具有要增湿的固体聚合物薄膜的燃料电池,燃料电池系统,以及用于燃料电池的增湿方法.pdf

上传人:1*** 文档编号:685502 上传时间:2018-03-04 格式:PDF 页数:33 大小:1.77MB
返回 下载 相关 举报
摘要
申请专利号:

CN01803107.2

申请日:

2001.09.12

公开号:

CN1636294A

公开日:

2005.07.06

当前法律状态:

终止

有效性:

无权

法律详情:

专利权的视为放弃|||实质审查的生效|||公开

IPC分类号:

H01M8/04

主分类号:

H01M8/04

申请人:

日产自动车株式会社;

发明人:

斋藤和男

地址:

日本神奈川县

优先权:

2000.09.12 JP 277138/2000

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

张金熹

PDF下载: PDF下载
内容摘要

一个燃料电池在固体聚合物制成的一个电解薄膜(1)的两侧具有一个阳极(3)和一个阴极(5)。一个燃料供应板(7)和一个空气供应板(9)设在电解薄(1)的两侧,从而形成一个带固体聚合物薄膜的燃料电池。一条燃料供应路径(11)设在燃料供应板(7)的阳极(3)侧,一条空气供应路(13)设在空气供应板(9)的阴极(5)侧。湿气供应路径(21)设在燃料供应板(7)的燃料供应路径(11)之间,这些湿气供应路径通过阳极(3)直接供应湿气到电解薄膜(1)上。在把湿气引入湿气供应路径(21)的湿气引入区上设有一个湿气压力调节阀,它根据从燃料电池流出的冷却液的温度打开和闭合,来调节湿气供应量。

权利要求书

1: 一种燃料电池,它具有作为电解薄膜的要增湿的固体聚合物薄 膜,燃料电池包括: 一个电池框; 一个设在电池框中的阳极和阴极的组合; 一个设置在阳极和阴极之间的电解薄膜; 一条对阴极供应空气的空气供应路径; 一条对阳极供应燃料的燃料供应路径,燃料供应路径延伸通过电 池框并且在与阳极接触的电池框第一壁中具有一个燃料供应开口;以 及 一条把可移过阳极的湿气供应到电解薄膜的第一湿气供应路径, 第一湿气供应路径延伸通过电池框,并且在与燃料供应开口不同的位 置上具有在第一壁中的第一组湿气供应出口。
2: 按照权利要求1的一种燃料电池,包括: 一条空气供应路径,延伸通过电池框,并且在与阴极接触的电池 框第二壁中具有一个空气供应开口;以及 一条第二湿气供应路径,把可移过阴极的湿气供应到电解薄膜上, 第二湿气供应路径延伸通过电池框,并且在与空气供应开口不同的位 置上,具有在第二壁中的第二组湿气供应出口。
3: 按照权利要求2的一种燃料电池,其中电池框包括: 一个具有第一壁的第一框件; 一个具有第二壁的第二框件;以及 一个第三框件,它设置在第一框件和第二框件之间,其构形做成 支持电解薄膜。
4: 按照权利要求3的一种燃料电池,其中阳极包括一个第一多孔 件,它设置在第一框件和电解薄膜之间,其构形做成扩散燃料和移动 可移过它的湿气,阴极包括一个第二多孔件,它设置在第二框件和电 解薄膜之间,其构形做成扩散空气和移动可移过它的湿气。
5: 按照权利要求1的一种燃料电池,其中燃料供应开口包括在第 一壁中的许多互相连接的槽,第一组湿气供应出口包括许多出口的阵 列,其中一个相关阵列设置在许多相互连接槽中的两个相邻槽之间。
6: 一种燃料电池,它具有作为电解薄膜的要增湿的固体聚合物薄 膜,燃料电池包括: 一个电池框; 一个设在电池框中的阳极和阴极的组合; 一个设置在阳极和阴极之间的电解薄膜; 一条对阴极供应空气的空气供应路径; 一条对阳极供应燃料的燃料供应路径,燃料供应路径延伸通过电 池框,并且在与阳极接触的电池框壁中具有一个燃料供应开口;以及 湿气供应装置,它通过在上述壁上不同与燃料供应开口的位置, 通过电池框供应湿气到阳极,把可移过阳极的湿气供应到电解薄膜上。
7: 一种包括燃料电池堆的燃料电池系统,每个燃料电池分别具有 作为电解薄膜的要增湿的固体聚合物薄膜,燃料电池系统包括: 一组叠合的电池框; 一组阳极和一组阴极的组合,一组阳极的相应阳极设在一组叠合 电池框的相关电池框中,一组阴极的相应阴极设在相关的电池框中; 一组电解薄膜,一组电解薄膜的相应电解薄膜设置在相应阳极和 相应阴极之间; 一个对一组阳极供应燃料的燃料供应路径的网络,燃料供应路径 网络延伸通过一组叠合的电池框,并且在与相应阳极接触的相关电池 框的第一壁中具有一个燃料供应开口; 一个对一组阴极供应空气的空气供应路径的网络,空气供应路径 网络延伸通过一组叠合的电池框,并且在与相应阴极接触的相关电池 框的第二壁中具有一个空气供应开口;以及 一个湿气供应路径的网络,把可移过相应阳极和相应阴极中相关 一个的湿气供应到相应的电解薄膜上,湿气供应路径网络延伸通过一 组叠合的电池框,并且在与相应于第一壁和第二壁之一的燃料供应开 口和空气供应开口之一不同的位置上,具有设在第一壁和第二壁之一 中的一组湿气供应出口。
8: 按照权利要求7的一种燃料电池,包括: 一个湿气供应路径的网络,具有把湿气引入其中的一条湿气引入 路径; 一个冷却液循环路径的网络,冷却液循环通过一组叠合的电池框, 冷却液循环路径的网络具有一条使冷却液流出网络的冷却液流出路 径; 一个热敏元件,其构形做成根据冷却液流出路径中冷却液的温度 而变形;以及 一个阀件,可依靠热敏元件的变形而工作,以调节湿气引入路径 中的湿气流率。
9: 按照权利要求8的一种燃料电池系统,其中热敏元件包括一个 双金属元件。
10: 按照权利要求8的一种燃料电池系统,其中热敏元件包括一 个形状记忆元件。
11: 按照权利要求8的一种燃料电池系统,其中 热敏元件包括一个露在冷却液流出路径内的热敏件,一个可热变 形件延伸到湿气引入路径内,以及 阀件包括一个靠在热敏元件的可热变形件上的阀瓣。
12: 按照权利要求8的一种燃料电池系统,还包括一个加热元件, 可控制地产生被热敏元件感受到的热。
13: 按照权利要求12的一种燃料电池系统,包括: 一个集管板,固定在一组电池框上,其构形做成与湿气供应路径 网络和冷却液循环路径网络外部连接;以及 结合在集管板中的加热元件。
14: 按照权利要求12的一种燃料电池系统,包括: 一个与湿气引入路径连接的湿气供应管道;以及 装在湿气供应管道上的加热元件。
15: 按照权利要求7的一种燃料电池系统,包括: 一个凝结器,凝结从空气供应路径网络流出空气的湿气含量来提 供水; 以及一个湿气供应管线,处理水来对湿气供应路径网络供应湿气。
16: 一种用于燃料电池的增湿方法,燃料电池具有作为电解薄膜 的要增湿的固体聚合物薄膜,增湿方法包括: 通过与阳极接触的电池框第一壁上的一个第一位置,经过电池框 对电池框中的阳极供应燃料; 通过与阴极接触的电池框第二壁上的一个第二位置,经过电池框 对电池框中的阴极供应空气;以及 通过电池框和通过在第一和第二壁之一上的不同于相应于第一和 第二壁之一的第一和第二位置之一位置的位置,把可移过阳极和阴极 中相关一个的湿气供应到设置在阳极和阴极之间的一个电解薄膜上。

