半导体器件及其制造方法 【技术领域】
本发明一般涉及半导体器件及其制造方法,尤其涉及具有控制熔塌(Controlled Collapse)芯片连接(C4)凸点的半导体器件及其制造方法。
背景技术
控制塌陷芯片连接(C4)互连(倒装芯片凸点)技术是手动引线键合的一种替代,其包括在半导体芯片键合焊盘上形成焊料凸点和凸点下金属(UBM)结构。使用焊料凸点替代引线把芯片电路连接到外源,例如连接到用于芯片封装的衬底。UBM提供了关于C4结构的重要功能,其中包括在C4焊料凸点和半导体芯片之间提供粘附和势垒保护。
常规高铅C4焊料凸点(焊料凸点含97%铅和3%锡)使用由在键合焊盘上顺序形成的铬、铬铜、铜和金层构成的UBM组合并接着在金层上形成C4焊料凸点。接着使用随后的热处理回流并形成C4凸点结构,其中金层提供下面铜层的氧化保护;铜层用作C4凸点的主要浸润表面;在随后的回流处理期间铬铜层作为在其上生长铜和锡金属间化合物(Cu3Sn)的成核层来促进金属间粘附性;铬层用作对下面半导体芯片表面势垒和粘附的促进剂。
当过量的锡从焊料凸点或其它源迁移到铬-铜层时,形成凸点的回流处理和随后的高温处理都成为问题。在铬-铜层过量的锡引起与C4凸点结构可靠性相关的问题。过量的锡与Cu3Sn成核层反应,由此形成Cu6Sn5形式的铜锡金属间化合物。因为它有把铬-铜层散裂到焊料中(即溶解到凸点体积中)的趋势,所以该Cu6Sn5金属间化合物是不希望的。这可能导致缺乏铜的铬到焊料的界面。因为与Cu3Sn成核层相比,它与焊料凸点形成了物理弱键,所以该铬到焊料的界面是不利地。它的出现可能导致关于C4凸点结构的不理想电断裂。
常规高铅焊料C4凸点回流处理通常不使用引起与Cu6Sn5金属间化合物形成相关问题的时间和温度的组合(常规高铅焊料大约在320摄氏度熔化)。但是,替代熔剂、半导体芯片尺寸的增加、增加的芯片复杂度和凸点数量的增加都可能需要增加回流时间和/或温度以确保成功和可靠的凸点回流操作。更长的时间和/或更高的温度将导致更多的锡迁移到UBM相区。此外,当前被研究替代高铅焊料的许多合金材料具有比当前用于半导体工业中的高铅焊料高很多的锡浓度。而且,其它锡源,例如安装凸点和芯片的板的覆层(板面覆层),也有与Cu6Sn5金属间化合物相关的问题。当板面使用较低熔化温度的覆层或高锡含量覆层时,在熔融状态时自覆层的锡还可能破坏在UBM中的铜。因此,由于这两种可能的过量锡源,将不能充分保护常规UBM防止Cu6Sn5金属间化合物形成。
【附图说明】
通过附图中的实例说明本发明,但不作为限制,其中相同的标号代表相同的元件,其中:
图1是说明在半导体衬底上形成互连级和最终的键合焊盘之后半导体器件的剖面图;
图2是说明在衬底上形成可选的过渡金属层并用光刻胶构图可选的过渡金属层之后图1所示的衬底的剖面图;
图3是说明在半导体衬底上形成钝化层和聚酰亚胺层之后图2的剖面图;
图4是说明在半导体衬底上淀积凸点下金属和焊料凸点之后图3的衬底的剖面图;和
图5是说明在执行回流操作并形成C4凸点之后图4的剖面图。
本领域技术人员应理解,为了简化和清晰,附图中的元件是说明性的,无需按比例绘出。例如,为了有助于提高对本发明实施例的理解,某些元件的尺寸和图形可以相对于另一些元件被放大。
【具体实施方式】
按照本发明的一个实施例,在半导体键合焊盘上形成半导体器件UBM,其中UBM包括铬、铜和镍相区,且相区中存在的镍阻止自焊料凸点和其它锡源的锡转化而形成可散裂铜锡金属间化合物。
