被配置为使用混合波形结构来进行通信的无线通信系统.pdf

上传人:大师****2 文档编号:675672 上传时间:2018-03-04 格式:PDF 页数:40 大小:1.64MB
返回 下载 相关 举报
摘要
申请专利号:

CN02813663.2

申请日:

2002.07.02

公开号:

CN1582553A

公开日:

2005.02.16

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回|||实质审查的生效|||公开

IPC分类号:

H04L12/56; H04L12/28

主分类号:

H04L12/56; H04L12/28

申请人:

格鲁斯番维拉塔公司

发明人:

马克·A·韦伯斯特; 迈克尔·J·西奥斯

地址:

美国新泽西

优先权:

2001.07.06 US 60/306,438; 2002.05.10 US 10/143,134

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

李玲

PDF下载: PDF下载
内容摘要

本发明涉及一种无线通信系统103,所述系统被配置成使用一个混和波形结构301来进行通信。所述混合波形包括一个根据单载波方案来进行调制并具有前同步码303和报头305的第一部分2101以及根据多载波方案来进行调制的第二部分2103。所述波形将被指定,以使一个可以从第一部分获取的CIR估计能够重新由接收机用于获取第二部分。发射机1601可以包括第一核心1605和第二核心1603以及一个转接器1607,其中所述转接器对用于第一部分的第一核心以及用于第二部分的第二核心进行选择,以便形成一个发送波形。接收机201可以包括一个单载波接收机207、一个多载波接收机209以及一个转接器205,所述转接器将正被接收的信号的第一部分提供到单载波接收机,并且将正被接收的信号的第二部分提供到多载波接收机。

权利要求书

1: 一种无线通信系统,所述系统被配置成使用一个混和波形结 构来进行通信,包括: 一个发射机,所述发射机被配置成根据一个混合波形结构来进 行发送,其中所述混合波形结构包括一个根据单载波方案调制并具有 一个前同步码和一个报头的第一部分,以及一个根据多载波方案调制 的第二部分; 所述波形将被指定,以使一个可以从第一部分得到的信道脉冲 响应估计可以重新用于获取第二部分;以及 一个接收机,所述接收机被配置成获取和接收那些具有混合波 形结构的分组。
2: 权利要求1的无线通信系统,其中发射机保持功率、载波相 位、载波频率、定时以及波形的第一和第二部分之间的多径频谱。
3: 权利要求2的无线通信系统,其中所述发射机包括: 一个根据单载波调制方案来对第一部分进行调制的第一核心; 一个根据多载波调制方案来产生第二部分的第二核心; 一个耦合到第一和第二核心的转接器,它对用于第一部分的第 一核心以及用于第二部分的第二核心进行选择,以便形成一个发送波 形。
4: 权利要求3的无线通信系统,其中第一核心以第一取样速率 进行操作,第二核心以第二取样速率进行操作。
5: 权利要求3的无线通信系统,其中第一核心使用一个与多载 波调制方案的多载波频谱相类似的单载波频谱。
6: 权利要求5的无线通信系统,其中第一核心使用一个在连续 时间中指定的时间整形脉冲。
7: 权利要求6的无线通信系统,其中时间整形脉冲是使用砖墙 式近似的无限脉冲响应来得出的,所述砖墙式近似是使用一个长到足 以得到预期频谱特性并且短到足以将复杂程度减至最小的连续时间窗 口而被截取的。
8: 权利要求6的无线通信系统,其中第一核心根据奈奎斯特判 据来对时间整形脉冲进行取样。
9: 权利要求3的无线通信系统,其中第一核心的平均输出信号 功率以及第二核心的平均输出信号功率实质上是相等的。
10: 权利要求3的无线通信系统,其中单载波调制方案依据的 是802.11b巴克方法,而多载波调制方案依据的是使用正交频分复用 (OFDM)的802.11a标准。
11: 权利要求3的无线通信系统,其中第一核心使用了第一取 样速率时钟,其中第二核心使用了第二取样速率时钟,其中第一和第 二取样速率时钟是在预定的定时间隔校准的,并且其中多载波调制方 案的第一个完全取样是在开始了单载波调制方案的最后一个取样之后 的一个定时间隔开始的。
12: 权利要求3的无线通信系统,其中来自第一核心的单载波 信号是根据一个为802.11a标准中定义的OFDM信号整形指定的窗 口函数而被终止的。
13: 权利要求3的无线通信系统,其中在第一和第二核心之 间,载波频率是相干的。
14: 权利要求3的无线通信系统,其中在第一和第二核心之 间,载波相位是相干的。
15: 权利要求14的无线通信系统,其中第二核心多载波信号的 载波相位是由第二核心单载波信号的最后一部分的载波相位所确定 的。
16: 权利要求15的无线通信系统,其中第二核心多载波信号的 载波相位旋转了多个旋转倍数中的一个相应倍数,每个旋转倍数则对 应于第二核心单载波信号的最后一部分的多个预定相位之一。
17: 权利要求16的无线通信系统,其中第一核心单载波调制方 案依据的是802.11b巴克方法,其中每个巴克码字都是第一、第二、 第三和第四个可能相位中的一个,其中第二核心多载波调制方案依据 的是802.11a标准的附录G中定义的OFDM,并且其中如果最后一 个巴克码字具有第一相位,则第二核心将OFDM符号旋转零度,如 果最后一个巴克码字具有第二相位,则将所述符号旋转90度,如果 最后一个巴克码字具有第三相位,则将所述符号旋转180度,如果最 后一个巴克码字具有第四相位,则将所述符号旋转-90度。
18: 权利要求3的无线通信系统,其中整个混合波形结构的必 要保真度是由一个为多载波方案指定的必要保真度来规定的。
19: 权利要求18的无线通信系统,其中所述必要保真度是第二 部分的数据速率的一个函数,并且是由为802.11a标准中的OFDM 指定的信号功率所归一化的均方误差来确定的。
20: 权利要求2的无线通信系统,其中所述波形的符号速率时 钟和载波频率是从相同的基准时钟导出的。
21: 权利要求20的无线通信系统,其中用于符号速率的时钟基 准的百万分率(PPM)误差以及用于载波频率的时钟基准的PPM误 差实质上是相等的。
22: 权利要求2的无线通信系统,其中接收机包括: 一个单载波接收机; 一个耦合到单载波接收机的多载波接收机;以及 一个耦合到单载波接收机和多载波接收机的转接器,所述转接 器提供了正被接收到单载波接收机的信号的第一部分,并且提供了正 被接收到多载波接收机的信号的第二部分; 其中单载波接收机获取包含了前同步码和报头的输入信号的第 一部分,并且确定一个信道脉冲响应(CIR)估计,并且其中多载波 接收机将CIR估计用于输入信号的第二部分。
23: 权利要求22的无线通信系统,还包括: 单载波接收机包括一个第一均衡器,其中单载波接收机根据 CIR估计而对第一均衡器的分支进行编程;以及 多载波接收机包括一个第二均衡器,其中多载波接收机基于第 一均衡器确定的CIR估计而对第二均衡器的分支进行修改。

