转的磁力线,并具有桶形分布。在下文中,这被视为垂直偏转磁场。这些磁场分布可用来简化控制三个电子束会聚的电路。
图2示出在使用一字形排列三根电子束的彩色阴极射线管的屏上,荧光屏发射的光点的状态。在图2中,X-X代表在水平方向上屏的中心轴,Y-Y代表在垂直方向上屏的中心轴。参考数15表示在屏中心处的光点,其轮廓清晰而且直径很小。在屏的X-X轴最右端的光点由二部分组成,其一为高亮度部分16,称之为光核,另一为亮度稍低的部分17,称之为光晕,它位于光核的上下侧,作为整个光点,其形状在水平方向上被拉长了。屏的Y-Y轴最上端的光点也由在垂直方向上被压扁的光核18和光晕17组成。
屏角部的光点形状为:光晕17叠加于高亮度部分19之上,其光核在垂直方向上被压扁而在水平方向上被拉长,所以其整个形状被扭转了。甚至其光晕的形状也是由相应于18的部分叠加于高亮度部分16之上而组成,而且在屏上亮度最高面积最大。
在实际的彩色阴极射线管的屏上,屏中心处和其周边部的光点具有不同的状态,恰如图2所示,也就是说屏周边部的分辨率低于屏中心处的分辨率。这种现象称之为偏转误差。
图3所示的垂直偏转磁场V将电子束偏转向垂直方向,并根据偏转角将电子束在垂直方向聚焦。在图2中,光核18在垂直方向上被压扁并且产生光晕,主要是由于垂直偏转磁场V造成的。在图象位置上,电子束在到达荧光屏之前即在垂直方向上被聚焦。与此类似,光核16在水平方向上被拉长,主要也是由水平偏转磁场H的作用造成的。一般地说,屏周边分辨率的降低主要是由垂直偏转磁场V造成的。
图4示出偏转量和偏转误差量之间的关系。如图4所示,在阴极射线管中,偏转误差量随偏转量的增加而急剧增加。
图5示出偏转量与偏转误差校正量之间的关系。依据本发明,在阴极射线管的偏转磁场中形成一个固定的非均匀电场,则可根据所示的偏转量来校正偏转误差。
图6示出根据本发明实施例的彩色阴极射线管中校正偏转误差的电场,即示出了象散电场,也就是用在阴极射线管的偏转磁场中构成的固定非均匀电场来根据图5所示的偏转量校正偏转误差时的那种非均匀电场。
象散电场具有二个互相垂直的对称平面。图6示出上述二个对称平面中的一个。在图6中,虚线P表示等位线,它们之间的间距变小,则电场变强,而且它们离开电场中心轴X-X越远则其电位越高。
在图6中,10-2表示轨迹靠近电场中心轴Z-Z的电子束,在穿越电场时,电子束的直径有少许增大。参考数10-3表示轨迹远离电场中心轴Z-Z的电子束。它与电子束10-2相比较,当穿越电场时,其直径急剧增大,而且偏出。随着电子束远离中心轴Z-Z,其直径也逐渐增大,作为整体变化来说,其轨迹也是趋于离开电场的中心轴Z-Z。
通过在阴极射线管的偏转磁场中形成如图6所示的固定电场,并且通过像电子束10-3那样根据偏转量由偏转磁场改变电子束的轨迹,能够根据偏转量来改变电子束的发散量。
图7示出磁场的结构,其中如图3所示的桶形垂直偏转磁场V被分解为二个分量,其一为对称分量(对称的二极磁场M2)只用于偏转,还有另一个分量(负的六极磁场M6)。为会聚控制所需要的是六极磁场M6,其在水平方向附近的磁力线具有负号。
图8示出当使用图7所示电场时,由三电子束中位于中心的电子束形成的扫描线产生的发光部分和位于侧边的电子束形成的扫描线产生的发光部分。
在图8中,bc表示对应于中心电子束的发光部分。发光部分bc产生误会聚,与对应于侧边电子束的发光部分bs相比,它在水平方向上长一些,而在垂直方向上短一些。发光部分bc会使显示的图象的质量严重恶化。如图7所示,由于六极磁场分量M6的作用,位于侧边的电子束10s在屏的上下边发生旋转和畸变,而对于中心电子束10c来说,其垂直直径发生差异,图象质量恶化。这种情况被视为由偏转线圈造成的彗差。