现在将参照附图更详细地介绍本发明的实施例。图1是说明部分半导体器件10的剖面图。半导体器件10包括半导体器件衬底100、场绝缘区102和在半导体器件衬底100中形成的掺杂区104。栅介质层106覆盖在部分半导体器件衬底100上,栅电极110覆盖在栅介质层106上。邻近栅极110的侧壁形成隔离层108。在栅极110上形成第一层间介质层(ILD)116。接着构图ILD层116,形成用粘附/势垒层112和接触填充材料114填充的接触孔。粘附/势垒层112通常是难熔金属、难熔金属氮化物、或难熔金属或其氮化物的组合。接触填充材料114通常包括钨、多晶硅等。在淀积粘附/势垒层112和接触填充材料114之后,抛光衬底以去除没有包含在接触孔内的部分粘附层112和接触填充材料114,由此形成了如图1所示导体插塞111。
在ILD层116和导体插塞111上面形成第一级互连120。通常,使用例如铜或铝的导体材料来形成第一级互连120。通常使用常规沟槽和抛光工艺的组合,或使用常规构图和蚀刻工艺的组合来形成第一级互连120。如果使用铜形成第一级互连120,那么可以环绕第一级互连120形成势垒(未示出)以减小铜到邻近材料中的迁移。
在第一ILD116和第一级互连120上形成第二ILD118。在第二ILD118内形成包括导体粘附/势垒膜122和铜填充材料124的第二互连126。粘附/势垒膜122通常是难熔金属、难熔金属氮化物、或难熔金属或其氮化物的组合。铜填充材料124通常是铜或铜合金。在一个特定实施例中,铜含量至少为90原子百分比(atomic percent)。铜可以与镁、硫、碳等熔合成合金以改善互连的粘附性、电迁移或其它性质。虽然该实施例中说明的互连126为双镶嵌互连,但本领域普通技术人员应认识到互连126还可以形成为与单镶嵌互连或平版印刷构图和蚀刻互连的组合中或使用例如铝或铝合金的替换材料的导体插塞。在淀积粘附/势垒膜122和铜填充材料124之后,抛光衬底以去除没有包含在双镶嵌开孔内的部分粘附/势垒膜122和铜填充材料124,以形成如图1所示双镶嵌互连126。按照本发明的一个实施例,双镶嵌互连126的最上暴露表面形成用于半导体器件的键合焊盘128。
图2说明本发明的非限定性可选择实施例,其中在ILD118和键合焊盘128上形成过渡金属层206和构图光刻胶层204。按照一个实施例,使用导体膜200和202形成过渡金属层206,其中膜200包括铬或铬合金膜,导体膜202包括在导体膜200上面的铝或铝覆盖膜。通常使用常规物理气相淀积(PVD)方法淀积导体膜202和覆盖膜。使用过渡金属提供的优点包括:在键合焊盘128和随后形成的C4凸点结构之间改善的粘附性和势垒保护,这在下文将会论述。1999年10月4日提交的名为“Method of Forming Copper Interconnection UtilizingAluminum Capping Film(使用铝覆盖膜形成铜互连的方法)”的美国专利申请09/411,266包含了关于过渡金属使用的特定说明。
图3说明了图2的剖面图,并且还示出蚀刻过渡金属层206以在键合焊盘128上面形成过渡金属结构312。在形成过渡金属结构312之后,在过渡金属结构312和ILD118上面形成钝化层300。通常,使用例如等离子体增强氮化物(PEN)、硅氮氧化物(SiON)或其组合形成钝化层300。接着平板印刷构图和蚀刻钝化层300,形成暴露部分过渡金属结构312的开孔。接着在钝化层300上形成可选择聚酰亚胺(压模涂层)层302。平板印刷构图并接着蚀刻(或显影)聚酰亚胺层,形成压模涂层开孔,其暴露在钝化层300中限定的开孔和过渡金属结构312的暴露部分。