说明书


具有要增湿的固体聚合物薄膜的燃料电池, 燃料电池系统,以及用于燃料电池的增湿方法

                           技术领域

    本发明涉及了一种具有要增湿的固体聚合物薄膜的燃料电池,一种包括燃料电池堆的燃料电池系统,以及一种用于燃料电池的增湿方法。更确切地说,本发明涉及了一种燃料电池,燃料电池具有一个作为电解薄膜的固体聚合物薄膜,薄膜设置在一个阳极和一个阴极之间并且需要增湿,一种包括燃料电池堆的燃料电池系统,每个燃料电池分别具有一个作为电解薄膜的要增湿的固体聚合物薄膜,以及一种用于燃料电池地增湿方法,燃料电池具有作为电解薄膜的要增湿的固体聚合物薄膜。

                           技术背景

    在具有固体聚合物薄膜的燃料电池中,薄膜作为由电解质制成的PEM(质子交换薄膜),这种电解薄膜设置在“供应待分解燃料来促进阳极效应的区域”(这里称为“阳极”)和“供应作为氧化剂的空气来促进阴极反应的区域”(这里称为“阴极”)之间。在阳极,供应氢作为燃料,这个氢(H2)分解为氢离子(H+)和电子(e-),使得。氢离子通过电解薄膜从阳极侧传送到阴极侧。电子通过在阳极和阴极之间连接的外部线路从阳极传导到阴极,由此对线路中的负载供应电源。

    在阴极,供应到那里的空气中的氧(O2)与传送到那里的氢离子(H+)和传导到那里的电子(e-)起反应,产生排出燃料电池之外的水(H2O),使得。因此,在燃料电池中,总的来说,由作为燃料供应到阳极的氢和供应到阴极的空气中的氧产生了水(H2O),使得。有时把氢和空气分别称为“反应气体”。

    电解薄膜需要浸透包含其中的水来作为可迁移离子的电解质,并且在作为阳极反应气体的氢和作为阴极反应气体的氧之间起隔离作用。如果水的含量不充分,则电解薄膜降低了离子移动能力,并且/或者引起在反应气体之间不利的混合,造成燃料电池不能产生充分的电源。

    当被分解的氢离子从阳极侧到阴极侧传送通过电解薄膜时,水一起移动,使得电解薄膜在阳极侧固有地具有一个变干燥的倾向。电解薄膜中的水含量由反应气体中包含的湿气来补充,它通过电解薄膜附近的气体入口来供应。如果反应气体的湿气含量不充分,则电解薄膜在气体入口附近的区域中会变得干燥。

    因此,作为燃料电池中电解薄膜的固体聚合物薄膜需要由外部供应的“湿气或结合水”(这里总称为“湿气”)来增湿。在美国专利号5,284,718中公布了这种“增湿或水合”(这里总称为“增湿”)的技术,其中使燃料和空气通过在燃料电池增湿区中的半渗透层,在进入其反应的活性区之前被增湿,在日本专利申请的拟公开出版号11-162490中,使燃料和空气通过供应管道,在那里由外部供应的水蒸气对它们增湿。

                           发明概述

    在美国专利号5,284,718中,增湿区建在燃料电池本体内,需要增加本体的尺寸,并且增加了重量,在用于要尺寸紧凑的汽车燃料电池中构成了问题。另外,为了使电解薄膜的湿气适当,在增湿区除了需要精确控制半渗透层的表面积,还要精确控制其温度,这是不实际的。在有些操作状态下,燃料和空气保持100%相对湿度不变的实际设计会使电解薄膜的湿气过量,造成在燃料路径和/或空气路径中被水阻塞,降低燃料电池的性能。

    在日本专利申请公开号11-162490中,由供应到燃料和空气供应管道的水蒸气来增湿,涉及到电解薄膜中湿气控制的滞后,这个滞后与供应水蒸气区和燃料与空气反应区之间的管道长度成比例。另外,在开始时,燃料电池本体的温度低,被增湿燃料和空气中的湿气会凝结在其供应管道中或在去电池内反应区的途中,造成在这种路径中被水阻塞,降低了燃料电池性能。

    因此,本发明的目的是提供一种燃料电池,燃料电池具有一个作为电解薄膜的要增湿的固体聚合物薄膜,一种包括燃料电池堆的燃料电池系统,每个燃料电池分别具有一个作为电解薄膜的要增湿的固体聚合物薄膜,以及一种用于燃料电池的增湿方法,燃料电池具有作为电解薄膜的要增湿的固体聚合物薄膜,其中在一个电解薄膜上或一组电解薄膜上可以实现增湿,而不会使燃料电池或燃料电池堆变大或降低其性能。

