CN200410059329.1
2004.06.18
CN1574434A
2005.02.02
终止
无权
未缴年费专利权终止IPC(主分类):H01M 8/02申请日:20040618授权公告日:20071128终止日期:20130618|||授权|||实质审查的生效|||公开
H01M8/02; H01M8/04; H01M8/00
松下电器产业株式会社
长谷川贤治; 青山俊之; 东阴地贤; 下田代雅文; 小野雅行; 堀贤哉; 小田桐优
日本大阪府
2003.06.18 JP 2003-173395; 2003.06.18 JP 2003-173409
中科专利商标代理有限责任公司
汪惠民
一种燃料电池,燃料电池主体(2、12)具有阳极(3)、阴极(5)、存在于所述阳极和所述阴极之间的膜电极组合体(4),其中,至少所述阳极(3)侧浸渍配置于贮存液体燃料(55)的容器(54)中。在由所述隔膜的表面的凹凸和所述膜电极组合体包围的区域内形成所述液体燃料流动的燃料用通路(111、112)。这样,就可以实现燃料供给系统等辅机的构成的小型化、简单化及省电化。
1. 一种燃料电池,其特征是,具备:设有具有在厚度方向扁平并且在表面形成了凹凸的阳极侧隔膜(11)的阳极(3)、阴极(5)、存在于所述阳极和所述阴极之间的膜电极组合体(4)的燃料电池主体(2);和收容向所述阳极供给的液体燃料(55)并且使所述燃料电池主体的至少所述阳极浸渍在该液体燃料中的容器(54),所述燃料电池主体作为所述液体燃料流动的燃料用通路(111、112),具有由所述阳极侧隔膜的表面形成的所述凹凸和所述膜电极组合体的表面包围的区域,该燃料用通路被配置为,从该燃料用通路的导入口(301)到设于比该导入口更高位置的排出口(302)沿大约同一方向延伸。2. 根据权利要求1所述的燃料电池,其特征是,所述阳极侧隔膜由形成了波形的板体(110)构成。3. 根据权利要求2所述的燃料电池,其特征是,所述阳极侧隔膜相对于在与所述膜电极组合体未接触侧的表面形成的谷部(112x),将与所述膜电极组合体接触侧的表面上形成的谷部(111x)制成更大的波形(110x)。4. 根据权利要求2所述的燃料电池,其特征是,所述阳极侧隔膜具有从其表面贯穿至背面的贯穿孔(116),将该贯穿孔作为燃料用通路。5. 根据权利要求1所述的燃料电池,其特征是,所述沿近似同一方向延伸的燃料用通路(111z、112z)相对于连接所述导入口和所述排出口的方向倾斜配置。6. 根据权利要求1所述的燃料电池,其特征是,所述阴极具有在厚度方向扁平并且表面形成了凹凸的阴极侧隔膜(10)。7. 一种燃料电池,其特征是,具有将多个权利要求6所述的所述燃料电池中使用的所述燃料电池主体沿厚度方向密接而连接的多联燃料电池主体(12),在所述各个燃料电池主体中,所述阳极侧隔膜及所述阴极侧隔膜在与所述膜电极组合体接触的一侧的表面上具有所述凹凸,在相邻的所述各个燃料电池主体之间,该相邻的各个燃料电池主体的相同极被相对配置,可以共用相同种类的所述隔膜(10a、10b、11b)。8. 根据权利要求7所述的燃料电池,其特征是,所述被共用的阴极侧隔膜(10a、10b)由非导电性材料形成,在所述各个膜电极组合体中,配置在与该阴极侧隔膜接触的表面上的各个导电性扩散层(45a、45b、45c、45d)成为所述各个阴极侧的电极。9. 根据权利要求7所述的燃料电池,其特征是,所述多联燃料电池主体被配置为其整体浸渍在收容于所述容器中的液体燃料中。10. 根据权利要求7所述的燃料电池,其特征是,所述被共用的阴极侧隔膜作为氧用通路具有沿厚度方向贯穿设置的长孔(106)。11. 根据权利要求10所述的燃料电池,其特征是,所述长孔为蛇形状。12. 根据权利要求7所述的燃料电池,其特征是,在所述各个阳极侧隔膜中,沿所述大约同一方向延伸的燃料用通路相对于连接所述导入口和所述排出口的方向倾斜配置,并且一个所述阳极侧隔膜(11d、11f)的所述倾斜方向与相邻配置的所述阳极侧隔膜(11e)的所述倾斜方向相反。13. 根据权利要求1所述的燃料电池,其特征是,所述阳极侧隔膜由树脂制成。14. 一种燃料电池,其特征是,具有将多个权利要求6所述的所述燃料电池中使用的所述燃料电池主体沿厚度方向密接而连接的多联燃料电池主体(212),在所述各个燃料电池主体中,所述阳极侧隔膜及所述阴极侧隔膜在与所述膜电极组合体接触的一侧的表面上具有所述凹凸,相邻的所述各个燃料电池主体的不同电极被相面对配置,在该相邻的燃料电池主体间,所述相互不同的电极之间电连接且配置在它们之间的所述隔膜的周部的至少一部分上形成由导电性材料制成的导电部(210b、310b、410b)。15. 根据权利要求14所述的燃料电池,其特征是,在所述隔膜上,形成所述凹凸的部分由非导电性材料形成,所述导电部被配置在所述周部整体上而形成。16. 根据权利要求1所述的燃料电池,其特征是,具备:作为所述容器来收容所述液体燃料、并且将所述阳极配置在其内部而可以向所述阳极供给该收容的液体燃料的第1燃料容器(5、25);收容可以向所述第1燃料容器供给比收容于所述第1燃料容器中的所述液体燃料浓度更高的液体燃料原液的第2燃料容器(704、724);调整向所述第1燃料容器和所述第2燃料容器的所述在阴极生成的生成物的各回收量的回收量调整装置(706、726)。17. 根据权利要求16所述的燃料电池,其特征是,具备:将所述第2燃料容器的所述液体燃料原液向所述第1燃料容器供给的原液供给装置(711、731);分别连通所述阴极和所述第1燃料容器及所述第2燃料容器、将由所述阴极生成的生成物向所述第1燃料容器或所述第2燃料容器供给而回收的生成物回收通路(708、728),所述回收量调整装置被设于所述生成物回收通路的途中。18. 根据权利要求17所述的燃料电池,其特征是,在通过控制所述回收量调整装置来控制向所述第1燃料容器或所述第2燃料容器的所述生成物的回收量的同时,还具有如下的控制装置(715、735),即,通过控制所述原液供给装置,来控制向所述第1燃料容器的所述液体燃料原液的供给量,补充在所述第1燃料容器中因发电而消耗的所述液体燃料。19. 根据权利要求18所述的燃料电池,其特征是,还具有对所述第1燃料容器所收容的所述液体燃料的浓度进行检测的浓度检测装置(717),所述控制装置控制利用所述原液供给装置的所述液体燃料原液的供给量、以及利用所述回收量调整装置的所述生成物的向所述第1燃料容器的回收量,以使由所述浓度检测装置检测的所述液体燃料的浓度成为可以发电浓度范围内的任意浓度。20. 根据权利要求18所述的燃料电池,其特征是,还具有对所述发电的电能进行检测的电能检测装置(742),所述控制装置根据由所述电能检测装置检测的电能,算出因所述发电而消耗的所述液体燃料的补给量,并根据该算出结果,来控制利用所述原液供给装置的所述液体燃料原液的供给量、以及利用所述回收量调整装置的所述生成物的向所述第1燃料容器的回收量。21. 根据权利要求18到20中任意一项所述的燃料电池,其特征是,所述第1燃料容器还具有可以对所述液体燃料的收容量进行检测的收容量检测装置(741),所述控制装置,控制利用所述原液供给装置的所述液体燃料原液的供给量、以及利用所述回收量调整装置的所述生成物的向所述第1燃料容器的回收量,以使由所述收容量检测装置检测出的所述第1燃料容器的收容量达到特定的液量。22. 根据权利要求17所述的燃料电池,其特征是,所述生成物作为主成分含有水,收容于所述第1燃料容器中的所述液体燃料为将所述液体燃料原液用水稀释后的溶液。23. 根据权利要求22所述的燃料电池,其特征是,所述液体燃料为作为可以发电浓度范围的1~10wt%的范围内的任意浓度的甲醇水溶液,所述液体燃料原液为具有比所述甲醇水溶液更高浓度的甲醇水溶液或甲醇原液。24. 一种燃料电池,其特征是,具备:设有具有在厚度方向扁平并且在表面形成了凹凸的阳极侧隔膜(11)的阳极(3)、具有由非导电性材料制成的在厚度方向扁平并且在表面形成了凹凸的阴极侧隔膜(10)的阴极(5)、存在于所述阳极和所述阴极之间的膜电极组合体(4)的燃料电池主体(2);以及收容向所述阳极供给的液体燃料(55)并且使所述燃料电池主体的至少所述阳极浸渍在该液体燃料中的容器(54),所述燃料电池主体作为所述液体燃料流动的燃料用通路(111、112),具有由所述阳极侧隔膜的表面上形成的所述凹凸和所述膜电极组合体的表面包围的区域,该燃料用通路被配置为,从该燃料用通路的导入口(301)到设于比该导入口更高位置的排出口(302)沿大约同一方向延伸。25. 根据权利要求24所述的燃料电池,其特征是,在所述膜电极组合体中,配置于与该阴极侧隔膜接触的表面上的导电性的扩散层(45)成为所述阴极侧的电极。
燃料电池 技术领域 本发明涉及一种燃料电池,特别涉及向阳极直接供给甲醇等有机液体燃料而发电的类型的燃料电池。 背景技术 携带电话、便携式信息终端、笔记本型个人电脑、便携式视听器材、便携式可视机器等便携式电子机器正在普及。一直以来,此种携带用电子机器由一次电池或二次电池驱动。特别是,作为二次电池,使用镍镉电池或锂离子电池,已经开发出小型并且具有高能量密度的电池。但是,由于二次电池在经过一定量的电力使用后,需要使用充电器进行一定时间的充电,因此期望有以短时间的充电可以进行长时间连续驱动的电池。 为了应对该需求,已经提出不需要进行充电的燃料电池。燃料电池是将燃料所具有的化学能电化学地变换为电能的发电机。作为此种燃料电池的例子,已知有固体高分子型燃料电池(PEFC),即,通过使用全氟碳磺酸类的电解质在阳极还原氢气,在阴极还原氧而进行发电。此种PEFC具有作为输出密度高的电池的特征,其开发正在进行中。 但是,此种PEFC所使用的氢气的体积能量密度低,需要增大燃料罐的体积,需要向燃料电池主体(发电部)供给燃料气体、氧化气体的装置、用于稳定电池性能的加湿装置等辅机,燃料电池系统大型化,因此不适合作为携带电子机器用的电源。 另一方面,通过从甲醇中直接取出质子来进行发电的直接型甲醇燃料电池(DMFC)与PEFC相比,虽然有其输出减小的缺点,但是由于可以提高燃料的体积能量密度、可以减少燃料电池主体的辅机,因而有可以小型化的优点。所以,其作为携带机器用电源受到关注,已经提出几个方案。 该DMFC的燃料电池主体内进行的阳极侧的反应及阴极侧的反应如下。 阳极侧: 阴极侧: 如所述化学式所示,通过使用燃料电池发电,在阳极侧生成二氧化碳,在阴极侧生成水。这样,为了进行继续的发电,需要构成搭载了用于进行该生成的二氧化碳和水的处理的辅机的燃料电池系统。 作为此种以往的DMFC方式的燃料电池系统的构成,可以列举出美国专利第5599638号说明书(图1及图2)等。该燃料电池系统采用如下的燃料循环方式,即,为了从收容了作为燃料的甲醇水溶液的循环罐向阳极稳定地供给甲醇水溶液,使用泵,将未被该阳极消耗的残留的甲醇水溶液再次返回循环罐而回收,再次作为燃料使用。 另一方面,在阴极侧因发电而生成的水被水回收容置回收,向收容有甲醇水溶液的循环罐供给。 但是,一般来说,燃料电池主体为了提高向阳极及阴极供给的燃料及氧的反应效率,延长阳极及阴极内的燃料及氧的滞留时间,所以,经常要加长阳极及阴极内的燃料及氧的通路。