图9示出由E形线圈产生的鼓轮磁场及形成鼓轮磁场的装置,图10示出由U形线圈产生的鼓轮磁场及形成鼓轮磁场的装置。线圈67绕在铁芯68a和68b之上,由外部电源向线圈67供电,由此形成辅助磁场Ma和Mb,用以校正由偏转线圈造成的慧差,并校正前面提到的误会聚。形成鼓轮磁场的器件包括一套零部件,诸如线圈67、铁芯68a、68b等等,通常都安装在偏转线圈上。由于在偏转线圈上装有这样一套零部件,则偏转线圈的生产变得成本昂贵,这从阴极射线管和图象显示器的制造观点来看,是极不现实的,因为它们在市场上必须具有高度的竞争力。
图11示出依据本发明实施例的彩色阴极射线管的结构示意图,其中参考数1是第一电极,2是第二电极,3是第三电极,4是第四电极,39是偏转误差校正电极,39a是安装在偏转误差校正电极上用于校正磁场的磁性材料,40是芯柱引线,符号K为阴极。
在图11中,偏转误差校正电极39安装在第四电极靠近荧光屏13一侧,第四电极4位于偏转线圈11形成的磁场中,同时也是电子枪的阳极。
在偏转误差校正电极39之上装有磁性材料39a,至少应装在对应于侧边电子束的部分上,也就是说,将一共二片磁性材料39a无论是电气连接还是机械方面都要牢固地沿电子束10的垂直方向装在第四电极4之上下。
磁性材料39a是由铁磁材料如铁氧体或镍合金制成的小片,安装于偏转误差校正电极39的背面,恰好使侧边电子束穿越其间,这就构成偏转磁场校正装置(场控制器)。
图12示出依据本发明的偏转误差校正电极的形状,并特别示出校正磁场的磁性材料的安装方法,其中图(a)是由荧光屏侧观察的正视图,而图(b)是表示图(a)的部分侧视剖面图。
在这个实例中,杯形屏蔽电极接于作为电子枪阳极的第四电极面向荧光屏的一侧,在杯形屏蔽电极内部,平行于一字形排列方向牢固地安装着偏转误差校正电极39,在其背面对应侧边电子束的位置上装有磁性材料39a,电子束穿越其沿垂直方向的间隙。
图13示出利用图12的磁性材料校正偏转磁场的作用,其中图(a)表示对垂直偏转磁场的的作用,而图(b)表示对水平偏转磁场的作用。
参看图(a),垂直偏转磁场V对侧边电子束10s作用较弱,而对中心电子束10c作用较强。
参看图(b),水平偏转磁场H对侧边电子束10s作用较强,而对中心电子束10c作用较弱。
如上所述,在偏转误差校正电极39上设置磁场材料39a,就能减小由偏转磁场造成的彗差。
偏转磁场甚至可以渗透到电子枪的主透镜中。因此对于那些靠荧光屏近而距主透镜远的电极来说,其结构应不会使电子束轰击其上。依据本发明,拥有多个电极的电子枪使用一字形排列的三根电子束,其最佳设计使屏蔽电极30上通过三个电子束的孔为一个单独的孔31,中间没有隔断物,允许三根电子束同时通过,还应将偏转误差校正电极39装在屏蔽电极30底面上朝向荧光屏的一侧,而不是安装在电子束通孔31的一侧。
图14示出依据本发明的另一种偏转误差校正电极的形状,特别画出校正磁场的磁性材料安装方法的另一实例,其中图(a)是由荧光屏侧观察的正视图,图(b)是图(a)的部分剖面侧视图。
在图14中,磁性材料39b由二部分组成,其第一平板部几乎平行于一字形排列方向,基本上为矩形,第二平板部与第一平板部是一体的,并弯向一字形排列中心轴(X-X)一侧,几乎为矩形,近似垂直于一字形排列方向。第一平板部的安装位置恰使电子束以垂直于一字形排列的方向穿越其间,第二平板部的安装位置使得其端部恰与在与中心电子束相对的侧边上的侧边电子束相对。
图15示出使用图14的磁性材料对偏转磁场的校正作用,其中图(a)表示对垂直偏转磁场的作用,而图(b)表示对水平偏转磁场的作用。
参看图(a),图14所示的磁性材料39b的第二平板部朝向一字形排列中心轴被弯得近于90°,并位于侧边电子束区域的外边。在这种情况下,分布在一字形排列中心轴附近的垂直偏转磁场V被集中向第二平板部,其密集程度比图13(a)的高,对侧边电子束10s的作用变得更弱,而对中心电子束10c的作用变得更强。并且,第二平板部屏蔽了垂直磁场中负的六极磁场分量(如图7所示)对侧边电子束10s外部的作用。于是侧边电子束10s在屏面的上下部的旋转畸变也会减小,相对于中心电子束10c而言,垂直直径的差别也变小。