    为了达到此目的,按照本发明的一个方面特征,提供了一种燃料电池,它具有作为电解薄膜的要增湿的固体聚合物薄膜,燃料电池包括一个电池框,一个设在电池框中的阳极和阴极的组合,一个设置在阳极和阴极之间的电解薄膜,一个对阴极供应空气的空气供应路径,一个对阳极供应燃料的燃料供应路径,燃料供应路径延伸通过电池框并且在与阳极接触的电池框第一壁中具有一个燃料供应开口,以及一个把可移过阳极的湿气供应到电解薄膜的第一湿气供应路径,第一湿气供应路径延伸通过电池框,并且在与燃料供应开口不同的位置上具有在第一壁中的第一组湿气供应出口。

    按照本发明的另一方面特征,提供了一种包括燃料电池堆的燃料电池系统,每个燃料电池分别具有作为电解薄膜的要增湿的固体聚合物薄膜,燃料电池系统包括一组叠合的电池框,一组阳极和一组阴极的组合,一组阳极的相应阳极设在一组叠合电池框的相关电池框中,一组阴极的相应阴极设在相关的电池框中,一组电解薄膜,一组电解薄膜的相应电解薄膜设置在相应阳极和相应阴极之间,一个对一组阳极供应燃料的燃料供应路径的网络,燃料供应路径网络延伸通过一组叠合的电池框,并且在与相应阳极接触的相关电池框的第一壁中具有一个燃料供应开口,一个对一组阴极供应空气的空气供应路径的网络,空气供应路径网络延伸通过一组叠合的电池框,并且在与相应阴极接触的相关电池框的第二壁中具有一个空气供应开口,以及一个湿气供应路径的网络,把可移过相应阳极和相应阴极中相关一个的湿气供应到相应的电解薄膜,湿气供应路径网络延伸通过一组叠合的电池框,并且在与相应于第一壁和第二壁之一的燃料供应开口和空气供应开口之一不同的位置上,具有设在第一壁和第二壁之一中的一组湿气供应出口。

    按照本发明另一方面特征,提供了用于燃料电池的增湿方法,燃料电池具有作为电解薄膜的要增湿的固体聚合物薄膜,增湿方法包括:通过与阳极接触的电池框第一壁上的一个第一位置,经过电池框对电池框中的阳极供应燃料,通过与阴极接触的电池框第二壁上的一个第二位置,经过电池框对电池框中的阴极供应空气,以及通过电池框和通过在第一和第二壁之一上的位置(这些位置不同于相应于第一和第二壁之一的第一和第二位置之一的位置),把可移过阳极和阴极中相关一个的湿气供应到设置在阳极和阴极之间的一个电解薄膜上。

                           附图简述

    当结合附图阅读时,从以下对实施例的详细描述,本发明的上述和另外的目的以及新特性将会更明显,其中:

    图1是按照本发明一个实施例的燃料电池系统的示意透视图;

    图2是图1燃料电池系统的框图;

    图3是图1燃料电池系统中一个燃料电池堆组件的示意透视图;

    图4是图3燃料电池堆组件中一个燃料电池下部的垂直剖视图;

    图5是图4整个燃料电池的示意水平剖视图;

    图6是图4燃料电池主要部分的水平剖视图;

    图7是图4燃料电池燃料的供应板主要部分的放大后透视图,部分为剖视;

    图8是图5燃料电池叠合部分的分解前透视图;

    图9是图8叠合部分的分解后透视图;

    图10是整个图7燃料供应板的前视图;

    图11是图10燃料供应板的后视图;

    图12是按照本发明另一个实施例,燃料电池系统中燃料电池堆组件的主要部分的纵向剖视图;

    图13是图12燃料电池堆组件中采用形状记忆元件工作的湿气压力调节阀透视图;

    图14A和图14B是按照本发明另一个实施例在燃料电池系统中采用双金属元件工作的湿气压力调节阀透视图,其中图14A说明了阀的闭合状态,图14B说明了阀的打开状态;

    图15是按照本发明另一个实施例在燃料电池系统中湿气压力调节阀的控制器的图解框图;以及

    图16是是按照本发明另一个实施例在燃料电池系统中湿气压力调节阀的控制器的图解框图。

                         实现本发明的最佳模式

    以下参照相关的附图,详细描述本发明的优选实施例。相同的构件或元件用相同的编号表示。

    图1以示意方式表示了按照本发明第一实施例的燃料电池系统FCS-1,图2是燃料电池系统FCS-1的框图,图3以示意方式表示了在燃料电池系统FCS-1中一个燃料电池堆组件FSA。

    燃料电池系统FCS-1由燃料电池堆组件FSA以及相应的电路(图中未示)和四种流体类型的流体管道形成,四种流体类型为:作为燃料F的H2气体,作为氧化剂的空气A,作为湿气M的水以及作为冷却液C的水。

    燃料电池堆组件FSA形成为燃料电池堆47和输送流体的连接管路的一个组件。燃料电池堆47基本上形成为一个长方体构形,具有总数为N(“N”是给定的整数)的叠合燃料电池堆FC1,…,FCi(“i”是在1和N之间的任意整数,包括1和N)…,FCN,以及一对固定在燃料电池堆上的前、后端板49和50。前端板49形成为四种流体类型F,A,M和C的一个集管板,并且具有固定在板上的连接管道。在本实施例中,燃料电池堆组件FSA沿水平位置排列,它具有一个水平纵方向和一个水平横方向。燃料电池堆47具有一个纵向延伸的湿气引入区63,它在燃料电池堆底部的一个横向中心区上向下突出或高出。