如图4所示,接着在压模涂层开孔304内形成半导体器件凸点下金属(UBM)414并在UBM414上形成导体凸点410。虽然在附图中说明并论述了UBM414为邻接过渡金属结构312形成的,但这不是本发明实施例的必要条件。此外可以直接在键合焊盘128(或其它中间结构)上形成UBM414。在本发明的一个特定实施例中,UBM414包括含粘附膜402、相区404和抗氧化层406的膜的组合。
按照一个特定的实施例,在形成UBM之前,首先使用常规反溅射轰击工艺(例如离子清洗或研磨)可选择地清洗包括绝缘焊盘(压模涂层开孔)在内的半导体衬底表面。接着,在制备衬底的表面之后,通过构图凸点掩模(未示出)把粘附膜402(通常为铬层)淀积到开孔绝缘焊盘上。在这之后淀积混合相区404,在一个实施例中混合相区404由大约50重量百分比(wt.%)铬、25wt.%铜和25wt.%镍构成,其中铬、铜和镍的比例分布在整个相区是相对均匀的。接着在相区404上面形成抗氧化金层406。
除了使用铬之外,可以使用其它金属例如钛、钨、钛/钨和其它类似难熔金属和难熔金属的组合来形成粘附膜402或者作为相区中的组分元素。此外,虽然本发明公开了由大约50%铬、25%铜和25%镍构成的相区,本领域普通技术人员应认识到可以改变这些组分元素的百分比来获得特定的膜性质,例如随后论述的金属间化合的形成程度、增强的粘附性、降低的散裂、对温度变化的耐受性等。
与图4所示的相似,在形成金层406之后,通过构图的凸点掩模把包含锡的焊料凸点410淀积到UBM上,由此形成回流前的C4凸点结构。通常在分离处理室中分离淀积处理期间淀积凸点410和UMB414,但是这不是本发明的必要条件。最后,在淀积焊料凸点410之后,去除金属掩模并使焊料凸点回流到UBM上,由此如图5所示形成了C4凸点502。
通常铬层402淀积到50-500纳米范围的厚度,相区404淀积到大约100-300纳米范围的厚度,金层淀积到大约80到140纳米范围的厚度。使用单一复合的铬/镍/铜溅射靶(sputtering target)或使用铬、镍和铜或其组合的独立溅射靶来形成相区404。为了特定的应用,可裁剪铬、镍和铜的成分百分比以获得特定特性,例如键合强度、势垒完整性、可靠性等。
在替换实施例中,替代使用构图的凸点掩模,将复合UBM层(铬层402、相区层404和金层406)作为垫膜,顺序淀积到衬底表面上。接着通过金属掩模在与下面的衬底键合焊盘相对应的部分UBM上局部淀积焊料凸点。通过本领域普通技术人员公知的电镀、物理淀积或使用丝网涂浆淀积具有适当金属混合的焊料凸点。在该实施例中,在去除UBM的暴露部分期间,焊料凸点用作保护掩模。使用常规的化学或物理蚀刻工艺去除UBM的暴露部分。蚀刻工艺可以在凸点回流之前或之后执行。
因为相区中存在的镍阻止了Cu6Sn5金属间化合物形成,公开的相区404增强了在导体凸点410和导体键合焊盘128之间的金属间粘附性。在凸点回流(或其它高温)处理期间,镍与铜争夺(compete)过量的锡,由此防止了Cu6Sn金属间化合物的形成,而替代地形成了镍和锡金属间化合物,例如Ni3Sn4、Ni3Sn2和Ni3Sn。公开的相区404导致以比仅由铬和铜构成的相区慢很多的速度把过量的锡转化为包含锡的金属间化合物。较慢形成的镍和锡金属间化合物提供了稳定的功能,因为它们通过在Cu3Sn金属间化合物周围形成次要的镍和锡金属间化合物生长来抑制Cu6Sn5金属间化合物的形成。在存在熔融锡的情况下,以比锡和铜金属间化合物大约慢100倍的速度形成锡和镍金属间化合物。但是,由于铜的存在确保了局域性快速生长和铜/锡的钉轧成核位置,有利地实现了相区中保有铜的优点。