例如,使用由以碳材料等制成的导电性材料构成的、分别设置了1个入口和出口的并且形成了多次蜿蜒跨越其上端和下端的槽的隔膜。 但是,使用该隔膜形成的燃料电池由于在隔膜表面形成的槽成为燃料及氧的通路,虽然在阳极及阴极内的滞留时间加长,但是为了使之流动,需要较高的压力。特别是,在美国专利第5599638号说明书中公布的燃料电池系统中,由于还需要从甲醇贮藏罐向循环罐输送燃料的泵,因此在向阳极供给燃料的辅机系统中就需要使用2个泵。此种情况下,就无法实现燃料电池系统的小型化,因而产生很难适用于携带电子机器等的问题。 另外,在像这样需要用于燃料供给的辅机系统的构成中,有必要利用燃料电池系统的发电来补充该辅机系统的驱动所必须地电力。所以,还会有用于该辅机系统的驱动的电力供给会阻碍燃料电池系统的发电的高效率化的问题。特别是,此种问题加上燃料电池系统自身的小型化的实现,就会有成为更加明显的问题的倾向。例如,如果燃料电池系统的发电输出为12W,则辅机的消耗电力最好设为2W以下。 另外,为了形成高发电输出的燃料电池系统,虽然搭载多个该系统所使用的燃料电池主体即可,但是仅单纯地使用多个独立的燃料电池主体的话,各个燃料电池的发电所必需的辅机的消耗电力也会增大,从而使得系统整体大型化。 另外,在所述的以往的DMFC方式中,如所述化学式所示,当消耗向阳极供给的甲醇水溶液当中的1mol的甲醇和1mol的水而进行发电时,在阴极会生成3mol的水。所以,如果将这些生成的水全部回收向循环罐供给的话,就会使该循环罐内的甲醇水溶液浓度显著降低,从而有导致发电可能时间的降低或电量的降低的问题。 为了解决此种问题,大致可以考虑2个方法。 作为第1个方法,从由所述水回收容置回收的水当中,仅将一部分的水供给循环罐,以防止甲醇水溶液的浓度的显著降低。 另外,作为第2个方法,虽然将由所述水回收容置回收的水的全部向循环罐供给而回收,但是将该循环罐自身设为大容量的装置,即使进行所述回收,也不会引起甲醇水溶液的浓度的显著降低。 但是,所述的第1个方法虽然可以作为汽车用或大型装置用的燃料电池系统而采用,但是会产生将未被循环罐回收的其他的水排出的必要,伴随着该排水操作,很可能在携带电子机器所内置的电子机器或电路上,水分会附着或发生结露,因而会有难以作为携带电子机器用的燃料电池系统采用的问题。 另外,在所述的第2个方法中,与燃料电池系统的小型化相反,会产生无法作为携带电子机器用的燃料电池系统采用的问题。 发明内容 所以,为了解决所述问题,本发明的目的在于,提供在使用甲醇等有机液体燃料进行发电的燃料电池中,可以实现燃料供给系统等辅机构成的小型简单化及省电化的燃料电池。 本发明为了达成所述目的,采用如下的构成。 根据本发明的方式1,提供如下的燃料电池,具备:设有具有在厚度方向扁平并且在表面形成了凹凸的阳极侧隔膜的阳极、阴极、存在于所述阳极和所述阴极之间的膜电极组合体的燃料电池主体、 收容向所述阳极供给的液体燃料并且使所述燃料电池主体的至少所述阳极浸渍在该液体燃料中的容器, 所述燃料电池主体作为所述液体燃料流动的燃料用通路,具有由所述阳极侧隔膜的表面形成的所述凹凸和所述膜电极组合体的表面包围的区域, 该燃料用通路被配置为,从该燃料用通路的导入口到设于比该导入口更高位置的排出口,沿大约同一方向延伸。 根据本发明的方式2,提供如下的方式1所述的燃料电池,所述阳极侧隔膜由形成了波形的板体构成。 根据本发明的方式3,提供如下的方式2所述的燃料电池,所述阳极侧隔膜形成以下这种波形,即,相对于在与所述膜电极组合体未接触侧的表面形成的谷部,与所述膜电极组合体接触侧的表面上形成的谷部更大。 根据本发明的方式4,提供如下的方式2所述的燃料电池,所述阳极侧隔膜具有从其表面贯穿至背面的贯穿孔,将该贯穿孔作为燃料用通路。 根据本发明的方式5,提供如下的方式1所述的燃料电池,沿所述近似同一方向延伸的燃料用通路,相对于连接所述导入口和所述排出口的方向倾斜配置。 根据本发明的方式6,提供如下的方式1所述的燃料电池,所述阴极具有在厚度方向扁平并且表面形成了凹凸的阴极侧隔膜。 根据本发明的方式7,提供如下的燃料电池,具有将多个方式6所述的所述燃料电池使用的所述燃料电池主体沿厚度方向密接而连接的多联燃料电池主体, 在所述各个燃料电池主体上,所述阳极侧隔膜及所述阴极侧隔膜在与所述膜电极组合体接触的一侧的表面上具有所述凹凸, 在相邻的所述各个燃料电池主体之间,该相邻的各个燃料电池主体的相同极被相对配置,可以共用相同种类的所述隔膜。 根据本发明的方式8,提供如下的方式7所述的燃料电池,所述被共用的阴极侧隔膜由非导电性材料形成,在所述各个膜电极组合体上,配置在与该阴极侧隔膜接触的表面上的各个导电性扩散层成为所述各个阴极侧的电极。 根据本发明的方式9,提供如下的方式7所述的燃料电池,所述多联燃料电池主体被配置为将整体浸渍在收容于所述容器中的液体燃料中。 根据本发明的方式10,提供如下的方式7所述的燃料电池,所述被共用的阴极侧隔膜作为氧用通路具有沿厚度方向贯穿设置的长孔。 根据本发明的方式11,提供如下的方式10所述的燃料电池,所述长孔为蛇形状。 根据本发明的方式12,提供如下的方式7所述的燃料电池,在所述各个阳极侧隔膜上,沿所述大约同一方向延伸的燃料用通路相对于连接所述导入口和所述排出口的方向倾斜配置,并且一个所述阳极侧隔膜的所述倾斜方向与相邻配置的所述阳极侧隔膜的所述倾斜方向反向。 根据本发明的方式13,提供如下的方式1所述的燃料电池,所述阳极侧隔膜由树脂制成。 根据本发明的方式14,提供如下的燃料电池,具有将多个方式6所述的所述燃料电池使用的所述燃料电池主体沿厚度方向密接而连接的多联燃料电池主体, 在所述各个燃料电池主体上,所述阳极侧隔膜及所述阴极侧隔膜在与所述膜电极组合体接触的一侧的表面上具有所述凹凸, 相邻的所述各个燃料电池主体的不同电极被相对配置, 在该相邻的燃料电池主体间,在配置在它们之间的所述隔膜的周部的至少一部分上形成有由导电性材料制成的导电部,以便将所述相互不同的电极之间电连接。 根据本发明的方式15,提供如下的方式14所述的燃料电池,在所述隔膜中,形成所述凹凸的部分由非导电性材料形成,所述导电部被配置在所述周部整体上而形成。 根据本发明的方式16,提供如下的方式1所述的燃料电池,具备:作为所述容器来收容所述液体燃料、并且将所述阳极配置在其内部而可以向所述阳极供给该收容的液体燃料的第1燃料容器、 收容可以向所述第1燃料容器供给的、比收容于所述第1燃料容器中的所述液体燃料浓度更高的液体燃料原液的第2燃料容器、 对所述第1燃料容器和所述第2燃料容器调整所述生成物的各自的回收量的回收量调整装置。 根据本发明的方式17,提供如下的方式16所述的燃料电池,具备:将所述第2燃料容器的所述液体燃料原液向所述第1燃料容器供给的原液供给装置、 分别连通所述阴极和所述第1燃料容器及所述第2燃料容器、将由所述阴极生成的生成物向所述第1燃料容器或所述第2燃料容器供给而回收的生成物回收通路, 所述回收量调整装置被设于所述生成物回收通路的途中。 根据本发明的方式18,提供如下的方式17所述的燃料电池,在通过控制所述回收量调整装置来控制向所述第1燃料容器或所述第2燃料容器的所述生成物的回收量的同时,还具有如下的控制装置,即,通过控制所述原液供给装置,来控制向所述第1燃料容器的所述液体燃料原液的供给量,补充在所述第1燃料容器中因发电而消耗的所述液体燃料。 根据本发明的方式19,提供如下的方式18所述的燃料电池,还具有对所述第1燃料容器所收容的所述液体燃料的浓度进行检测的浓度检测装置, 所述控制装置按照使由所述浓度检测装置检测出的所述液体燃料的浓度成为可以发电浓度范围内的任意浓度的方式,控制利用所述原液供给装置的所述液体燃料原液的供给量、利用所述回收量调整装置的所述生成物的向所述第1燃料容器的回收量。 根据本发明的方式20,提供如下的方式18所述的燃料电池,还具有对所述发电的电能进行检测的电能检测装置, 所述控制装置,对于所述燃料电池主体,根据由所述电量检测装置检测出的电能,算出因所述发电而消耗的所述液体燃料的补给量,根据该算出结果,控制利用所述原液供给装置的所述液体燃料原液的供给量、利用所述回收量调整装置的所述生成物的向所述第1燃料容器的回收量。 根据本发明的方式21,提供如下的方式18到方式20中任意一个所述的燃料电池,所述第1燃料容器还具有可以对所述液体燃料的收容量进行检测的收容量检测装置, 所述控制装置按照使由所述收容量检测装置检测出的所述第1燃料容器的收容量达到特定的液量的方式,控制利用所述原液供给装置的所述液体燃料原液的供给量、利用所述回收量调整装置的所述生成物的向所述第1燃料容器的回收量。 根据本发明的方式22,提供如下的方式17所述的燃料电池,所述生成物作为主成分含有水,收容于所述第1燃料容器中的所述液体燃料为将所述液体燃料原液用水稀释后的溶液。 根据本发明的方式23,提供如下的方式22所述的燃料电池,所述液体燃料为作为可以发电浓度范围的1~10wt%的范围内的任意浓度的甲醇水溶液,所述液体燃料原液为具有比所述甲醇水溶液更高浓度的甲醇水溶液或甲醇原液。 根据本发明的方式24,提供如下的燃料电池,具备:设有具有在厚度方向扁平并且在表面形成了凹凸的阳极侧隔膜的阳极、具有由非导电性材料制成的在厚度方向扁平并且在表面形成了凹凸的阴极侧隔膜的阴极、存在于所述阳极和所述阴极之间的膜电极组合体的燃料电池主体,和 收容向所述阳极供给的液体燃料并且使所述燃料电池主体的至少所述阳极浸渍在该液体燃料中的容器, 所述燃料电池主体作为所述液体燃料流动的燃料用通路,具有由所述阳极侧隔膜的表面上形成的所述凹凸和所述膜电极组合体的表面包围的区域, 该燃料用通路被配置为,从该燃料用通路的导入口到设于比该导入口更高位置的排出口沿大约同一方向延伸。 根据本发明的方式25,提供如下的方式24所述的燃料电池,在所述膜电极组合体中,配置于与该阴极侧隔膜接触的表面上的导电性的扩散层成为所述阴极侧的电极。 根据本发明的所述方式1,燃料电池主体的阳极被配置为浸渍在收容于容器中的液体燃料中,从而可以使该容器所收容的所述液体燃料通过阳极而提供。所述燃料电池主体的阳极具有由阳极侧隔膜和膜电极组合体形成的燃料用通路,可以使所述液体燃料通过该燃料用通路。在经过该所述燃料用通路的途中,该液体燃料因阳极反应而分解,成为质子和二氧化碳。所以,利用所述阳极内产生的二氧化碳,可以进行该阳极内的所述液体燃料的流动,从而可以在长时间内进行发电。即,在所述构成中,由于使所述燃料用通路从导入口到设于比该导入口更高位置的排出口沿大约同一方向延伸而构成,因此在经过该燃料用通路的途中因阳极反应而产生的二氧化碳上升,向所述排出口方向移动,所以该排出口侧的所述燃料用通路上的液体密度降低,通过将液体向排出口侧送出的推力发生作用,就可以实现所述液体燃料的流动。 所以,不需要泵等特别的动力,就可以将所述液体燃料向所述阳极内高效率地供给,从而可以提供辅机较少的小型并且轻量的燃料电池。 根据本发明的方式2,通过将所述阳极侧隔膜制成波形,降低该阳极侧隔膜和所述膜电极组合体的接触面积,可以增大所述燃料用通路内的所述液体燃料与该膜电极组合体的表面接触的面积,因此,可以更高效率地进行阳极反应。