    流体管道包括一条燃料F的流入或供应管线51,一条燃料F的外流或流出管线53,一条空气A的流入或供应管线55,一条空气A的外流或流出管线57,一条冷却液C的流入或供应管线59,一条冷却液C的外流或流出管线61,以及一条湿气M流入或供应管线65。燃料供应管线51与作为前端板的集管板49的下左角连接,燃料流出管线53与集管板49的右上角连接,使得在燃料电池堆组件中相应连接元件(例如,参见图8-11中的口或孔23,123,223和25,125,225)沿着一条右倾对角线的方向偏置。空气供应管线55与集管板49的左上角连接,空气流出管线57与集管板49的右下角连接,使得在燃料电池堆组件中相应连接元件(例如,参见图8-11中的口或孔27,127,227和29,129,229)沿着一条左倾对角线的方向偏置。冷却液供应管线59与集管板49上部的中心区连接,而冷却液流出管线61被分叉具有一对左、右支路61a和61b,与集管板49下部的中心区连接,使得在燃料电池堆组件FSA中的相应连接元件(例如,参见图8-11中的口或孔31,131,231和33,133,233,333)为垂直偏置。湿气供应管线65与燃料电池堆47的湿气引入区63中的连接元件(例如,图8-11中的口或孔37,137,237)连接。  应该注意到,连接于冷却液流出管线61支路61a和61b的连接元件的构形在离开63一个极短的垂直距离上,在平面视图中与湿气引入区63重叠。空气流出管线57具有一个作为一个容器一部分的湿气凝结分离器67,容器由一个贮存水W的水槽形成,通过一个泵P把水W送到湿气供应管线65。经过分离器67,空气流出管线57延伸为装有一个反压调节阀V的空气线路。

    图4表示了一个任意燃料电池FCi下部的垂直剖视图,图5表示了整个燃料电池FCi的水平剖视图,图6表示了在燃料电池FCi不同高度上的详细水平剖视图,图7表示了燃料电池FCi的燃料供应板7的部分详细视图,图8表示了图5燃料电池FCi的分解的前透视图,图9表示了燃料电池FCi的分解的后透视图,图10表示了燃料供应板7的前视图,以及图11表示了燃料供应板7的后视图。

    燃料电池FCi包括:一个电池框(1+7+9),它由一个作为两极板的基本上为矩形的前流体供应板(这里称为“燃料供应板”)7,一个作为对着两极板的基本上为矩形的后流体供应板(这里称为“空气供应板”)9,以及一个基本上为矩形的固体聚合物薄膜1的周边区所形成;设在电池框中的一个阳极3和一个阴极5的组合,在燃料供应板7和空气供应板9之间;以及一个固体聚合物薄膜1的主要(或余下)部分,它作为PEM进行工作并称为“电解薄膜”,由周边区支承或支持,设置在阳极3和阴极5之间,并且需要增湿。应注意到,固体聚合物薄膜1是均匀的,使得实际上电解薄膜包括了固体聚合物薄膜1,反之亦然。阳极3构成为一个带催化剂的基本上为矩形的多孔构件,它的外尺寸与PEM区域完全相同,适于扩散供应到薄膜上的燃料F和湿气M。阴极5构成为另一个带催化剂的基本上为矩形的多孔构件,它的外尺寸也与PEM区域完全相同,但在本实施例中适于扩散供应到薄膜上的空气A。燃料电池FCi还包括密封件130,用于在燃料供应板7和聚合物薄膜1的周边区的必要密封,以及密封件140,用于在空气供应板9和聚合物薄膜1的周边区的必要密封。

    如图4中详细表示,密封件130和140分别构成前、后平垫片110和120。燃料电池堆47的湿气引入区63在燃料电池FCi中具有一个相应的叠层或层状部分,它由燃料供应板7、前垫片110、固体聚合物薄膜1、后垫片120、以及空气供应板9的相关的下突起形成。

    电池框(1+7+9)由流经其中的四种流体类型F,A,C,M的流体线路形成,总起来说,具有一条与燃料供应管线51连接的燃料供应路径,一条与燃料流出管线53连接的燃料流出路径,一条与空气供应管线55连接的空气供应路径,一条与空气流出管线57连接的空气流出路径,一条与冷却液供应管线59连接的冷却液供应路径,一条与冷却液流出管线61连接的冷却液流出路径,以及一条与湿气供应管线65连接的湿气供应路径。

    燃料供应路径形式为如下的组合:一个沿纵向堆积的燃料供应口(23+123+223),延伸通过电池框的左下部分,并且构成为分别在燃料供应板7、聚合物薄膜1和空气供应板9的左下角中燃料供应孔23,123和223的连续连接;以及一个成二维阵列的燃料供应支路(例如,长的垂直槽11)的垂直树,它形成为与阳极3接触的燃料供应板7后壁中的通道,并且连接到燃料供应口的一个孔23。燃料供应支路沿其长度暴露于和通向阳极3,用于对阳极3供应燃料F,在阳极3带催化剂的多孔构件中扩散。燃料供应板7的后壁具有一个垂直岛状区19的阵列,它们留在燃料供应支路之间并被燃料供应支路所确定。

    燃料流出路径的形式为分别形成在燃料供应板7、聚合物薄膜1和空气供应板9的右上角中燃料流出孔25,125,225的连续连接,并且连接到在燃料供应板7后壁中燃料供应支路的垂直树上。

    空气供应路径形式为如下的组合:一个沿纵向堆积的空气供应口(27+127+227),延伸通过电池框的左上部分,并且构成为分别在燃料供应板7、聚合物薄膜1和空气供应板9的左上角中供应孔27,127和227的连续连接;以及一个成二维阵列的空气供应支路(例如,长的垂直槽327和329,以及在长水平岛状区219之间并被确定的长水平槽13)的垂直树,它形成为与阴极5接触的空气供应板9前壁中的通道,并且连接到空气供应口的一个孔227上。空气供应支路沿其长度暴露于和通向阴极5,用于对阴极5供应空气A,在阴极5带催化剂的多孔构件中扩散。

    空气流出路径的形式为分别形成在燃料供应板7、聚合物薄膜1和空气供应板9的右下角中空气流出孔29,129,229的连续连接,并且连接到在空气供应板9前壁中的空气供应支路的垂直树上。

    冷却液供应路径形式为如下的组合:一个沿纵向堆积的冷却液供应口(31+131+231),延伸通过电池框的上中心部分,并且构成为分别在燃料供应板7、聚合物薄膜1和空气供应板9的上中心部分中冷却液供应孔31,131和231的连续连接;以及一个成二维阵列的冷却液循环支路[例如,长垂直槽334、水平槽335,以及连接上述槽的短垂直槽321(参见图5和图6,它由短的分隔岛状区320所确定并在它们之间)的较长对角线阵列336或较短斜阵列533]的垂直树,它形成为与下一个燃料电池FCi+1电池框接触的空气供应板9后壁中的通道,并且连接到冷却液供应口的一个孔231。