如图15(b)所示,水平偏转磁场H也密集地集中在磁性材料39b的第二平板部,对侧边电子束10s的作用也强于图13(b)所示的情况,而对中心电子束10c的作用也更弱。
图16示出依据本发明的另一种偏转误差校正电极的形状,特别画出校正磁场的磁性材料的安装方法的另一实例,其中图(a)为由荧光屏观察的正视图,而图(b)为图(a)的部分剖面侧视图。
在图16中,磁性材料39c具有梯形表面的第三平板部,它几乎垂直于管轴(Z-Z),其安装位置恰使垂直于一字形排列方向的侧边电子束区域夹于其中,第二平板部近似为矩形,其矩形表面近似垂直于一字形排列方向,位于侧边电子束区域的边部,与中心电子束区域相对,第二平板部与第三平板部为一体结构,并被弯向管轴(Z-Z)方向,则其端部在此相对。
在图16中,与图15的结构相比,其垂直偏转磁场V对中心电子束10c的作用更强,而水平偏转磁场H对侧边电子束10s的作用也更强,彗差被偏转磁场进一步校正。
图17示出依据本发明的偏转误差校正电极的又一种形状,其中图(a)为侧视图,图(b)为由荧光屏观察的正视图。
在图17中,参考数77为把电子束10向一字形排列方向偏转的磁力线,磁性材料39-1作为偏转误差校正电极39的一部分。此外,相对的端部39-2仅在对应于侧边电子束的部分沿Z-Z方向向荧光屏伸出。这就可能将磁力线77集中于侧边电子束附近,增强在此区域内的偏转作用,以校正彗差。
为了使校正偏转误差的效果表现在非均匀电场中,偏转磁场具有所需的磁通密度是关键的。
在图17中,至少偏转误差校正电极的一部分是由磁性材料作成的,并作为在电场区域内提高磁通密度的措施,这可能更有利于校正偏转误差。
由于偏转误差校正电极39的作用,如参照图6所作的说明,固定象散电场形成于阴极射线管的偏转磁场中,以校正阴极射线管的偏转误差,并改善整个屏面上分辨率的均匀性。另外,主透镜38可安装得靠近荧光屏13,这样可能改善屏面中心处的分辨率,缩短总长度,而勿需增加阴极射线管的最大偏转角。
此外,磁性材料39a、39b和39c校正偏转磁场的影响量,因此彗差减小,并能重现高质量的图象。
由于使用上述阴极射线管,就能够做出图象质量优良、外壳长度小、而且图象颜色偏离小的图象显示器。
下面将说明本发明的作用机理。
图18示出依据本发明实施例的彩色阴极射线管中电子枪的作用,其中装有磁性材料39a的偏转误差校正电极39安装在构成电子枪阳极的第四电极4、41和荧光屏之间的偏转磁场中。
偏转误差校正电极39由彼此相对的二部分组成,电子束恰于其中间通过,并将其与阳极即第四电极41相联,保持阳极电位。由于这样的安排,图6所示的电场在上述相对的部分之间形成,并与通过电子枪阳极内部渗透的主透镜38的电场相关联。
当电子束10没被偏转时,它穿过上述相对的部分在荧光屏中心形成直径D1的光点。当电子束10被偏转向荧光屏上部时,沿着包络10D和10U′代表的轨迹在荧光屏上部形成直径D3的光点,包络在相对部分中于比中间略高的位置穿过。
图19示出与图18相同的电子枪在不安装偏转误差校正电极时的作用。在图19中没有偏转误差校正电极39的情况下,图18中的包络10U′在图19中由一条轨迹代表,由于垂直偏转磁场的聚焦作用,在到达荧光屏13之前,它与包络10D相交。电子束被过聚焦,在荧光屏上形成直径为D2的光点。在这种情况下,光晕发生在图2中光核18和19的上部和下部,使分辨率降低。
在图18中,垂直偏转磁场的聚焦作用被由偏转误差校正电极39产生的具有象散性的固定发散电场根据偏转量的作用而被抵消,并且根据偏转量来校正偏转误差。与此同时,彗差也被磁性材料39a校正了。
图20示出没有磁性材料的偏转误差校正电极的形状。偏转误差校正电极39是由二块折叠成台阶状的零件构成,它们彼此相对,恰使一字形排列的三根电子束10(中心电子束10c,侧边电子束10s)在相对部分中间穿过。