因而,就可以提供能够高效率地进行发电的燃料电池。 根据本发明的所述方式3,通过按照相对于未与所述膜电极组合体接触侧的表面上形成的谷部,与所述膜电极组合体接触侧的谷部更大的方式,来形成所述阳极侧隔膜的所述波形的形状,就可以增大与该膜电极组合体接触一侧的所述燃料用通路的容积,从而可以流通更多的液体燃料,因此使所述阳极反应中可以反应的液体燃料的体积增大,从而可以增加生成的质子及二氧化碳的量。所以,可以在所述阳极使液体燃料更有效地对流。 根据本发明的所述方式4,即使将燃料电池配置为相对于沿着所述阳极侧隔膜的表面具有倾斜度时,由于可以使二氧化碳穿过形成于该阳极侧隔膜上的该贯穿孔,从该隔膜的一方的表面侧向另一方的表面侧移动,因此可以防止所述液体燃料在所述阳极内滞留,从而可以更有效地向阳极供给液体燃料。 根据本发明的所述方式5,通过将所述燃料用通路相对于连接所述导入口和所述排出口的方向倾斜配置,可以使二氧化碳沿着该倾斜的燃料用通路移动,从而可以防止所述液体燃料在所述阳极内的滞留,进而可以更有效地向阳极供给液体燃料。 根据本发明的所述方式6,即使在所述燃料电池主体中,除了配置于所述阳极侧的所述阳极侧隔膜,还配置有所述阴极侧的阴极侧隔膜,也可以提供能够获得利用所述各个方式而产生的效果的燃料电池。 根据本发明的所述方式7,在所述各个隔膜中,通过在与所述膜电极组合体接触的一侧的表面形成所述凹凸,相邻的所述各个燃料电池主体之间相同电极被相面对配置,就可以在该相邻的各个燃料电池主体中,共用相同种类的隔膜。所以,就可以小型地构成将各个燃料电池主体连接而形成的多联燃料电池主体。 另外,所述多联燃料电池主体所具有的所述各个燃料电池主体如上所述,由于不需要像在所述各个燃料电池用通路中设置泵等动力那样的特别的构成,就可以高效率地将所述液体燃料向阳极供给,因此,即使将所述多个燃料电池主体组合,也不需要增加作为系统整体所必需的辅机的数量,因而可以减少自身消耗电力的增加比例。 根据本发明的所述方式8,通过用非导电性材料构成所述隔膜,可以防止作为相同电极的相邻其他所述燃料电池主体的电极的电荷混合。所以,由连接的多个所述燃料电池主体产生的电力不会降低,而可以将所述各个燃料电池主体所产生的电力之和,作为所述多联燃料电池主体整体的输出。另外,即使像这样所述共用的阴极侧隔膜由非导电性材料形成时,所述各个膜电极组合体中,配置在与该阴极侧隔膜接触的表面上的各个导电性扩散层,也具有作为所述的各个阴极的电极的功能,因而可以输出因发电而获得的电力。另外,通过不采用导电性材料,而采用非导电性材料作为所述阴极侧隔膜,与使用所述导电性材料的情况相比,可以取得更高的电压。 根据本发明的所述方式9,所述多联燃料电池主体的所述各阳极侧隔膜的全部的导入口都被配置在所述容器内,因此能够以简单的构成来有效地进行所述液体燃料的向所述各个阳极的供给。 根据本发明的所述方式10,所述被共用的阴极侧隔膜通过将贯穿厚度方向而设置的长孔作为氧用通路,可以将该氧用通路作为对于所述相邻的2个燃料电池主体的氧用通路使用,从而能够以简单的构成形成可以共用的阴极侧隔膜。 根据本发明的所述方式11,由于作为所述氧用通路而形成的所述长孔为蛇形状,因而可以将氧通过该氧用通路有效地向所述阴极供给。 根据本发明的所述方式12,在所述各个阳极侧隔膜中,所述燃料用通路相对于连接所述导入口和所述排出口的方向被倾斜配置,一个所述阳极侧隔膜的所述燃料用通路的倾斜方向,被设为与和其相邻配置的所述阳极侧隔膜的所述燃料用通路的倾斜方向反向,因此即使所述多联燃料电池主体被倾斜配置时,也可以在任意一个所述阳极侧隔膜上,确保二氧化碳的移动。所以,可以防止所述液体燃料在所述阳极内的滞留,从而可以有效地将液体燃料向阳极供给。 根据本发明的所述方式13,通过用树脂形成所述阳极侧隔膜,可以使该隔膜轻量化,并且其成形更容易,从而可以实现复杂的槽形状的批量生产。 根据本发明的所述方式14,在将多个所述燃料电池主体连接而形成多联燃料电池主体的情况下,可以将相邻的各个所述燃料电池主体的相互不同的电极之间连接,即,可以实现串联状态的连接。另外,通过在配置于所述相互不同的电极之间的所述隔膜的周部的至少一部分上形成由导电性材料形成的导电部,将各个导电部之间连接,就可以不需要用于连接的配线等,而实现所述串联连接。所以,就可以实现所述多联燃料电池主体的构成的简单化,从而可以提供小型并且轻量化的燃料电池。 根据本发明的所述方式15,提供跨越所述隔膜的外周部分的整体形成所述导电部,就可以将相邻的电极之间以更稳定的状态电连接。 根据本发明的所述方式16或所述方式17,通过设置将因发电而在阴极生成的生成物向第1燃料容器或第2燃料容器回收的生成物回收通路,就可以不用将该生成物向燃料电池的系统外排出,而回收在所述第1燃料容器或所述第2燃料容器中,因此可以防止伴随发电的生成物的产生导致的对燃料电池系统外的影响。 另外,利用设于所述生成物回收通路的途中的回收量调整装置,可以控制所述生成物向所述第1燃料容器或所述第2燃料容器的回收量,该向第1燃料容器的所述生成物的回收量的控制,及利用原液供给装置的液体燃料原液的向所述第1燃料容器的供给量的控制,可以按照补给因所述发电消耗的所述液体燃料的方式,一边进行所述生成物的回收,一边保持收容于所述第1燃料容器中的液体燃料的状态(例如浓度或收容量)。 即,按照可以补充因所述发电消耗的所述第1燃料容器的液体燃料的方式,控制向所述第1燃料容器的所述液体燃料原液的补给量,及所述生成物的补给量,将对于所述补给不需要的量的所述生成物向所述第2燃料容器供给。所以,可以保持与所述发电直接有关的所述第1燃料容器的液体燃料的状态,从而可以进行继续的发电。 这样,就可以实现所述生成物的回收,而且可以保持所述第1燃料容器的液体燃料的状态,因而不需要增大其容量,可以实现燃料电池的小型化。这样,就可以提供能够作为携带电子机器用电池使用的小型化的燃料电池。 根据本发明的所述方式18,利用控制装置控制所述回收量调整装置,来控制向所述第1燃料容器或所述第2燃料容器的所述生成物的回收量,同时,通过控制所述原液供给装置,来控制从所述第2燃料容器向所述第1燃料容器的所述液体燃料原液的供给量,就可以补给在所述第1燃料容器中因发电而消耗的所述液体燃料。所以,在所述燃料电池主体中,即使在进行继续的发电,而使在所述第1燃料容器中所收容的所述液体燃料被消耗的情况下,通过补充该消耗的液体燃料,就可以维持所述第1燃料容器的所述液体燃料的浓度或收容量等状态,从而可以进行继续的发电。 另外,例如,通过为了在所述燃料电池主体中,可以继续实施特定的电量的发电,而进行所述消耗的液体燃料的补给,就可以提供能够获得所述各个方式的效果的燃料电池。例如,在该发电中,在其电能有下限的情况下,为了确保该下限的电能,可以进行向所述第1燃料容器的所述补给。另外,例如,在该发电中,在其电能上除了有所述下限以外,还有上限的情况下,为了可以确保所述上限和下限之间的电能,可以进行所述补给。 根据本发明的所述方式19,对此种补给因所述发电消耗的液体燃料的控制如下进行,即,利用浓度检测装置检测出所述第1燃料容器中收容的所述液体燃料的浓度,使得该检测出的浓度达到可以发电浓度范围内的任意浓度,通过这样进行所述消耗的液体燃料的补给,就可以将所述液体燃料的浓度保持在所述可以发电浓度范围内,从而可以实施继续的发电。 根据本发明的所述方式20,除了直接地检测出所述浓度的情况以外,也可以通过检测所述发电产生的电能,利用所述控制装置算出对所述消耗的液体燃料的补给量,来进行所述补给量的控制。 根据本发明的所述方式21,通过设置可以检测出所述第1燃料容器的所述液体燃料的收容量的收容量检测装置,就可以按照使所述第1燃料容器的收容量达到满量的方式,进行所述补给量的控制。另外,通过设置此种装置,既可以可靠地防止所述第1燃料容器的因溢出等而产生的漏液,从而可以提供设于携带电子机器用的燃料电池。 根据本发明的所述方式22,由于所述生成物作为主成分含有水,所述液体燃料为将所述液体燃料原液用水稀释后的溶液,因此可以将所述生成物回收而再利用,从而可以获得由所述各个方式产生的效果。 根据本发明的所述方式23,作为所述液体燃料,可以使用所述可以发电浓度范围的1~10wt%的范围的任意浓度的甲醇水溶液,作为所述液体燃料原液,通过使用具有比所述甲醇水溶液更高浓度的甲醇水溶液或甲醇原液,就可以获得由所述各个方式产生的效果。 根据本发明的所述方式24,除了由所述方式1产生的效果以外,通过在所述阴极上设有由非导电性材料形成的阴极侧隔膜,例如在使用树脂材料作为所述非导电性材料的情况下,可以使该隔膜轻量化,并且其成形更加容易,可以实现复杂的槽形状的批量生产。 根据本发明的所述方式25,即使当该阴极侧隔膜由非导电性材料形成时,由于在所述膜电极组合体上配置在与该阴极侧隔膜接触的表面上的导电性的扩散层还具有作为所述阴极的电极的功能,因此可以输出在所述燃料电池主体中因发电而获得的电力。另外,通过不采用导电性材料,而采用非导电性材料作为所述阴极层隔膜,与使用所述导电性材料的情况相比,可以获得较高的电压。 附图说明 下面,结合附图和实施方式,对本发明的所述和其他的目的和特征进行说明。 图1是本发明的实施方式1的燃料电池系统的概略构成图。 图2是表示图1的燃料电池系统中使用的燃料电池主体的概略构成的图。 图3A及图3B是表示图2的燃料电池主体的阴极中使用的阴极侧隔膜的构成的图,图3A是俯视图,图3B是图3A的俯视图的A-A’线剖面图。 图4A及图4B是表示图2的燃料电池主体的阳极中使用的阳极侧隔膜的构成的图,图4A是表示组装在外罩中的状态的局部剖面立体图,图4B是俯视剖面图,图4C是说明隔膜的沿顶线方向的液体燃料的流动状态的说明图。 图5A及图5B是表示阳极侧隔膜的变形例的图,图5A是表示第1变形例的俯视剖面图,图5B是表示第2变形例的俯视剖面图。 图6A及图6B是表示阳极侧隔膜的变形例的图,图6A是表示第3变形例的局部剖面立体图,图6B是仅表示图6A的阳极侧隔膜的构成的立体图。 图7是本发明的实施方式2的燃料电池系统的概略构成图。 图8是表示图7的燃料电池系统中使用的燃料电池主体的概略构成的立体图。 图9A及图9B是表示图7的燃料电池系统中使用的燃料电池主体的概略构成的图,图9A是侧视图,图9B是俯视图。 图10A及图10B是表示图9A及图9B的燃料电池主体的阴极中使用的阴极侧隔膜的构成的图,图10A是俯视图,图10B是图10A的俯视图的B-B’线剖面图。 图11A、图11B、图11C及图11D是图8的燃料电池主体的配线图,图11A及图11B是将4个串联连接时的配线图,图11C及图11D是将2个并联后再串联连接时的配线图。 图12是表示图8的燃料电池主体所使用的阳极侧隔膜的变形例的图。 图13A及图13B是将图1及图7的燃料电池系统制成燃料电池包,作为笔记本型个人电脑用的电池使用时的示意立体图,图13A是笔记本型个人电脑打开的状态,图13B是关闭的状态。 图14是本发明的实施方式3的燃料电池系统的概略构成图。 图15是表示图14的燃料电池系统中使用的燃料电池主体的概略构成的侧视图。 