    冷却液流出路径的形式为分别形成在燃料供应板7、聚合物薄膜1和空气供应板9的下中心部分中冷却液流出孔33,133,233的连续连接,并且通过垂直槽333连接到在空气供应板9后壁中冷却液循环支路的垂直树上。

    湿气供应路径形式为如下的组合:一个沿纵向堆积的湿气供应口(37+137+237),延伸通过燃料电池堆47的湿气引入区63的相应层,并且构成为分别在燃料供应板7、聚合物薄膜1和空气供应板9的突出底部中湿气供应孔37,137和237的连续连接;一个成二维阵列的湿气供应支路(例如,水平槽43和垂直槽41,39)的垂直树,它形成为燃料供应板7前壁中的通道,并且连接到湿气供应口的一个孔37;以及一个作为直径缩小口或出口的湿气供应孔21的垂直矩阵或许多垂直阵列,它们与燃料供应板7前壁中湿气供应支路的垂直槽39连通,并且在与阳极3接触的燃料供应板7后壁中的垂直岛状区19后侧上打开。湿气供应孔21的构形可对阳极3供应湿气M,通过阳极3的带催化剂多孔构件扩散或移动到聚合物薄膜1。如图4详细表示,由一个中间口100连接湿气供应孔37和237,中间口100是前垫片110中的前孔111、固体聚合物薄膜1中的湿气供应孔137和后垫片120中的后孔121的连接组合。

    燃料电池系统FCS-1包括燃料电池FCi堆47,每个燃料电池具有作为电解薄膜的要增湿的固体聚合物薄膜1。因此燃料电池系统FCS-1由以下形成:一组叠合的电池框;一组阳极3和一组阴极5的组合,一组阳极的相应阳极3设在一组叠合电池框的相关电池框中,一组阴极的相应阴极5设在相关的电池框中;一组电解薄膜1,一组电解薄膜的相应电解薄膜1设置在相应阳极3和相应阴极5之间;一个对一组阳极3供应燃料F的燃料供应路径的网络,燃料供应路径网络延伸通过一组叠合的电池框,并且在作为与相应阳极3接触的相关电池框第一壁的燃料供应板7后壁中具有一个燃料供应开口11;一个对一组阴极5供应空气A的空气供应路径的网络,空气供应路径网络延伸通过一组叠合的电池框,并且在作为与相应阴极5接触的相关电池框第二壁的空气供应板9前壁中具有一个空气供应开口13;以及一个湿气M供应路径的网络,把可移过相应阳极3的湿气M供应到相应的电解薄膜1上,湿气供应路径网络延伸通过一组叠合的电池框,并且在与燃料供应开口11不同的位置上,具有设在第一壁中的一组湿气供应出口21。

    图12以纵向剖视图表示了按照本发明第二个实施例的燃料电池系统FCS-2中一个燃料电池堆组件FSA的主要部分,图13以透视图表示了一个湿气压力调节阀69,它在图12的燃料电池堆组件FSA中采用作为热敏元件77的形状记忆元件来操作。在( )中的编号是指其他实施例中的编号,并且表示了相同的构件或元件。应注意到,热敏元件77包括一个形状记忆元件。

    按照第二实施例的燃料电池系统FCS-2不同于第一实施例中的燃料电池系统FCS-1,其中相关的燃料电池FCi具有一条附加的湿气供应路径,用于通过空气供应板(9)供应湿气M,从固体聚合物薄膜(1)的阴极侧来增湿固体聚合物薄膜(1),以及燃料电池堆组件FSA具有压力调节阀69,它装在作为燃料电池堆(47)集管板的前端板49中。

    附加的湿气供应路径形式为如下的组合:一个成二维阵列的湿气供应支路(例如,水平槽和垂直槽239)的附加垂直树,它形成为在空气供应板(9)后壁中的通道,并且与湿气供应口(37+100(包括137)+237)的一个孔237连接;以及一个作为缩小直径口或出口的湿气供应孔221的垂直矩阵或许多垂直阵列,它们与空气供应板(9)后壁中湿气供应支路的垂直槽239连通,并且在与阴极(5)接触的空气供应板(9)前壁中的水平岛状区(219)前侧上打开。湿气供应孔221的构形可对阴极(5)供应湿气M,通过阴极(5)的带催化剂多孔构件扩散或移动到聚合物薄膜(1)。

    因此燃料电池系统FCS-2包括燃料电池FCi堆(47),每个燃料电池具有作为电解薄膜的要增湿的固体聚合物薄膜(1)。燃料电池系统FCS-2由以下形成:一组叠合的电池框;一组阳极(3)和一组阴极(5)的组合,一组阳极的相应阳极(3)设在一组叠合电池框的相关电池框中,一组阴极的相应阴极(5)设在相关的电池框中;一组电解薄膜(1),一组电解薄膜的相应电解薄膜(1)设置在相应阳极(3)和相应阴极(5)之间;一个对一组阳极(3)供应燃料(F)的燃料供应路径的网络,燃料供应路径网络延伸通过一组叠合的电池框,并且在作为与相应阳极(3)接触的相关电池框第一壁的燃料供应板(7)后壁中具有燃料供应开口(11);一个对一组阴极(5)供应空气(A)的空气供应路径的网络,空气供应路径网络延伸通过一组叠合的电池框,并且在作为与相应阴极(5)接触的相关电池框第二壁的空气供应板(9)前壁中具有空气供应开口13;以及一个湿气M供应路径的网络,把可移过相应阳极(3)和相应阴极(5)中相关一个(3,5)的湿气M供应到相应的电解薄膜(1)上,湿气供应路径网络延伸通过一组叠合的电池框,并且在与燃料供应开口(11)和空气供应开口(13)之一(11,13)不同的位置上,具有设在第一壁和第二壁中之一的一组湿气供应出口21或221。