在图20中,将偏转误差校正电极安装得使其图面的右侧靠近荧光屏,使左侧远离荧光屏。其所加电位也可能与施加于电子枪的电位不同。沿管轴方向的长度l1和l2、相对部分在荧光屏一侧的间隙l3和安装位置均不能明确确定,因为它们会根据所用电子枪的性能、阴极射线管的结构、阴极射线管的驱动条件以及使用阴极射线管的目的不同而变化。彼此保持狭窄间隙的相对部分G可以不是平行平板。
图21示出长度l1和电子束10-3轨迹的漂移量之间的关系,并以长度l2为参变量,长度l1为彼此相对并在图20中与一字形排列方向相垂直的方向上形成一宽大间隙的部分的长度,电子束10-3轨迹的漂移量为其进入图6中的电场后与相对于电场中心的偏离量,l2为彼此相对并在图20中与一字形排列的方向垂直的方向上形成一狭小间隙的部分的长度。
如图21所示,电子束轨迹的漂移量随l1的增加而陡然增加。长度l2也以类似方式增加。所以,根据对应于一字形排列三根电子束中的中心电子束和侧边电子束的部分来改变l1和/或l2,能使偏转量有一定程度的改变。
图22示出依据本发明的偏转误差校正电极的又一种形状。在彼此相对形成一窄小间隙的偏转误差校正电极的各部分中,对应于侧边电子束10s的部分Gs的长度l2s短于对应于中心电子束10C的部分Ge的长度l2c,以校正图8中垂直方向上的误会聚。
图23示出依据本发明的另一种偏转误差校正电极的形状,其中图(a)是其主要部分的侧视图,而图(b)是由荧光屏观察的正视图。
在图23中,偏转误差校正电极39由直径不同、其截面几乎为矩形的二阶圆筒组成,其安放位置恰使得一字形排列的三根电子束从开口部分78中间穿过。在其他方面,其结构均与图22相同。
在图3和图31中,二个位于侧边的电子束10s根据其被偏向左或向右而穿越过不同的磁力线分布区域,并且受到偏转磁场的不同作用。在使用一字形排列三根电子束的彩色阴极射线管的偏转磁场中形成固定的非均匀电场,并根据偏转量对水平方向上的偏转误差进行校正时,对位于侧边的二根电子束10s的偏转误差校正量也根据其偏转方向而变化,以使整个屏面上的分辨率进一步均匀化。
图24示出彗差电场,它是本发明另一个实施例在偏转磁场中形成的固定非均匀电场。
彗差电场具有一个对称平面,图24示出该对称平面上的状态。
在图24中,随等位线P远离电场中心轴Z-Z而且其间距变窄,电场变强而且电位升高。在图面的轴线之下的部分中,等位线P的间距比上面部分的稍宽。电子束10-4穿过电场时,它靠近轴Z-Z并略有偏出,其直径也略有增大。轨迹远离轴Z-Z的电子束穿过电场时,直径增大并且向外偏出,其整个轨迹也远离轴Z-Z。在轴Z-Z之上通过的电子束10-5比在轴Z-Z之下通过的电子束10-6偏出得更多,其整个轨迹也更远离轴Z-Z。
依据本发明,在偏转位于图31所示电子枪中的侧边电子束10S的磁场中,形成具有图24所示分布的固定电场,以根据水平偏离方向和偏转量来校正偏转误差。
图25示出依据本发明的又一种偏转误差校正电极的形状,其中图(a)为顶视图,图(b)为从箭头A的方向观察的正视图,图(c)为从箭头B方向观察的侧视图。
在图25中,偏转误差校正电极39由二个部分长度不同的平面零件组成,它们彼此相对,恰使一字形排列的三根电子束穿越其相对的部分。
在图25中,偏转误差校正电极39是这样安排的:将图面右侧部分靠近荧光屏,而其左侧则远离荧光屏。符号E表示一字形排列三根电子束的中心电子束,它没有被偏转。当电子束被偏转向图(a)中一字形排列方向时,位于中心的电子束勿论是被偏转向图的上方或下方,都受到同样的作用,因为偏转误差校正电极39具有对称的形状。考虑到位于侧边的电子束,偏转误差校正电极39在靠近中心电子束的部分具有长度l5,而偏转误差校正电极39在远离中心电子束的侧边部分的长度随其远离E的距离而增加,并设定其端头部分长度为l6。
当在图3的偏转磁场中安装上述形状的偏转误差校正电极39时,就可根据侧边电子束偏转向图面的左方或右方来改变偏转误差的校正量,并降低由偏转磁场引起的彗差。
其所加电位也可不同于施加于电子枪的电位。l5和l6的尺寸以及其安装位置无法明确确定,因为它们随所用电子枪的特性、阴极射线管的结构、阴极射线管的驱动条件和使用阴极射线管的目的不同而变化。其相对部的间隙也可不为平行平板。