图16是图15的燃料电池主体的前视图。 图17是图15的燃料电池主体的俯视图。 图18是表示图15的燃料电池主体的阴极侧隔膜的构成的主视图。 图19是图18的阴极侧隔膜的后视图。 图20是图18的阴极侧隔膜的C-C’向剖面图。 图21是表示图15的燃料电池主体的阴极及阳极中使用的阴极侧隔膜及阳极侧隔膜的构成的主视图。 图22是图21的隔膜的后视图。 图23是图21的隔膜的D-D’向剖面图。 图24是表示图15的燃料电池主体的阳极侧隔膜的构成的主视图。 图25是图24的阳极侧隔膜的后视图。 图26是图24的阳极侧隔膜的E-E’向剖面图。 图27是表示图15的燃料电池主体中使用的电极兼扩散层的构成的主视图。 图28是图27的电极兼扩散层的侧视图。 图29是图27的电极兼扩散层的后视图。 图30是表示图15的燃料电池主体的阴极侧使用的电极兼扩散层的构成的主视图。 图31是图30的电极兼扩散层的侧视图。 图32是图30的电极兼扩散层的后视图。 图33是本发明的实施方式4的燃料电池系统的示意构成图。 图34是燃料电池系统的物料平衡的说明图。 图35是本发明的实施方式5的燃料电池系统的示意构成图。 具体实施方式 在继续本发明的叙述之前,在附加图面中,对于相同部件,使用相同的参照符号。 下面,对于本发明的各实施方式的燃料电池(也可以是称为燃料电池系统的情况),将参照附图进行详细说明。 (实施方式1) 图1是本发明的实施方式1的燃料电池系统的概略构成图。图2是表示图1的燃料电池系统使用的燃料电池主体的概略构成的图。 如图1、图2所示,燃料电池系统1具有作为将燃料所具有的化学能电化学地变换为电能而进行发电的发电部的燃料电池主体2、将该发电所必需的燃料等向燃料电池主体2供给的辅机系统。另外,该燃料电池系统1是如下的直接型甲醇燃料电池(DMFC),即,将作为有机类液体燃料的一例的甲醇水溶液作为燃料,通过从该甲醇中直接地取出质子来进行发电。 如图1所示,燃料电池主体2具有阳极(燃料极)3、阴极(空气极)5及膜电极组合体4。膜电极组合体4是在电解质膜的两面分别粘接了催化剂层42、44的部件。阳极3通过将所供给的甲醇氧化,进行取出质子和电子的反应(阳极反应)。 阳极3具有用于向其内部供给所述阳极反应所必需的甲醇水溶液的燃料供给口301、用于将由该阳极反应生成的二氧化碳和该反应未使用的残留的甲醇水溶液从所述内部排出的排出口302。排出口302被设置在比燃料供给口301更高的位置上。 阴极5具有为了供给所述阴极反应所必需的氧、例如使用空气并将该空气向其内部供给的空气供给口501、用于将作为由该阴极反应生成的生成物的一个例子的水(也包括液相或气相的任意一种状态、或者各状态混合后的状态的任意一种情况)从所述内部排出的排出口502。而且,虽然该生成物以水作为主成分,但是除此以外,有时也包括甲酸、甲酸甲酯及甲醇(由后述的渗透(crossover)产生)等。 该电子穿过与设于阳极3和阴极5上的电极21、22电连接的电极线21a、22a,向阳极3移动,该质子穿过膜电极组合体4,向阴极5移动。另外,阴极5将从外部供给的氧和从阳极3穿过膜电极组合体4移动而来的质子用穿过所述外部电路流入的电子还原,进行生成水的反应(阴极反应)。像这样分别在阳极3进行氧化反应,在阴极5进行还原反应,使电子流过电极线21a、22a,从而进行发电。 在图2中,燃料电池主体2的膜电极组合体4例如使用杜邦公司制的Nafion117(商品名)作为电解质膜43,在电解质膜43的一方的表面上,作为阳极3的阳极催化剂42,形成了在碳类粉末担体上分散担载了铂和钌或者铂和钌的合金的材料,在另一方的表面上,作为阴极5的阴极催化剂44,形成了在碳类担体上分散担载了铂微粒的材料。在膜电极组合体4的两端,在使例如由炭纸制成的电极兼扩散层41、45与所述阳极催化剂42及所述阴极催化剂44分别密接后,通过借助阳极侧隔膜11及阴极侧隔膜10固定在外罩20上而完成组装。 图3A及图3B是表示阴极5使用的阴极侧隔膜10的构成的图,图3A是阴极侧隔膜10的俯视图,图3B是图3A的A-A’线剖面图。阴极侧隔膜10由在厚度方向扁平的非导电性材料的板状主体101构成,在其一方的表面上设有槽102。阴极侧隔膜10和膜电极组合体4按照将设有槽的一侧的表面推压在阴极侧电极兼扩散层45上的方式接触,将由槽102和阴极侧电极兼扩散层45包围的区域作为空气的通路而形成。设于阴极侧隔膜10的表面的槽102被蜿蜒设置于板状主体101的上端和下端之间。另外,槽102由于和与阴极5的空气供给口501连接的导入口103及与阴极5的排出口502连接的排出口104相连,因此从阴极5的空气供给口501供给的空气就可以从导入口103经过槽102,经由排出口104,从阴极5的排出口502向外部排出。 图4A、图4B及图4C分别是表示阳极3所使用的阳极侧隔膜11的构成的图,图4A是阳极侧隔膜11的局部剖面立体图,图4B是俯视侧向剖面图,图4C是沿着顶线的液体燃料的流动的说明图。如图4A及图4B所示,阳极侧隔膜11的主体110被制成在厚度方向扁平的波板形状,按照使波的顶线115沿着连接阳极3的燃料供给口301和排出口302的方向组装。本实施方式1中,例如,相邻的波的顶线115之间的距离最好大约为1~5mm左右,隔膜的厚度,即,波的振幅最好为1~5mm左右。例如,最好设为可以在阳极侧配置4条以上的槽。 阳极侧隔膜11在由所接触的外罩20的内壁及与电极兼扩散层41的表面相邻的波的顶线115围成的波的谷的部分上,形成使液体燃料通过的通路111、112。图4B所示的阳极侧隔膜11由于从上面看其截面呈正弦波形状,因此外罩侧通路112和膜电极组合体侧通路111的面积基本相同。 另外,如上所述,燃料电池主体2由于将其排出口302设于比燃料供给口301更高的位置上,因此向阳极的通路111、112流入并由阳极反应而产生的二氧化碳如图4C的箭头97所示,向阳极3的排出口302方向上升而被排出。伴随着二氧化碳的上升,阳极中的燃料也向箭头97方向移动,如箭头95所示,从阳极的排出口302向外部排出。当阳极中的燃料上升时,在作为容器一例的中间罐54中所贮留的液体燃料55如箭头94所示,从阳极的燃料供给口向阳极内流入。像这样,在阳极内,将由阳极反应而产生的二氧化碳作为其推力,进行液体燃料的供给和排出,这样中间罐54内的液体燃料55即发生对流。 而且,在本实施方式1中,燃料供给口301、排出口302为相对的概念,根据燃料电池主体2的配置方向,也可以交换两者。例如,在按照与图2所示的方向的配置上下交换的方式配置的情况下,由于符号301所示的口比符号302所示的口位置更高,因此液体燃料就从符号302所示的口被供给(即,作为燃料供给口发挥作用),从符号301所示的口将燃料排出(即,作为排出口发挥作用)。 图5A、图5B、图6A及图6B是表示阳极侧隔膜的变形例的图。图5A的变形例1的阳极侧隔膜11x虽然将其主体110x制成波板形状,但是其波形并非是表面和背面对称的形状,电极兼扩散层41侧的顶线113与外罩20侧的顶线114相比,形成更为尖锐的锐角状。作为其结果,膜电极组合体侧通路111x与外罩侧通路112x相比变得更大。根据图5A的阳极侧隔膜11x,向阳极3供给的液体燃料当中,可以增加与膜电极组合体4接触的量,从而更有效地进行阳极反应。 图5B的变形例2的阳极侧隔膜11y设有多个从薄板状的主体110y的表面向垂直方向延伸的分隔壁115y,通过将各个分隔壁115y的端部113y与电极兼扩散层41的表面接触,形成了由各个分隔壁115y划分的多个膜电极组合体侧通路111y。该例的阳极侧隔膜11y可以使比由阳极3供给的更多的液体燃料与膜电极组合体4接触。另外,由于跨越外罩20的内侧表面整体设有主体110y,因此可以牢固地构成阳极侧隔膜11y,从而可以利用阳极侧隔膜11y将电极兼扩散层41向膜电极组合体4可靠地推压。 图6A及图6B的变形例3的阳极侧隔膜11z形成多个贯穿由波板形状构成的主体110z的贯通孔116,另外,该主体110z的波形的各自的顶线115z被设置为相对于连接阳极3的燃料供给口301和排出口302的线倾斜角度α。通过像这样倾斜设置波形的各自的顶线115z,即使按照外罩20的侧壁20b成为下侧的方式配置燃料电池主体2时,也可以使在阳极3内产生的二氧化碳向排出口302侧移动,从而可以进行液体燃料的对流。另外,通过在阳极侧隔膜11z设置各个贯穿孔116,例如,即使按照外罩20的侧壁20b成为上侧的方式配置燃料电池主体2时,也可以使阳极3内产生的二氧化碳穿过各个贯穿孔116,从膜电极组合体侧通路111z向外罩侧通路112z移动,因而可以使液体燃料对流。 下面对燃料电池系统1的上述辅机系统的构成进行说明。作为所述辅机系统的构成,具有用于向燃料电池主体2的阳极3供给甲醇水溶液的辅机构成、用于向阴极5供给空气的辅机构成。 首先,如图1所示,作为用于所述燃料供给的辅机构成,具备:将甲醇水溶液作为液体燃料可以向阳极3供给地收容的中间罐54、将比该中间罐54所收容的甲醇水溶液55浓度更高的甲醇水溶液51作为液体燃料原液而可以向中间罐54供给地收容的燃料罐50、作为将燃料罐50所收容的甲醇水溶液51向中间罐54供给的原液供给装置的一个例子的燃料泵52、将该燃料泵52设于其途中并且连接燃料罐50和中间罐54的原液供给管72、改变在原液供给管72中流动的液体燃料原液51的量的燃料阀53。 中间罐54与燃料电池主体2一体地构成,在中间罐54的内部内包阳极3,当中间罐54内收容特定量以上的液体燃料55时,阳极3就会完全地浸渍于液体燃料55中。通过像这样在中间罐54内配置阳极3,就可以将液体燃料55通过阳极3的燃料供给口301向内部供给。 而且,图1中,虽然表示将阳极3的整体浸渍在液体燃料55中的情况,但是也可以不是此种情况,而是仅将阳极3的一部分浸渍在液体燃料55中的情况。但是,即使是此种情况,为了维持液体燃料的对流,至少需要将燃料供给口301及排出口302浸渍在液体燃料55中。 另外,由阳极的排出口302排出的二氧化碳等气体流入中间罐54。中间罐54具有用于将像这样流入的气体向外部排出的排气口542和排气阀543。在排气口542上,最好设置例如气液分离膜,从而仅将二氧化碳排出。而且,该排气口542也作为向中间罐54初期注入液体燃料55时的排气孔发挥作用。 燃料罐50收容有液体燃料原液51,原液供给管72的一端被配置为位于燃料罐50的底部附近。燃料罐50内收容的液体燃料原液51由燃料泵52经过原液供给管72抽上来,向中间罐54供给。 作为燃料泵52,例如从小型的泵消耗电力较小及通过对其驱动时间控制可以控制液体燃料原液的供给量等观点出发,最好使用小型的容积式泵等,例如,本实施方式1中,使用螺线管式泵(装有止回阀,喷出量:0~4ml/分,喷出压力:10kPa),使用时,例如可以通过间歇驱动来送出适量的液体燃料原液。 另外,在中间罐54中,作为液体燃料55,收容有例如重量百分率为1~10wt%的范围的任意浓度、最好为3~10wt%的范围的任意浓度的甲醇水溶液,例如,在初期状态下,收容有6.5wt%的浓度的甲醇水溶液55。