    燃料电池系统FCS-2包括一个湿气供应路径的网络,它具有引入湿气M的一条湿气引入路径71,一个冷却液循环路径的网络,用于把冷却液C循环通过叠合的电池框,一个冷却液循环路径的网络,它具有一个从那里流出冷却液C的冷却液流出路径61a(以及61b),一个作为热敏元件77的形状记忆元件,构成了根据冷却液流出路径61a(61b)中冷却液C的温度而变形,以及一个作为压力调节阀75的阀件,依靠热敏元件77的变形来操作,以调节在湿气引入路径71中湿气M的流率。应注意到,热敏元件77在其顶部露在流出的冷却液C中。热敏元件77的顶部可以分叉在相关冷却液流出路径61a(以及61b)中,或者不露在冷却液C中,但必须放在一个适当的位置,如在冷却液流出路径附近,那里流出冷却液C的温度变化是敏感的。

    图14A和图14B以剖面表示了一个湿气压力调节阀69,采用在按照本发明第三实施例的燃料电池系统FCS-3中作为热敏元件77的双金属元件来操作,其中图14A说明了阀69的闭合状态,图14B说明了阀69的打开状态。按照第三实施例的燃料电池系统FCS-3不同于按照第二实施例的燃料电池系统FCS-2,其中热敏元件77包括了双金属元件。

    图15以图解的框图表示了按照本发明第四实施例的燃料电池系统FCS-4中湿气压力调节阀69的一个电控制器80。按照第四实施例的燃料电池系统FCS-4不同于按照第三实施例的燃料电池系统FCS-3,其中控制热耗的加热器79设置在热敏元件77附近。控制器80具有一个热电偶或热敏电阻84,用于探测在前端板49中流出冷却液C的温度,一个晶体管放大器81,用于放大来自热敏电阻84的探测信号,以及一个电源85,以可控的电功率供应加热器79。以编号82表示一个手动开关,83是一个驱动线圈。阀69的热敏元件77即使在其顶部也没有露在流出的冷却液C中。

    图16以图解的框图表示了按照本发明第五实施例的燃料电池系统FCS-5中湿气压力调节阀(69)的电控制器90。按照第五实施例的燃料电池系统FCS-5不同于按照第四实施例的燃料电池系统FCS-4,其中湿气供应管线65中的湿气M由加热供应管线65的加热器91来加热。应注意到,在燃料电池堆47的前端板49中,控制器90具有设置在流出冷却液路径(61a,61b)之中或附近的热电偶或热敏电阻(84),由此得到的探测信号被处理来控制加热器91。具有控制温度的湿气M通过在前端板49中的湿气供应路径,在那里它控制湿气压力调节阀(69)。

    以下从不同的观点来描述上述实施例。

    如图6所示,燃料电池系统FCS-1具有作为第一电极的阳极3,作为第二电极的阴极5,一个电极薄膜1在其两者之间的中心。作为燃料F供应到阳极3的氢在电极上分解为氢离子和电子,氢离子通过电解薄膜1,电子流经一个外部电路,转移到阴极5,在那里与供应到阴极5的空气A中的氧反应而形成水。通过外部电路的电子形成供应电源的电流。

    一个燃料供应板7设置为在阳极3侧的供应板,一个空气供应板9设置为在阴极5侧的供应板。燃料供应板7具有作为燃料路径的许多槽形燃料供应路径11来供应氢,沿着垂直于图6纸面的方向,空气供应板9具有供应空气的许多槽形空气供应路径13,沿着平行于图6纸面的方向。

    图7是一个透视图,表示了燃料供应板7的阳极3侧,它是在具有固体聚合物薄膜的燃料电池FCi中的燃料供应板7的一部分,在形成燃料供应路径11的表面上。图10是燃料供应板7的前视图。图11是从燃料供应板7阳极3侧看的视图。如图11所示,许多燃料供应路径11通过在燃料供应板7上、下部分的上、下连通路径15和17相互连通。采取这种构形,形成岛状区19,它们被燃料供应路径11和上、下连通路径15和17包围,每一个岛状区19中形成了许多湿气供应路径21,它们在燃料供应板7的前、后侧面之间通过。

    在图11中的下连通路径15的右端,形成一个燃料供应孔23,使得沿着垂直于图11纸面的方向通过燃料供应板7,在图11中的上连通路径17的左端,形成一个燃料流出或排出孔25,使得沿着垂直于图11纸面的方向通过燃料供应板7。更确切地说,供应到燃料供应板7的燃料F通过燃料供应板7前侧的燃料供应孔23流经下连通路径15、燃料供应路径11和上连通路径17,并且供应到阳极3,未反应燃料部分从燃料排出孔25排出到燃料供应板7的前侧。

    在图11中燃料供应板7的右上端部分,形成一个空气供应孔27,沿着垂直于图11纸面的方向通过燃料供应板7,在燃料供应板7的左下端部分,形成一个空气流出或排出孔29,沿着垂直于图11纸面的方向通过燃料供应板7。空气供应孔27和空气排出孔29通过在图8中上、下延伸的空气供应路径和空气排出路径,并且分别与空气供应路径13连通。空气供应路径13在其两端与左、右连通路径连接,这些连通路径在许多空气供应路径之间提供了相互连通。也就是说,从燃料供应板7前侧供应到空气供应孔27的空气流经一条纵向的空气供应路径,一条左连通路径,许多供应路径13和一条右连通路径,由此把空气供应到阴极5,未反应的空气部分流经一条纵向的空气排出路径,从而通过空气排出孔29排出到前侧。

    沿着垂直于图11纸面的方向,一个冷却液供应孔31形成在图11所示的燃料供应板7的顶部中心区,两个冷却液流出或排出孔33形成在燃料供应板7的底部中心区。从燃料供应板7前侧通过冷却液供应孔31供应的冷却液流经纵向的冷却液供应路径,并且流入例如形成在空气供应板9后侧上的冷却液路径。然后,在冷却了因反应而变热的燃料电池之后,冷却液流经在空气供应板9中的冷却液流出或排出路径,从冷却液排出孔33排出。

    一个在图11中向下突出的突起35形成在包括了燃料供应板7两个冷却液排出孔33的区域中,一条纵向的湿气引入口或孔37形成在突起35中。

    在形成湿气供应路径21的岛状区19的前侧,形成了与湿气路径21连通的槽39,成为沿着岛状区19延伸方向的阵列。一条中心槽39与两个冷却液排出孔33之间的一条延伸槽41连通,而延伸槽41的另一端与湿气引入孔37连通。通过在图10中沿水平方向延伸的连通槽43,垂直槽39在其下端相互连通。也就是说,湿气M从前侧通过湿气引入孔37引入,并且从延伸槽41流经连通槽43,从湿气供应孔21供应到阳极3。