公开的UBM结构414有利地免除了对现有技术厚铜浸润层的需要,已经发现铜浸润层可以被快速地转化并溶解到体焊料中作为Cu6Sn5。因此,在本发明中,相区404用作焊料凸点的主要浸润表面。此外,公开的UBM提供了可以与多种焊料凸点金属和多种铅/锡焊料合金集成的标准平台,多种焊料凸点金属包括共熔的63%锡/37%铅焊料、96.5%锡/3.5%银焊料、99.3%锡/0.7%铜焊料、95%锡/5%锑焊料、96.3%锑/3%银/0.7%铜焊料,铅/锡焊料合金含从高铅到高锡变化的合成物,例如从大约包含97%的铅和3%的锡的焊料材料到大约包含100%锡的焊料材料。随着半导体工业从共熔锡铅焊料向着作为覆层的较高温度锡基焊料或作为凸点的较低温度锡基焊料转移,这将成为特别重要的考虑因素。
在前实施例公开了在整个相区404均匀分布组分的比例浓度的一个实施例。因为铜和锡的相对量在整个相区404是连续的,所以铜和锡的混合晶粒在相区404的表面提供了快速(铜锡)和慢速形成的(镍锡)金属间化合物的缓冲混合。在另一个实施例中,铜和锡的比例浓度在整个相区404是递变的,以更准确地控制可用于相应金属间化合物形成的铜和/或镍的量。例如,如果需要在相区404和导体凸点502之间初始制造具有相对低量铜和高量镍的金属间化合物的组合,那么可以相对于铜量增加在相区最上表面的镍的浓度。因此,如果需要增加铜/锡金属间化合物的量,并在需要增加铜/锡金属间化合物的量的位置,相应地增加相区404中的铜的相对量。
因为在芯片制造和在工作条件下使用期间难于预测和控制C4凸点结构的暴露时间和温度,所以公开的UBM对随后温度暴露比现有技术UBM更耐用。该较宽温度范围归因于UBM优选组合,在初始暴露于升高温度时形成促进粘附的铜/锡金属间化合物(Cu3Sn),之后在延长暴露于和/或升高温度时形成镍锡金属间化合物。与现有技术不同,因为随着附加高温处理发生,相区形成争夺的(competing)镍和锡金属间化合物(Ni3Sn4、Ni3Sn2和Ni3Sn),所以延长的温度不会不利地导致Cu6Sn5金属间化合物的形成。这些随后的高温处理的实例包括:例如在凸点处理再加工、强化、测试等操作。
在工艺的这一步,在回流凸点502之后,如图5所示制造了基本完成的半导体器件10。该半导体器件10随后被安装到封装衬底(例如倒装芯片或球栅阵列封装)的覆层。虽未示出,根据需要可以形成其它级互连。同样,可以制得栅极110和掺杂区104的其它互连。如果形成附加互连,可以使用与用于形成和淀积第二ILD层118、第一导体插塞111、第一级互连120或第二级互连126的工艺相似的工艺来形成它们。
除了上面的描述,由于几个附加原因这里介绍的实施例是有利的。如前面的论述,从制造的观点看,公开的UBM的优点在于它消除了在相区上本来需要的厚铜可焊接层。这降低了材料成本、免去了处理步骤,并减小了误处理的可能。公开的UBM相区还易于集成到现有的处理工艺流程,而无需使用特殊材料、发展新工艺或购买新处理设备。而且,公开的UBM与其它含锡的凸点焊料材料(除了铅之外,例如银、铜、锑等)的基质是相适应的。
在前面详述中,参照特定实施例介绍了本发明。但是,本领域普通技术人员应认识到,在不脱离如所附权利要求所阐释的本发明的范围的前提下,可以做出各种改进和变型。因此,详述和附图应认为是说明性的,而非限制含义,而且所有这些改进都包括在本发明的范围内。以上参考特定实施例介绍了好处、其它优点和问题的解决方案。但是,好处、优点、问题的解决方案和可以使得任何好处、优点或解决方案产生或变得更显著的任何元素不应被解释为任一或所有权利要求的关键、所需或必要特征或元素。