另一方面,在燃料罐50中,收容有具有比中间罐54中收容的液体燃料更高浓度的甲醇水溶液或甲醇原液(即浓度为100wt%的甲醇),例如,在初期状态下,收容有68wt%浓度的甲醇水溶液。 然后,作为用于供给空气的辅机构成,如图1所示,具备将其一端与阴极5的空气供给口501连接的空气供给管73、配置于空气供给管73的途中并且经过空气供给管73向阴极5内供给空气的空气泵56。作为该空气泵56,最好使用小型并且消耗电力小的泵,例如,使用马达式泵(装有止回阀,喷出量:0~2L/分,喷出压力:30kPa),使用时,例如能够以1L/分供给空气。另外,在由燃料电池主体2进行发电时,驱动空气泵56向阴极5内供给必需的氧,停止该发电时,即停止空气泵56的驱动。而且,在该停止时,燃料泵52的驱动也被停止。 而且,由阴极5内的阴极反应产生的水从排出口502经过水排出管74而排出。而且,也可以设置将该被排出的水回收并向中间罐54供给的辅机机构。对于设置此种辅机机构的情况,将在后述的其他的实施方式中进行说明。 另外,在本实施方式1的燃料电池系统1中,虽然对在燃料电池主体2中将阳极侧隔膜11及阴极侧隔膜5配置为夹隔膜电极组合体4的情况进行了说明,但是,本实施方式1并不限定于此种情况。例如,也可以不采用此种情况,而是采用如下的构成,即,在燃料电池主体2中,作为隔膜仅设置阳极侧隔膜11,不设置阴极侧隔膜10。这是因为,在燃料电池系统中,在仅需要较低的发电量的情况下,通过采用使阴极5向大气中开放的构成,可以进行向阴极5的空气供给,从而由此可以进行发电。 (实施方式2) 下面对本发明的实施方式2的燃料电池系统进行说明。图7是本发明的实施方式2的燃料电池系统的概略构成图。本实施方式的燃料电池系统1a与实施方式1的燃料电池系统1构成大致相同,以不同点为中心进行说明。 本实施方式2的燃料电池系统1a是使用了通过从甲醇中直接地取出质子来进行发电的直接型甲醇燃料电池(DMFC)的燃料电池系统,燃料电池主体2的构成与实施方式1的燃料电池系统1相同。 燃料电池主体12如图7所示,将其整体配置为完全浸渍在作为用于燃料供给的辅机的中间罐54中。 这里,图8、图9A及图9B中表示本实施方式2使用的燃料电池主体12的详细构成。如图8、图9A及图9B所示,燃料电池主体12是将4个膜电极组合体、3个阳极侧隔膜和2个阴极侧隔膜以特定的配置顺序来配置的构成,是将4个燃料电池主体沿厚度方向多个密接而连接的构成。而且,图9A及图9B中,为了明确被连接的构成,根据需要对各构成部实施了剖面线处理。 具体来说,如图8、图9A及图9B所示,在未设置底壁及上壁的外罩20上,组装有具有连接了4个燃料电池主体的构成的连接体。连接体从图9A的图示右端开始依次按照:第1阳极侧隔膜11a、电极兼扩散层41a、第1膜电极组合体4a、电极兼扩散层45a、第1阴极侧隔膜10a、电极兼扩散层45b、第2膜电极组合体4b、电极兼扩散层41b、第2阳极侧隔膜11b、电极兼扩散层41c、第3膜电极组合体4c、电极兼扩散层45c、第2阴极侧隔膜10b、电极兼扩散层45d、第4膜电极组合体4d、电极兼扩散层41d、第3阳极侧隔膜11c的顺序,按照其主面相面对的方式被层叠。 即,燃料电池主体由于一般电极位于被阳极侧隔膜和阴极侧隔膜夹隔的膜电极组合体的两面,因此本实施方式2的燃料电池主体12是将4个独立的膜电极组合体4a、4b、4c、4d按照其相同种类的电极相面对的方式配置的。此外,采取共用本来应当分别设于相邻的2个膜电极组合体上的阳极侧隔膜和阴极侧隔膜的构成。通过像这样共用阳极侧隔膜和阴极侧隔膜,就可以小型地构成多联燃料电池主体12。 2片阴极侧隔膜10a、10b由连接管105串联,第1阴极侧隔膜10a的导入口103a与空气供给管73连接,如箭头92所示,由空气泵56送入的空气经过由2片阴极侧隔膜10a、10b和电极兼扩散层45a~45d的表面形成的氧用通路,如箭头93所示,从排出口104b向外罩20的外部排出。 阴极侧隔膜10a、10b如图10A及图10B所示,由沿厚度方向扁平的非导电性的树脂制的板状主体101a构成,设有贯穿两表面107、108的长孔106。当使用树脂作为材料时,则可以实现轻量,成形十分容易,还可以实现复杂的槽形状的批量生产。长孔106从设于其上面109a的导入口103a、103b连接到排出口104a、104b,是在板状主体的上端和下端之间蜿蜒的形状,利用阴极侧隔膜10a、10b的上面109a及下面109b,与外部隔断。所以,在多联燃料电池主体的氧用通路中,异物无法从导入口103a、103b及排出口104a、104b以外侵入内部。 通过使用图10A及图10B所示的构成的阴极侧隔10a、10b,分别与其两表面107、108密接的4片电极兼扩散层45a~45d与通过其长孔106的空气接触,从而引起阴极反应。 另一方面,阳极侧隔膜11a~11c如图8、图9A及图9B所示,由波板状的树脂构成。当像这样使用树脂作为材料时,则可以实现轻量,成形十分容易,还可以实现复杂的槽形状的批量生产。阳极侧隔膜11a~11c虽然可以使用实施方式1及其变形例中使用的各个隔膜,但是,对于两侧与膜电极组合体4b、4c侧的电极兼扩散层41b、41c接触的第2阳极侧隔膜11b,由于在其两面形成的燃料用通路111b、112b都为膜电极组合体侧燃料用通路,因此,两者最好制成相同体积。另一方面,位于两端的第1及第3阳极侧隔膜11a、11c,为了使与膜电极组合体4a、4d的电极兼扩散层41a、41d接触的膜电极组合体侧燃料用通路111a、111c的体积大于外罩侧通路112a、112c,可以使用图5A或图5B所示的形状的隔膜。 本实施方式2的多联燃料电池主体12被配置为图8所示的方向时,各个阳极侧隔膜11a~11c的下端作为燃料用通路的导入口发挥作用,上端作为燃料用通路的排出口发挥作用。即,多联燃料电池主体12的整体被浸渍配置于中间罐54中所贮留的液体燃料55中,各燃料用通路111a~111c、112b中填充有液体燃料。该状态下,当开始发电时,该燃料用通路111a~111c、112b中填充的液体燃料因阳极反应而分解为二氧化碳和质子,二氧化碳向排出口侧移动。这样,该燃料用通路111a~111c、112b中所填充的液体燃料上升而向排出口侧移动,在中间罐54蓄积的液体燃料55从各导入口侵入该燃料用通路。 像这样,通过将阳极侧隔膜设为所示构成,在发电时,不需要特别的机构,就可以向阳极侧供给液体燃料,并使之流动。所以,不需要用于向使用了4个燃料电池主体的多联燃料电池主体12的各个阳极供给液体燃料的构成,就可以减少伴随着多联燃料电池主体12的输出的增加的自身消耗电力的增加。而且,本实施方式2中,液体燃料的导入口、排出口也是相对的,也有通过改变燃料电池主体的方向,将两者交换的情况。 这里,在配置于各个阳极侧隔膜10a及10b和各个膜电极组合体4a、4b、4c及4d之间的电极兼扩散层45a、45b、45c及45d当中,作为代表在图30中表示有电极兼扩散层45a的正视图,在图31中表示其侧视图,在图32中表示其后视图。而且,由于各个电极兼扩散层45a、45b、45c及45d具有相同构成,因此作为它们的代表,对电极兼扩散层45a的构成进行说明。如图30、图31及图32所示,电极兼扩散层45a例如具有由炭纸制成的电极兼扩散部610a,在该电极兼扩散部610a的周围整体上,配置有例如由导电性橡胶薄片形成的垫片610b。通过像这样在电极兼扩散部610a的外周整体上形成垫片610b,在各个阴极侧隔膜10a及10b中,就可以使从导入口103a、103b导入的氧不会向液体燃料中漏出,而向排出口104a及104b送出。 而且,与此种构成相反,配置在各个阳极侧隔膜和各个膜电极组合体之间的各个电极兼扩散层41a、41b、41c及41d例如由炭纸形成,未形成垫片等密封部。 另外,由于阴极侧及阳极侧的隔膜由作为非导电体的树脂构成,不作为集电体发挥作用,因此各电池的输出就从附加在各个膜电极组合体的两面的各个电极兼扩散层41a~41d、45a~45d集电。此时,各电极需要不发生短路地连接。具体来说,可以举出如图11A及图11B所示,将4个串联的情况,或者如图11C及图11D所示,将2个并联串联的情况。 图11A及图11B是将4个图8的燃料电池系统的各燃料电池主体串联时的配线图。图11C及图11D是将2个图8的燃料电池系统的各燃料电池主体并联,再将它们串联时的配线图。如上所述,在本实施方式2的多联燃料电池主体12中,由于各个燃料电池主体的相同电极被配置为相面对的方式,因此如图11A~图11D所示,不会将正极和负极交互配置,为了连接4个燃料电池主体,需要如图11A~图11D所示那样进行配线。 具体来说,在图11A及图11B的4个串联的情况下,所得的电压达到各燃料电池主体的4倍,虽然可以获得高输出,但是会有即使当各燃料电池主体的1个不能达到电压效果或不能使用时,就会对整体产生影响的缺点。 当将图11C及图11D的2个并联再串联时,就会有即使发生了燃料电池主体的1个未达到电压效果或不能使用的情况,也会维持电压的优点。特别是,如后述所示,在根据其配置方向流过阳极的液体燃料的量改变,而有可能发生电压降低的情况下,通过像这样连接,就可以应对该电压降低,因而更为理想。 图12是表示图8的燃料电池主体12使用的阳极侧隔膜的变形例的图。图12所示的阳极侧隔膜11d~11f虽然与图6所示的阳极侧隔膜11z构成相同,但是按照使其一个方向相互不同的方式组装入外罩20。即,在波形的顶线115d、115f及115e中,各自按照相对于连接阳极的燃料供给口和排出口的线呈角度α或角度-α的方式交替倾斜设置。 通过像这样构成,就可以不考虑多联燃料电池主体12的配置方向,在构成多联燃料电池主体12的任意的燃料电池主体中确保通过燃料用通路的液体燃料的量,从而可以将输出的降低抑制在较少的水平。 (实施方式3) 下面对本发明的实施方式3的燃料电池系统进行说明。图14是本实施方式3的燃料电池系统的概略构成图。本实施方式3的燃料电池系统1b与所示实施方式1的燃料电池系统1构成大致相同,以不同点为中心进行说明。 本实施方式3的燃料电池系统1b是使用了通过从甲醇中直接取出质子来进行发电的直接型甲醇燃料电池(DMFC)的燃料电池系统,燃料电池主体212的构成与所示实施方式1的燃料电池系统1相同。 如图14所示,燃料电池主体212将其整体配置在作为用于供给燃料的辅机的中间罐254的内部,被设为完全浸渍于中间罐254所收容的液体燃料55中的状态。 另外,表示本实施方式3中使用的燃料电池主体212的构成的侧视图显示在图15中,其正视图显示在图16中,其俯视图显示在图17中。如图15、16及图17所示,燃料电池主体212将3个膜电极组合体、1个阳极侧隔膜、2个阳极侧及阴极侧兼用隔膜、1个阴极侧隔膜以特定的配置顺序配置,沿厚度方向将3个燃料电池主体密接而连接。 具体来说,如图15~图17所示,在未设置底壁及上壁的外罩220的内侧,组装有具有在例如由树脂制成的绝缘材料301a、301b之间连接配置了3个燃料电池主体的构成的连接体。