    上述阳极3和阴极5分别在电解薄膜1前、后侧的中心部分,并且分别沿着燃料供应板7和空气供应板9延伸来构成一个电池FCi。沿着纵向顺序地叠合这种电池,形成一个燃料电池堆47,如图2所示。

    在图2中,燃料电池堆47的左端板形成为一个集管板49。集管板49与第一燃料电池FC1的燃料供应板7紧密接触连接。集管板49上设有集管路径,相互分离地连通到燃料供应孔23、燃料流出孔25、空气供应孔27、空气排出孔29、冷却液供应孔31、冷却液排出孔33、以及湿气引入孔37。对于燃料F,空气A和冷却液C,集管板49连接到分别与燃料电池堆中燃料供应孔23和燃料排出孔25连通的燃料管线51和53,分别与燃料电池堆中空气供应孔27和空气排出孔29连通的空气管线55和57,以及分别与燃料电池堆中冷却液供应孔31和冷却液排出孔33连通的冷却液管线59和61。

    一个引入湿气M的湿气引入区63设在集管板49中冷却液管线61的排出口区域,它在图2底部排出冷却液。湿气引入管线65的一端与湿气引入区63连接,湿气引入管线的另一端与一个水箱67连接。空气A从集管板49排出通过空气管线57,空气管线57连接到水箱67的顶部,使排出的空气凝结而得到水W。用泵P来供应湿气M到集管板49,它把作为湿气M的水W泵压通过湿气引入管线65。依靠排出空气的剩余压力作用可以做得这点。

    图12是一个放大的剖视图,表示了环绕上述湿气引入区63的区域。一个湿气压力调节阀69设在湿气引入区63中,这个阀调节湿气M的供应量。在设有湿气压力调节阀69的湿气引入区的下部形成了一条湿气引入路径71,作为N个燃料电池的湿气引入孔37的连续连接。

    图14A和图14B表示了湿气压力调节阀69的细节,其中能够打开和闭合一个节流区73的阀体75被一个作为温度敏感元件的双金属元件77支承。双金属元件77装在集管板49的下端,在冷却液排出口的区域中具有一个从阀体75向上延伸的部分。并且根据集管板49下部的温度而移动,也就是说,根据代表燃料电池温度的排出冷却液温而移动。更确切地说,当从燃料电池排出的冷却液温度低时,双金属元件77沿着向左方向移动,从而使阀体75更靠近节流区73,由此减少了湿气量。另一方面,如果排出冷却液的温度高,则双金属元件77沿着向右方向移动,从而移动阀体75离开节流区73,增加了冷却液量。

    如上述构造的本发明操作如下。

    例如,在燃料电池系统FCS-1中,通过集管板49对燃料电池堆47同时供应燃料F和空气A,并且附加供应冷却液C来抑制由其中反应造成的发热。从空气管线57把已供应的空气A通到水箱67,从而发生凝结,由此产生的水W作为湿气M。由泵P的作用加压湿气M,从而流经湿气引入管线65,接着到达湿气引入区63。

    已经到达湿气引入区63之后,湿气M流经湿气压力调节阀69,调节阀69根据集管板49的温度调节压力,湿气M流经节流区73,根据集管板49的温度由湿气压力调节阀69打开和闭合节流区73,湿气M从每个燃料电池FCi的湿气引入孔37通过,然后通过连通槽43和槽39,接着到达湿气供应路径21。

    已经到达湿气供应路径21之后,湿气M直接供应到阳极3,在那里扩散或移动来渗透到电解薄膜1中,由此增湿或湿润了电解薄膜1。

    在开始起动燃料电池系统FCS-3的情形中,其中N个燃料电池的平均温度低,因为湿气压力调节阀69的开口小,湿气M的供应压力低,湿气M直接供应到阳极3上,既没有因过度湿气而降低性能,也没有在到阳极3的过程中湿气M与燃料F的直接接触,结果是避免了在燃料供应路径内或空气供应路径内发生湿气M凝结,使水阻塞而降低燃料电池性能的情形。当平均燃料电池温度高时,湿气压力调节阀69的开口变大,由此增加了湿气供应压力,从而把所需的湿气M量供应到电解薄膜1上。因为渗入电解薄膜1然后离开电解薄膜1的湿气M量受到供应湿气M压力的控制,湿气从接受排出空气剩余压力的水箱67不断地得到补充。

    因此,因为渗入电解薄膜1的湿气M量根据N个燃料电池的平均温度变化而变化,由此控制了水合量,可以完成适当和可靠的电解薄膜1的增湿。此外,因为该结构是湿气路径和湿气压力调节阀69仅设在集管板49内的结构,可以避免使燃料电池变大,这在需要紧凑的汽车燃料电池应用中特别优先采用。

    虽然在得到高输出而燃料电池温度低的情形中,由于湿气M量不足,可能造成发电效率的降低,但只要电压在工作范围内和不低于燃料电池规定的下限电压,将增加发热量,使得燃料电池的温度上升,这造成湿气压力调节阀69开口的增加,由此达到所需的湿气M量。因此,不需要提供任何附加的反馈控制,使它可能完成湿气M量的独立控制。

    在燃料电池系统FCS-2和FCS-3情形中,除了FCS-1的结构外,还在空气供应板9中提供了供应路径并且也使湿气通过阴极5来把湿气M供应到电解薄膜1。可以看到,可以仅通过空气供应板9来供应湿气M,即在燃料供应板7中没有湿气供应路径。

    图15表示了一个例子,其中在装有双金属元件77的湿气引入区63,把一个电加热器79设为集管板49之上或之中的加热装置。此时,控制流经加热器79的电流量,可以加速双金属元件77的移动,由此改进了湿气压力调节阀69的响应特性,从而改进了控制湿气M供应量的控制响应。

    在图16所示的实施例中,我们看到一个例子,其中加热器91设为在湿气引入管线65上的加热装置。此时,除了电加热器91加热湿气引入管线65外,还加热了流经管线的湿气M本身。加热的湿气引入管线65和加热的湿气M再加热双金属元件77。这个加热作用的结果是,取图16所示的例子,进一步改进了湿气M供应量控制的控制响应。但是,在这个情形中,需要保持加热在使湿气引入管线65内湿气M沸腾的量级之内。