图26示出电子束在电子枪主透镜和荧光屏之间的状态。在电子枪的阳极4和荧光屏13之间的整个区域内维持正电位,即在这个区域内没有建立电场,故称之为漂移空间。
在受到主透镜38聚焦作用之后,电子束10在飞向荧光屏13的过程中得到进一步聚焦。在此情况下,由于电子电荷的作用,电子束产生发散,即空间电荷产生的拒斥作用。在到达荧光屏的途中,电子束会有一个最小直径D4。在此之后,由空间电荷拒斥作用形成的发散力逐渐大于由主透镜产生的聚焦力,于是在荧光屏上形成一个直径D1大于D4的光点。
图27示出电子束光点直径和在主透镜与荧光屏之间的距离的关系。如图27所示,可明显看出图26所描述的观象,分辨率随主透镜与荧光屏间的距离增大而降低。
当电子枪具有相同规格时,将在电子枪阴极附近的虚点投射到荧光屏上的放大倍数随距离L2增大而增大,在荧光屏13上形成的光点直径也随之增大,结果是分辨率下降。考虑到上述二个原因,减小主透镜与荧光屏间的距离,有可能增大荧光屏中心处的分辨率。
一般地说,在阴极射线管中,在靠近电子枪主透镜处电子束直径最大。电子束直径越大,受偏转磁场影响越大,则偏转误差增大。
图28示出由偏转线圈形成的沿管轴的实际磁场分布。在图29中沿偏转线圈66管轴的位置C、B、V、BH和A,完全对应于图28中管轴上的相同符号的位置。
在图28中,右边靠近荧光屏,而左边远离荧光屏,A表示测量磁场的参考位置,BH表示偏转方向与扫描线方向一致的磁场中磁力线密度64呈现最大值的位置,BV表示偏转方向与扫描线方向垂直的磁场中磁力线密度65呈现最大值的位置,C表示在产生偏转磁场的线圈中作铁芯的磁性材料远离荧光屏一侧的端部位置。
甚至在常规阴极射线管中,减小主透镜与荧光屏间的距离也能够改善荧光屏中心处的分辨率。当如图28所示的偏转磁场接近主透镜时,在屏周边的分辨率会因偏转误差而急剧下降。因此在实际中,以前并不能减小主透镜与荧光屏间的距离。
可是,依据本发明,位于偏转磁场中的偏转误差校正电极综合考虑偏转磁场的作用,会影响其校正作用。因此能够将主透镜靠近偏转磁场,能够缩短主透镜与荧光屏间的距离,就可能改善荧光屏中心处的分辨率。
换言之,依据本发明,只要构成铁心的磁性材料远离荧光屏一侧的端部与偏转误差校正电极靠近荧光屏一侧的端部之间的距离不大于40mm,在一定范围内,就能呈现上述效果,而不会带来损害。这里,在偏转误差校正电极靠近荧光屏一侧端部的磁力线密度不小于最大磁力线密度的25%。
依据本发明上述的结构,为了根据偏转量来校正偏转误差,在由偏转装置产生的偏转磁场中形成一个固定的非均匀电场。在这种情况下,偏转误差校正电极靠形成的非均匀电场来根据偏转量校正偏转误差,还具有对位于中心的电子束和位于侧边的电子束分别进行偏转量调整的功能。因此,甚至使用不具有彗差校正功能的偏转线圈时,也可能在整个荧光屏上控制会聚。
由于根据偏转量对偏转误差校正的作用,因此能够提供一种彩色阴极射线管,其特点是改善整个荧光屏上的分辨率的均匀性,改善荧光屏中心处的分辨率,这是由于缩短荧光屏和主透镜间的距离并抑制了空间电荷拒斥作用的结果,另外也缩短了总长度和减小了彗差。
图30比较了使用本发明彩色阴极射线管的图象显示器的尺寸和使用普通彩色阴极射线管的图象显示器的尺寸,其中图(a)和(b)为使用本发明彩色阴极射线管的显示器的正视图和侧视图,图(c)和(d)为使用普通彩色阴极射线管的显示器的正视图和侧视图。
参阅图30,根据本发明的图象显示器的外壳83的纵深长度L4(图b)短于现有技术中的长度(图d),能够节约安装空间。
由于在偏转磁场中形成固定的非均匀电场,根据电子束偏转角来校正偏转误差,这使得阴极射线管的主透镜更靠近偏转线圈,缩短了彩色阴极射线管84的长度L3,所以长度L4也缩短了。
如上所述,依据本发明的彩色阴极射线管不增加图象的颜色偏离并且显示高质量的图象,适宜在外壳纵深长度短的图象显示器中使用。