该连接体具有如下的构成,即,从图15的图示右端开始,按照相互密接的方式依次配置了阴极侧隔膜210、电极兼扩散层241a、第1膜电极组合体204a、电极兼扩散层245a、第1阳极侧及阴极侧兼用隔膜211a、电极兼扩散层241b、第2膜电极组合体204b、电极兼扩散层245b、第2阳极侧及阴极侧兼用隔膜211b、电极兼扩散层241c、第3膜电极组合体204c、电极兼扩散层245c及阳极侧隔膜213。与所示实施方式2中,按照相同电极相面对的方式排列各个阳极及阴极的方法不同,本实施方式3中,具有按照电串联的方式将不同电极之间相面对配置,从而将阳极和阴极交替配置连接的构成。而且,在图15~图17中,302是向阴极供给空气(氧)的供给口,303是排出空气的排出口。另外,在多联燃料电池主体212的两端,设有可以输出所产生的电力的各个连接端子260。 另外,多联燃料电池主体212所具有的各个电极兼扩散层241a、245a、241b、245b、241c及245c具有互相相同的构成,它们当中作为代表,将电极兼扩散层241a的正视图表示在图27中,将其侧视图表示在图28中,将其后视图表示在图29中。 如图27~图29所示,电极兼扩散层241a由例如由炭纸制成的电极兼扩散部510和配置于其周边的例如由导电性橡胶薄片材料制成的垫片510b构成。在垫片510b上作为贯穿孔形成有空气穿过的导入口503和排出口504。 另外,在各个隔膜的外周部分上,配置有例如由炭纸制成的导电性的材料,即使隔膜的主要部分由非导电性的材料形成时,也可以使用所示外周部分来串联。使用附图对各隔膜的构成进行说明。 首先,图18表示阴极侧隔膜210的正视图,图19表示其后视图,图20表示图18的隔膜210的C-C’线剖面图。如图18~图20所示,阴极侧隔膜210由沿厚度方向扁平的非导电性的树脂制的板状主体210a构成,在其外周部分全体上设有例如由作为导电性材料的一个例子的碳材料制成的导电部210b。 另外,如图18所示,在阴极侧隔膜210的正视侧的表面上,形成有构成氧用通路的槽206,该槽206从相同面上作为贯穿孔设置的导入口203到排出口204连续形成,具有在板状主体210a的上端和下端之间蜿蜒的形状。另外,导入槽206的空气(氧)可以用电极兼扩散层241a等的垫片510b与液体燃料隔断。所以,多联燃料电池主体212的氧用通路被制成异物无法从导入口203及排出口204之外侵入其内部的方式。而且,如图19所示,由于阴极侧隔膜210的背面侧表面成为与绝缘材料301a连接的端部,因此未形成槽。 然后,第1阳极侧及阴极侧兼用隔膜211a和第2阳极侧及阴极侧兼用隔膜211b由于具有相互相同的构成,因此作为它们当中的代表,图21表示第1阳极侧及阴极侧兼用隔膜211a的正视图,图22表示其后视图,图23表示图21的隔膜的D-D’线剖面图。 第1阳极侧及阴极侧兼用隔膜211a被制成沿厚度方向扁平的非导电性的树脂制的板状主体310a,在其外周部全体上形成有例如由作为导电性材料的一个例子的碳材料形成的导电部310b。另外,在第1阳极侧及阴极侧兼用隔膜211a中,图21所示一侧的表面具有作为阴极侧隔膜的功能,另外,图22所示一侧的表面具有作为阳极侧隔膜的功能。 图21所示一侧的表面上形成有构成氧用通路的槽,该氧用通路的槽306从设于相同面上的导入口305到排出口304连续形成,具有在板状主体310a的上端和下端之间蜿蜒的形状。 另外,图22所示一侧的表面上排列有多条沿图示上下方向延伸而形成的纵槽307,利用这些纵槽307就可以形成燃料用通路。通过像这样形成各条纵槽307,就可以从第1阳极侧及阴极侧兼用隔膜211a的端部向各条纵槽307,即燃料用通路内导入液体燃料。而且,这些纵槽307的形状采用图5B中所示的形状。 另外,在第1阳极侧及阴极侧兼用隔膜211a的导电部310b上形成的导入口305及排出口304按照不与图22所示一侧的表面上形成的纵槽307连通的方式形成,另外各自的配置是按照与阴极侧隔膜210的导入口203及排出口204相吻合的方式形成的。 另外,图24中表示阳极使用的阳极侧隔膜的构成的正视图,图25表示其背面图,图26表示图24的阳极侧隔膜的E-E’线剖面图。 如图24~图26所示,阳极侧隔膜213具有例如由非导电性材料的树脂制成的薄板状的主体410a、在其外周部例如由作为导电性材料的一个例子的碳材料形成的导电部410b。另外,阳极侧隔膜213在图24所示一侧的表面上,作为燃料用通路排列设有多个按照沿图示上下方向延伸的方式形成的纵槽406。该阳极侧隔膜213可以使由阳极供给的全部液体燃料经过电极兼扩散层245c与膜电极组合体204c接触。另外,如图24及图25所示,在导电部410b的图示两角部分上,形成有贯穿孔403、404,这些贯穿孔403、404按照不与图24所示一侧的表面上形成的纵槽406连通的方式形成,另外,各自的配置是按照与阴极侧隔膜210的导入口203及排出口204的配置相吻合的方式形成的。而且,如图25所示,阳极侧隔膜213的背面侧的表面由于成为与绝缘材料301b连接的端部,因此不形成槽。 各个隔膜及电极兼扩散层通过具有所示的构成,就可以形成如图15所示的多联燃料电池主体212。在如此形成的多联燃料电池主体212中,通过将阳极侧隔膜210的导入口203和排出口204的位置、各个阳极侧及阴极侧兼用隔膜211a、211b的导入口305和排出口304的位置、以及阴极侧隔膜213的各个贯穿孔403、404的位置,按照相互吻合的方式来配置,就可以将相邻的阴极的各个导入口及排出口相互连接,而且如图15所示,可以使各个导入口及排出口与多联燃料电池主体212的外部所设的1个供给口302和1个排出口303连通。 另外,如图14所示,在多联燃料电池主体212的外部所所设的供给口302借助空气供给管,与设于中间罐54的外部的空气泵56连通,排出口303借助空气排出管,与设于中间罐54的外部的排出口303b连通。通过如此构成,在图14中,利用空气泵56的驱动,即如箭头92所示,经过空气供给管及供给口302向多联燃料电池主体212的内部送入的空气,就被提供给由阴极侧隔膜210的槽206和电极兼扩散层241a的表面形成的氧用通路、由第1及第2阳极侧及阴极侧兼用隔膜211a、211b的槽306和电极兼扩散层241b、241c的表面形成的氧用通路,通过该氧用通路的剩余空气即如箭头93所示,穿过排出口303及303b,向多联燃料电池主体212的外部排出。 另外,在多联燃料电池主体212中,可以将中间罐54内所收容的液体燃料55,向由第1及第2阳极侧及阴极侧兼用隔膜211a、211b的纵槽307和电极兼扩散层245a、245b的表面形成的燃料用通路、由阳极侧隔膜213的纵槽406和电极兼扩散层245c的表面形成的燃料用通路供给。例如,在如图14所示,将多联燃料电池主体212配置在中间罐54中的情况下,位于多联燃料电池主体212的图示下端的所示各个燃料用通路的端部作为液体燃料的导入口发挥作用,上端侧的端部作为排出口发挥作用。 即,多联燃料电池主体212将其整体浸渍配置于中间罐54所收容的液体燃料55中,成为在形成各个燃料用通路的纵槽307、406内填充了液体燃料的状态。该状态下,当用多联燃料电池主体212开始发电时,填充在各个纵槽307、406中的液体燃料因阳极反应而分解为二氧化碳和质子,二氧化碳向排出口侧移动。这样,填充在各个纵槽307、406中的液体燃料即上升而向排出口侧移动,同时,中间罐54中所收容的液体燃料55就从各个导入口向各个燃料用通路供给。 通过像这样将阳极侧隔膜设为所示构成,在发电时,就可以不需要特别的机构,而向阳极侧供给液体燃料并使之流动。所以,就不需要用于向使用了3个燃料电池主体的多联燃料电池主体的各个阳极供给液体燃料的构成,从而可以减少伴随着多联燃料电池主体的输出的增加产生的自身消耗电力的增加。而且,本实施方式3中,液体燃料的导入口、排出口也是相对的,可以根据燃料电池主体的配置方向来交换两者。 而且,本实施方式3中,虽然对使用导电性橡胶薄片材料作为配置于电极兼扩散层510的周边的垫片510b的材料的例子进行了说明,但是,该材料也可以是非导电性的材料。另外,也可以使用具有粘接性的密封材料或液体性热硬化型密封材料。 另外,通过在各个隔膜的外周部分上,形成具有导电性的导电部210b、310b、410b,即使在以非导电性的材料形成各个隔膜的主要部分的情况下,也可以使用所示各个导电性的外周部分,将各个燃料电池主体串联。所以,不需要与多联燃料电池主体212的外部连接用的外部配线,就可以构成按照阳极和阴极交替的方式将不同电极间相面对配置而连接的多联燃料电池主体,从而可以在确保简单的构成的同时,提高连接的自由度。 而且,在所示实施方式2的多联燃料电池主体12及所示实施方式3的多联燃料电池主体212中,为了提高各个燃料电池主体的密接性,也可以使用螺栓或板,连接外罩20、220。 另外,上述实施方式1、上述实施方式2及上述实施方式3的燃料电池系统1、1a及1b由于小型并且基本没有水分向外部的排出,因此可以适用于携带电子机器等中。图13A及图13B是将图1、图7或图14所示的燃料电池系统1、1a、1b制成燃料电池包,作为笔记本型个人电脑用的电池使用的情况的示意立体图。如图13A及图13B所示,由于可以小型地构成燃料电池系统1、1a、1b,因此即使在使用其构成笔记本型个人电脑用的燃料电池包9,装入笔记本型个人电脑的主体6的情况下,也可以对携带不造成妨碍地使用。 在所示实施方式中,虽然在电极兼扩散层中使用炭纸,但是也可以使用其他的材料。例如,可以使用例如由不锈钢材料制成的发泡金属。 图7的燃料电池系统中,虽将2个阴极侧隔膜连接并且空气向阴极的导入及排出各以1个位置来构成,但是并不限定于此,也可以采用向各个阴极侧隔膜分别导入空气、排出的构成。 另外,在图7的燃料电池系统使用的阴极侧隔膜11b上,通过在两面附加从上端到下端以特定的倾斜度呈直线状延伸的槽,在该两面上形成燃料用通路的情况下,可以在表面和背面使槽的倾斜方向相互不同。通过如此构成,就可以在图7的燃料电池系统中使用波板状以外的隔膜,不用考虑多联燃料电池主体的配置方向,就可以确保至少1个燃料电池主体的液体燃料的流量。 下面根据附图对本发明的燃料电池系统的其他的实施方式进行详细说明。 (实施方式4) 图33中显示表示本发明的实施方式4的燃料电池系统801的示意性的构成的示意构成图。而且,由于着眼于液体燃料向燃料电池主体的供给及对由燃料电池主体生成的生成物的回收,本实施方式4的燃料电池系统801在实现包含了燃料电池系统的辅机系统的构成的简单化及小型化的方面,具有与所述实施方式1的燃料电池系统不同的构成,下面将以该不同构成为中心进行说明。 如图33所示,燃料电池系统801具备作为通过将燃料所具有的化学能电化学地变换为电能来进行发电的发电部的燃料电池主体802、将该发电所必需的燃料等向燃料电池主体802供给等的辅机系统。另外,该燃料电池系统801是将作为有机类的液体燃料的一个例子的甲醇水溶液作为燃料,通过从该甲醇中直接地取出质子来进行发电的直接型甲醇燃料电池(DMFC)。 如图33所示,燃料电池主体802具有阳极(燃料极)701、阴极(空气极)702及膜电极组合体703。