    应该注意到,在燃料电池系统FCS-2中,一个形状记忆合金替代了双金属元件77。

    此外,对于由泵P把湿气M压到存储器内提供的存储压力,可以用一个压缩机来提供,压缩机也用于把空气A供应到燃料电池本身,由此能够简化整个燃料电池系统。

    为了达到本发明目的,本发明可以采取各种形式。

    第一例子是一个具有固体聚合物薄膜的燃料电池,其中由固体聚合物制成的电解薄膜设置在被供应燃料的第一电极和被供应空气的第二电极之间,以及其中一个具有供应燃料或空气供应路径的供应板设置在至少一个电极上,通过电极之一直接把湿气供应到电解薄膜上的湿气供应路径设在供应板的一个位置上,它不与其他供应路径干扰。

    按照具有上述构形的带固体聚合物薄膜的燃料电池第一例,湿气从湿气供应路径直接通过电极供应到电解薄膜上,不与燃料或空气直接接触,由此不仅达到了适当和可靠地通过电极直接供应到电极薄膜上,而且避免了使燃料电池变大和变重。

    第二例是第一例燃料电池的变化形式,其中湿气供应路径设在具有供应燃料的供应路径的供应板上。

    按照具有上述本发明第二方面构形特征的带固体聚合物薄膜的燃料电池第二例,湿气从湿气供应路径通过一个供应燃料的电极直接供应到电解薄膜上,不与燃料直接接触。这种布局的结果是可以对燃料供应侧提供充分的水合作用,燃料供应侧通常会干燥,因为当氢离子移动通过电解薄膜时,水随着一起移动。

    第三例是第一或第二例燃料电池的变化形式,其中供应路径具有许多通向电极的槽,形成湿气路径使得在每个槽之间通过一个供应板。

    按照具有上述本发明第三方面构形特征的带固体聚合物薄膜的燃料电池第三例,燃料或空气流经在供应板中的许多槽,从而被供应到一个电极上,湿气流经通过供应板的湿气供应路径,直接供应到电解薄膜上。

    第四例是第一到第三例中任一个燃料电池的变化形式,其中一个引入湿气到湿气路径的湿气引入区设置在对燃料电池供应的冷却液的排出口区域,以及其中一个温度敏感材料设在湿气引入区,它随排出冷却液的温度变化而产生移动,一个流量调节阀设置成根据温度敏感材料的移动来调节在湿气引入区中流动的湿气量。

    按照第四例,当代表燃料电池温度的从燃料电池排出的冷却液温度低时,温度敏感材料的移动使得流量调节阀闭合湿气引入区,由此降低了湿气的供应量,当排出的冷却液温度高时,温度敏感材料的移动使得流量调节阀打开湿气引入区,由此增加了湿气的供应量。

    第五例是第四例燃料电池的变化形式,它还具有一个设在温度敏感材料区域中的加热装置。

    按照燃料电池第五例,加热温度敏感材料的时间受加热装置控制,由此以改进的控制响应来控制湿气供应量。

    第六例是第四例燃料电池的变化形式,其中湿气引入管道连接成使得与湿气引入区连通,一个加热装置设在湿气引入管道上。

    按照燃料电池第六例,依靠提供一个加热装置来加热湿气引入管道,以及依靠通过湿气引入管道和管道内流动湿气的热传导,温度敏感材料被加热。依靠对温度敏感材料加热时间的控制,达到了对湿气供应量的快速控制。

    第七例是第四到第六例中任一个燃料电池的变化形式,其中温度敏感材料是双金属元件。

    按照第七例,双金属元件受冷却液温度影响而移动,由此打开和闭合流量调节阀。

    第八例是第四到第六例中任一个燃料电池的变化形式,其中温度敏感材料是形状记忆合金。

    按照第八例,形状记忆合金受冷却液温度影响而移动,由此打开和闭合流量调节阀。

    第九例是第一到第八例中任一个燃料电池的变化形式,其中从燃料电池排出的空气被凝结,产生用作湿气的水。

    按照第九例,凝结从燃料电池排出空气所产生的水用作湿气,作为湿气从湿气供应路径通过一个电极,而不容许它与燃料或空气直接接触。本发明的这个方面特征消除了专门供应湿气的需要,这是本发明的一个优选特征,例如,可应用于如车辆的活动平台上的燃料电池。

    日本专利申请号2000-277138的内容引入这里作为参考。

    尽管已经采用具体的名称描述了本发明的优选实施例,但这种描述仅是为了说明的目的,并且理解到,可以进行改变和变化而不偏离权利要求的范围。

    工业应用

    按照本发明,对于一个具有作为电解薄膜的要增湿固体聚合物薄膜的燃料电池,容许在薄膜上增湿,而不会使燃料电池变大或降低燃料电池性能。

具有要增湿的固体聚合物薄膜的燃料电池,燃料电池系统,以及用于燃料电池的增湿方法.pdf_第1页
第1页 / 共33页
具有要增湿的固体聚合物薄膜的燃料电池,燃料电池系统,以及用于燃料电池的增湿方法.pdf_第2页
第2页 / 共33页
具有要增湿的固体聚合物薄膜的燃料电池,燃料电池系统,以及用于燃料电池的增湿方法.pdf_第3页
第3页 / 共33页
点击查看更多>>
资源描述

《具有要增湿的固体聚合物薄膜的燃料电池,燃料电池系统,以及用于燃料电池的增湿方法.pdf》由会员分享,可在线阅读,更多相关《具有要增湿的固体聚合物薄膜的燃料电池,燃料电池系统,以及用于燃料电池的增湿方法.pdf(33页珍藏版)》请在专利查询网上搜索。

一个燃料电池在固体聚合物制成的一个电解薄膜(1)的两侧具有一个阳极(3)和一个阴极(5)。一个燃料供应板(7)和一个空气供应板(9)设在电解薄(1)的两侧,从而形成一个带固体聚合物薄膜的燃料电池。一条燃料供应路径(11)设在燃料供应板(7)的阳极(3)侧,一条空气供应路(13)设在空气供应板(9)的阴极(5)侧。湿气供应路径(21)设在燃料供应板(7)的燃料供应路径(11)之间,这些湿气供应路径通。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1