阳极1具有对所提供的甲醇进行氧化反应,从而进行取出质子和电子的反应(阳极反应)的功能。该电子穿过作为将阳极701和阴极702电连接的外部电路的发电电路714,向阴极702移动,该质子穿过膜电极组合体703,向阴极702移动。另外,阴极702具有如下的功能,即,使用从外部供给的氧、从阳极701穿过膜电极组合体703移动来的质子、穿过所示外部电路流入的电子,进行还原反应,从而进行生成水的反应(阴极反应)。通过像这样分别在阳极701进行氧化反应,在阴极702进行还原反应,在发电电路714中流过电子,就可以产生电流而进行发电。 具体来说,燃料电池主体802例如作为膜电极组合体,可以按照以下方式形成,即,在由杜邦公司制的Nafion117(商品名)形成的电解质膜的一方的表面上,作为阳极701的阳极催化剂,形成在碳类粉末担体上分散担载了铂和钌或者铂和钌的合金的材料,在另一方的表面上,作为阴极702的阴极催化剂,形成在碳类担体上分散担载了铂微粒的材料,其后,在使例如由炭纸制成的扩散层与所述阳极催化剂及所述阴极催化剂分别密接后,可以通过隔膜固定在外罩上而形成。 另外,如图33所示,阳极701具有用于可以实施所述阳极反应地向其内部供给甲醇水溶液的燃料供给口701a、用于使由该阳极反应生成的二氧化碳、未被该反应使用的残留的甲醇水溶液从所述内部排出的排出口701b。 另外,阴极702具有为了供给实施所述阴极反应所需的氧,例如使用空气而用于向其内部供给该空气的空气供给口702a、用于将作为由该阴极反应生成的生成物的一个例子的水(还包括液相或气相的任意状态或者混合了各个状态后的状态的情况)从所示内部排出的排出口702b。而且,该生成物作为主成分虽然含有水,但是除此以外,有时也含有甲酸、甲酸甲酯及甲醇(由后述的渗透产生)等。 下面对燃料电池系统801的所述辅机系统的构成进行说明。作为所述辅机系统的构成,设有用于向燃料电池主体802的阳极701供给甲醇水溶液的辅机构成、用于向阴极702供给空气的辅机构成、用于回收作为由阴极702生成的生成物的水的辅机构成。 首先,如图33所述,作为用于所述燃料供给的辅机构成,具备:作为将甲醇水溶液作为液体燃料可以向阳极701供给地收容的第1燃料容器的一个例子的中间罐705、作为将比该中间罐705所收容的甲醇水溶液浓度更高的甲醇水溶液作为液体燃料原液而可以向中间罐705供给地收容的第2燃料容器的一个例子的原液罐704、作为将原液罐704所收容的液体燃料原液向中间罐705供给的原液供给装置的一个例子的燃料泵711、作为将该燃料泵711设于其途中并且连接原液罐704和中间罐705的液体燃料供给原液供给通路的一个例子的原液供给管路712。 中间罐705与燃料电池主体802一体地设置,在中间罐705的内部的空间中,配置有阳极701,在液体燃料被以满量收容的状态下,该阳极701就会完全地浸渍于所述被收容的液体燃料中。通过像这样在中间罐705内配置阳极701,就可以将液体燃料经过总是处于浸渍于液体燃料中的状态的燃料供给口701a,向阳极701的内部供给。而且,在图33中,虽然表示将阳极701的整体浸渍在液体燃料中的情况,但是也可以不是此种情况,而是仅将阳极701的一部分浸渍在所述液体燃料中的情况。但是,即使是此种情况,至少需要将燃料供给口701a及排出口701b浸渍在所述液体燃料中。另外,也可以不采用将中间罐705与燃料电池主体802一体形成的情况,而采用将两者分别独立形成的情况。此种情况下,也可以根据必要,设有从中间罐705向阳极701的液体燃料的供给装置。 另外,虽然在阳极701进行的阳极反应所生成的二氧化碳等气体穿过阳极701的排出口701b而流入中间罐705,但是设有用于将像这样流入的气体向中间罐705的外部排出的排气阀709。而且,该排气阀709也作为向中间罐705初期注入液体燃料时的排气孔发挥作用。另外,在中间罐705上,设有作为可以对所收容的液体燃料的浓度进行检测的浓度检测装置的一个例子的浓度传感器717。而且,作为此种浓度传感器717,例如可以使用超声波式或近红外线多波长光方式的浓度计。 原液罐704收容有液体燃料原液,原液供给管路712的一端被配置为位于原液罐704的底部附近,这样就可以将所收容的液体燃料原液用燃料泵711经过原液供给管路712抽上来。另外,为了使罐内的空气排出,在原液罐704上设有具有例如气液分离膜的空气排出口710。而且,也可以在空气排出口上设置排气阀。 作为燃料泵711,例如从小型的泵消耗电力较小及通过对其驱动时间控制可以控制液体燃料原液的供给量等观点出发,最好使用小型的容积式泵等,例如,本实施方式1中,使用螺线管式泵(装有止回阀,喷出量:0~4ml/分,喷出压力:10kPa),使用时,就可以例如通过间歇驱动来送出适量的液体燃料原液。另外,原液供给管路712的供给侧的端部与中间罐705连接,通过驱动燃料泵711,就可以经过原液供给通路712,将液体燃料原液向中间罐705供给。 另外,在中间罐705中,作为液体燃料,收容有例如重量百分率为1~10wt%的范围的任意浓度、最好为3~10wt%的范围的任意浓度的甲醇水溶液,在初期状态下,收容有6.5wt%的浓度的甲醇水溶液。另一方面,在原液罐704中,收容有具有比中间罐705中收容的液体燃料更高浓度的甲醇水溶液或甲醇原液(即浓度为100wt%的甲醇),例如,在初期状态下,收容有68wt%浓度的甲醇水溶液。 然后,作为所述空气供给的辅机构成,具备将其一端与阴极702的空气供给口702a连接的作为氧供给用通路的一个例子的空气供给管路713、配置于空气供给管路713的途中并且通过空气供给管路713向阴极702内供给空气的作为氧供给装置的一个例子(或空气供给泵的一个例子)的空气泵707。作为该空气泵707,最好使用小型并且消耗电力小的泵,例如,使用马达式泵(装有止回阀,喷出量:0~2L/分,喷出压力:30kPa),使用时,例如能够以1L/分供给空气。另外,在用燃料电池主体8022进行发电时,驱动空气泵707向阴极702内供给必需的氧,停止该发电时,即停止空气泵707的驱动。而且,在该停止时,燃料泵711的驱动也被停止。 另外,作为用于回收所述水的辅机构成,具备:将阴极702的排出口702b和中间罐705及原液罐704分别连接并将由阴极702生成的水向中间罐705或原液罐704供给而回收的、作为生成物回收通路的一个例子的水回收管路708,设于水回收管路708的途中并位于导向中间罐705的管路和导向原液罐704的管路的分支点的、作为回收量调整装置的一个例子的三向阀(三向控制阀)706。 三向阀706具有如下功能,即,通过调整其开度,可以调整从阴极702内流入水回收管路708的水的向中间罐705的回收量(供给量)、向原液罐704的回收量(供给量)。例如,可以将该水的全部仅向中间罐705供给,或者相反,将其仅向原液罐704供给,或者将其一部分向中间罐705供给,将剩余的向原液罐704供给。 另外,水在此种水回收管路708内的流通是通过由驱动空气泵707产生的对阴极702内的加压,将阴极702内生成的水经过排出口702b向水回收管路708内送出来进行的。换言之,空气泵707能够用经过水回收管路708内并向中间罐705或原液罐704供给所述水的压力,将空气导入阴极702内(即,具有此种喷出压力)。 此外,在具有此种构成的燃料电池系统801中,设有控制各个装置或构成机器的动作的控制装置715。控制装置715可以在燃料电池装置系统801中,对由燃料泵711进行的液体燃料原液的供给动作、由空气泵707进行的空气的供给动作、三向阀706的开度调整动作等各个动作控制,进行相互关联并且统一地控制。 具体来说,当用燃料电池主体802进行发电时,控制装置715进行空气泵707的驱动,当停止该发电时,进行使空气泵707的驱动停止的控制。另外,与该空气泵707的驱动停止一起,还进行使燃料泵711的驱动停止的控制。 另外,控制装置715根据由浓度传感器717检测出的中间罐705内收容的液体燃料的浓度,可以控制向中间罐705的液体燃料原液的供给量及回收的水的回收量。即,可以根据该检测出的浓度,按照将中间罐705内收容的液体燃料保持在由控制装置715预先设定的特定的浓度范围内的方式,控制燃料泵711的驱动时间或三向阀706的开度位置。这里,所谓由控制装置715预先设定的浓度范围是指,可以用燃料电池主体802产生必需的电能(必需的电压及电流)的甲醇水溶液的可以发电浓度范围,例如,设定为10wt%~1wt%,优选设定在10wt%~3wt%的浓度范围内。 下面对在此种构成的燃料电池系统801中进行发电时的各个装置或构成机器的动作进行如下说明。而且,以下要说明的各个装置或构成机器的动作控制是利用控制装置715对相互的动作进行关联并且统一的控制。 首先,在图33所示的燃料电池系统801中,在中间罐705中,例如收容6.5wt%浓度的甲醇水溶液(液体燃料),同时,在原液罐704中,例如收容68wt%的浓度的甲醇水溶液(液体燃料原液)。将收容在中间罐705中的液体燃料通过燃料供给口701a向阳极701供给。 其后,驱动空气泵707,通过空气供给管路713及空气供给口702a,向阴极702供给空气,即供给氧。这样,在阳极701中进行阳极反应的同时,在阴极702中进行阴极反应。这样,在阳极701和阴极702之间,即在发电电路714中,产生电力。因在阳极701中进行所述阳极反应而生成的二氧化碳经过排出口701b,流入中间罐705内,继而,经过中间罐705的排气阀709,向中间罐705外排出。 另一方面,通过利用空气泵707对阴极702内进行加压,在阴极702中由所述阴极反应生成的水经过排出口702b向水回收管路708送出。该被送出的水经过水回收管路708,由三向阀706向中间罐705或原液罐704供给而被回收。 另外,通过进行所述发电,在中间罐705中,所收容的甲醇水溶液当中的甲醇及水就会被消耗。这样,在中间罐705中,随着甲醇水溶液的液量减少,甲醇水溶液的浓度就会降低。通过用浓度传感器717检测出该降低了的浓度,就可以利用控制装置715决定向中间罐705的液体燃料原液的供给量(补给量)及被回收的水的回收量(补给量)。根据该被决定了的各个供给量,来控制燃料泵711的驱动时间及三向阀706的开度位置,液体燃料原液及水就分别以所述供给量向中间罐705供给,补充中间罐705所收容的液体燃料,同时,将其浓度保持在特定的浓度范围内。另一方面,在未将经过水回收管路708而送出的水的全部供给中间罐705的情况下,将其剩余的水供给原液罐704。通过连续并且反复进行此种动作,就可以用燃料电池主体802连续地进行所必需的电量(特定的电量)的发电。另一方面,当在燃料电池系统801中停止发电时,在停止空气泵707的驱动的同时,燃料泵711的驱动也停止。 这里,图34显示了表示燃料电池系统801的发电中物料平衡的具体的示例的说明图。而且,燃料电池主体802的膜电极组合体703虽然基本上按照不使甲醇或水通过的方式形成,但是仍会发生甲醇或水通过,即所谓的渗透(crossover)。在以下的物料平衡的说明中,为了易于理解该说明,假定在膜电极组合体703中不发生渗透,而进行说明。 如图34所示,在燃料电池系统801中,在原液罐704中,作为液体燃料原液,收容有100ml的68wt%浓度的甲醇水溶液,在中间罐705中,作为液体燃料,收容有100ml的6.5wt%浓度的甲醇水溶液。 当进行发电时,在阳极701中消耗了液体燃料中甲醇8.1ml及水3.6ml的情况下,在阴极702处即生成10.8ml的水。此时,为了使因被阳极701消耗而在中间罐705中减少了的甲醇水溶液的浓度和液量恢复到初期状态,有必要从原液罐704向中间罐补充液体燃料原液11.1ml,在阴极702处生成的水0.6ml。此时,通过控制三向阀706的开度位置,分别向中间罐705供给水0.6ml进行回收,向原液罐704供给水10.2ml进行回收。 这样,该发电后的原液罐704的液体燃料原液的浓度虽然因所述水的回收而降低,变为60wt%,但是在该发电后的中间罐705中,可以使液体燃料的收容量恢复到100ml,同时,可以使其浓度保持在6.5wt%。而且,通过反复进行此种发电、液体燃料的补给及所生成的水的回收,虽然原液罐704所收容的液体燃料原液的浓度逐渐地降低,并且伴随着被补充的液体燃料原液自身的浓度的降低,中间罐705中收容的液体燃料的浓度也降低,但是,通过根据中间罐705的浓度,决定所生成的水的回收去处,与原液罐704的浓度的降低的程度相比,可以减弱中间罐705的浓度的降低的程度。 另外,在图34的物料平衡的说明图中,虽然是表示预想为理想的情况的物料平衡的一个例子的图,但是由于在实际发电时,中间罐705内的液体燃料的温度为与燃料电池主体的温度近似相同温度的60℃左右,因此在将由阳极701的反应而产生的二氧化碳从中间罐705排出时,液体燃料中所含的一部分水也作为水蒸气而排出。所以,为了补充从中间罐705排出的水的量,就有必要向中间罐705供给比计算值更多的在阴极702处生成的水。另外,向中间罐705供给的水的量根据燃料电池的运转状态而不同。 而且,如上所述的本实施方式的燃料电池系统801中使用的燃料电池主体并不限于燃料电池主体802。也可以是不使用此种燃料电池主体802的情况,而是使用不同构成的燃料电池主体,例如所述实施方式1的燃料电池主体2、所述实施方式2的多联燃料电池主体12或所述实施方式3的多联燃料电池主体212的情况。 根据所述实施方式4,可以获得如下的各种效果。 首先,在燃料电池系统801中,虽然因进行发电而在阴极702作为生成物生成水,但是由于可以将如此生成的水向原液罐704或中间罐705全部回收,因此不会排出该水。这样,可以将燃料电池系统801用作具有无法采用伴随着排水等的燃料电池系统的特征的携带电子机器用的燃料电池系统。 另外,不是使生成的水仅回收到中间罐705中,而是例如根据中间罐705中收容的液体燃料的浓度,通过控制三向阀706的开度位置,选择性地使所述生成的水供给中间罐705或原液罐704,这样,就可以在将中间罐705的液体燃料的浓度保持在用于进行有效的发电的浓度范围内的同时,进行该液体燃料的补给。 另外,虽然由于将如此生成的水回收到中间罐705或原液罐704中,会伴随各个罐的液体燃料原液或液体燃料的浓度的降低,但是,通过利用三向阀706选择水的回收去处,使得中间罐705所收容的液体燃料的浓度处于可以进行所述的有效发电的浓度范围内,就可以使中间罐705的浓度的降低的程度比原液罐704的浓度的降低的程度更加缓慢。 所以,即使在进行此种生成的水的全部回收的情况下,也不会导致中间罐705的液体燃料的浓度的显著降低,从而可以使中间罐705及原液罐704的容量小型化。 另外,在生成的水的回收中,由于不用设置送液泵等装置,而利用用于向阴极702内供给氧的空气泵707来进行,因此可以实现伴随该水的回收的设备的简单化,即,可以实现辅机构成的简单化。另外,此种辅机构成的简单化也可以实现因燃料电池系统801的辅机构成而产生的消耗电力的减少。 所以,可以实现燃料电池系统801自身的小型化和自身消耗电力的降低,作为携带电子机器用的燃料电池系统,可以使用小型化并且可以进行有效的发电的燃料电池系统801。 另外,由于所述生成的水被中间罐705或原液罐704回收,因此即使进行多次发电,也可以防止中间罐705及原液罐704各自收容的液量降低的情况。所以,即使当进行液体燃料的消耗时,也不会对燃料电池系统801的姿势产生影响,从而可以连续地进行液体燃料的供给。此种效果特别是作为不得不采用各种各样的姿势的携带用电子机器用的燃料电池系统非常适合。 (实施方式5) 下面,图35中显示表示本发明的实施方式5的燃料电池系统901的示意性构成的示意构成图。如图35所示,虽然燃料电池系统901的基本构成与所述实施方式4的燃料电池系统801相同,但是,在具备作为用于检测中间罐725中收容的液体燃料的收容量的收容量检测装置的一个例子的液量传感器741方面,及在向水回收管路728的中间罐725的导入方式及向原液罐724的导入方式等方面,都是不同的。以下将以该不同的构成部分为中心进行说明。 如图35所示,燃料电池系统901具备阳极721、阴极722及膜电极组合体723。另外,按照连接阳极721和阴极722的方式,设有作为外部电路的发电电路743,在该发电电路743上设有作为可以检测产生的电量(或者电压及电流)的电量检测装置的一个例子的电量计742。 另外,在燃料电池系统901中,设有与所述实施方式4的燃料电池系统801相同的辅机系统的构成,具有中间罐725、原液罐724、燃料泵731、空气泵727、原液供给管路732、水回收管路728、空气供给管路733及三向阀726。 如图35所示,水回收管路728的在三向阀726处分支后的管路的各自的端部736及737,被按照浸渍于原液罐724所收容的液体燃料原液中的方式,另外按照浸渍于中间罐725所收容的液体燃料中的方式,配置在各个罐内部的近似中央附近。这是因为,由阴极702生成的水或者水及空气的混合物,其温度有时会达到例如60℃左右,从而含有较多的水蒸气,因此通过使此种混合物(特别是水蒸气)通过所述各个端部736及737而导入液体燃料中或者液体燃料原液中,就会可靠地凝结而以液化的状态回收。特别是,在其回收量较多的原液罐724中,水回收管路728的端部736的附近通过将该管路设成例如螺旋状等弯曲了的形状,就可以增加该管路与液体燃料原液的接触面积,从而能够可靠地进行所述凝结。另外,为了使罐内部的空气排出,在原液罐724上例如设置具有气液分离膜的空气排出口730。而且,也可以在空气排出口730上设置排气阀。 另外,液量传感器741可以检测中间罐725的液体燃料的收容量,主要被用于在向中间罐725的液体燃料原液或水的补给量的控制中,防止中间罐725的溢出。 另外,如图35所示,进行燃料电池系统901的统一的控制的控制装置735可以进行燃料泵711及空气泵727的驱动动作、三向阀726的开度位置的调整动作的各个控制,另外,是按照能够输入由电度表742检测出的电能及由液量传感器741检测出的液量的方式构成的。 在此种构成的燃料电池系统901中,通过用燃料电池主体902进行发电,用电度表742检测出该产生的电能,将该检测结果输入控制装置735。在控制装置735中,根据该电能(或者电压及电流),算出在阳极721由该发电消耗的甲醇及水的量。根据该算出的结果,进而算出向中间罐725的水的回收量及液体燃料原液的供给量,进行对三向阀726的开度位置的调整和燃料泵731的驱动量的控制。通过进行此种控制,就可以将中间罐725所收容的液体燃料的浓度保持在可以进行有效的发电的浓度范围,例如可以保持1~10wt%的浓度的甲醇水溶液。另外,在将该水或液体燃料原液向中间罐725供给时,利用液量传感器741,使得在中间罐725不会发生溢出,例如在中间罐725达到满液的情况下,利用三向阀726切换所生成的水,变成向原液罐724供给。 根据所述实施方式5,与所述实施方式4相同,可以不伴随着排水地进行小型化并且有效地发电,特别是,可以提供适用于携带电子机器用的燃料电池系统的燃料电池系统。 另外,由于根据产生的电能,用控制装置735可以算出需要向中间罐725补给的液体燃料原液及水的量,因此可以不需要检测中间罐725的液体燃料的浓度的浓度传感器。 另外,通过设置可以检测中间罐725中的收容量的液量传感器741,就可以预先防止中间罐725的溢出等的发生。 而且,虽然在回收的水中,经常会含水蒸气,但是即使在此种情况下,由于水回收管路708的端部736及737被浸渍在液体中,因此可以将该水蒸气可靠地凝结而液化,从而进行回收。 另外,根据由设于发电电路743中的电度表742检测的发电时的电能,在控制装置735中,可以算出中间罐725所收容的液体燃料的浓度,所以当处于能够进行有效的发电的浓度范围之下时,还可以使应当进行液体燃料的更换的信息显示在控制装置735中。 而且,在所述实施方式4及实施方式5中,虽然对使用由杜邦公司制的Nafion117形成的电解质膜作为膜电极组合体703及723的情况进行了说明,但是也可以不是此种情况,可以使用以全氟碳类磺酸等为代表的磺化的氟类聚合物或聚苯乙烯磺酸、磺化聚醚醚酮类等烃类聚合物材料作为显示出氢离子导电性的膜。 另外,在所述实施方式4及实施方式5中,虽然对使用炭纸作为扩散层的情况进行了说明,但是也可以不是此种情况,可以使用发泡金属(例如由不锈钢材料制成的发泡金属)作为扩散层。 另外,在所述各个实施方式中,虽然使用了使中间罐705中收容的液体燃料的浓度为1wt%~10wt%的范围的任意浓度的甲醇水溶液,但是此种浓度范围的上限值是基于燃料电池主体的电解质膜的渗透特性的值。所以,今后如果该渗透特性被改善的话,则可以使用更高浓度(即比10wt%更高的浓度)的甲醇水溶液。 另外,所述实施方式4或所述实施方式5的燃料电池系统801或901如图13A及图13B所示,可以制成燃料电池包9,作为笔记本型个人电脑6用的电池使用。 而且,通过适当地组合所述各种实施方式中的任意实施方式,可以发挥各自所具有的效果。 本发明虽然参照附图对相关的优选实施方式进行了充分地记述,但是,对于对该技术熟悉的人来说,各种变形或修正都是十分明白的。此种变形或修正只要不脱离由附加的技术方案限定的本发明的范围,应当认为也包含于其中。 作为参考,2003年6月18日公开的日本专利申请第2003-173395号公报和2003年6月18日公开的日本专利申请第2003-173409号公报,包括说明书、附图和权利要求都被完整地一起附上。
《燃料电池.pdf》由会员分享,可在线阅读,更多相关《燃料电池.pdf(67页珍藏版)》请在专利查询网上搜索。
一种燃料电池,燃料电池主体(2、12)具有阳极(3)、阴极(5)、存在于所述阳极和所述阴极之间的膜电极组合体(4),其中,至少所述阳极(3)侧浸渍配置于贮存液体燃料(55)的容器(54)中。在由所述隔膜的表面的凹凸和所述膜电极组合体包围的区域内形成所述液体燃料流动的燃料用通路(111、112)。这样,就可以实现燃料供给系统等辅机的构成的小型化、简单化及省电化。 。
copyright@ 2017-2020 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1