说明书


被配置为使用混合波形结构 来进行通信的无线通信系统

    【技术领域】

    本发明涉及无线通信,尤其涉及一种被配置为使用单载波-多载波的混合波形结构来进行通信的无线通信系统。

    背景技术

    电气与电子工程师协会(IEEE)802.11标准是一个用于那些处在不需注册的2.4和5千兆赫(GHz)频带之中的无线局域网(WLAN)的标准族。当前的802.11b标准在2.4GHz的频带中定义了不同的数据速率,其中包括大小为1、2、5.5和11每秒兆位(Mbps)的速率。802.11b标准则是将直接序列扩展频谱(DSSS)与大小为11兆赫(MHz)的码片速率结合使用,其中所述直接序列扩展频谱是一种串行调制技术。而802.11a标准则在5GHz的频带中定义了大小为6、12、18、24、36和54Mbps的不同并且更高的数据速率。需要指出地是,按照802.11a和802.11b标准实施的系统不可兼容并且不能在一起工作。

    目前正在提出一种名为802.11g(“802.11g建议”)的新标准,它是处在2.4GHz的802.11b标准的高数据速率扩展。目前应该注意的是,802.11g建议只是一个提案而不是一个完整定义的标准。针对新的802.11g建议也已经提出了几个相当大的技术挑战。而期望实现的则是802.11g设备能在2.4GHz频带使用比标准802.11b的速率更高的数据速率来进行通信。在某些配置中,所期望的是无论802.11b和802.11g设备是否能够相互通信,802.11b与802.11g设备都能共存于同一WLAN环境或区域之中,而不会严重干扰或中断对方。更进一步期望的是802.11g和802.11b设备能以例如任何一种标准802.11b的速率来与对方进行通信。

    在2000年6月2日提交的名为“A Dual Packet Configurationfor Wireless Communications”的美国专利申请09/586,571中预先公开了一种用于无线通信的双分组结构,所述专利申请在此全面引入作为参考。这个在先系统允许松散耦合一个单载波部分和一个正交频分复用(OFDM)部分。松散耦合意味着不对转换进行严格控制,由此通过提供现有单载波调制解调器与OFDM调制解调器以及处于这二者之间并在其间具有较少信息传送(例如数据速率和分组长度)的简单转接器来简化所述实施。特别地,在即将转换的时候,没有必要保持严格的相位、频率、定时、频谱(频率响应)和功率连续性(尽管功率跳变(power step)相当有限)。因此,OFDM系统需要对其自身进行捕获并与单载波捕获相分离,其中包括重新捕获相位、频率、定时、频谱(包括多径)以及功率(自动增益控制[AGC])。跟随单载波的短OFDM前同步码则被用在一个实施例中,以便提供重新捕获。

    在信号的多个回声(反射)到达接收机的地方,对包括WLAN在内的无线通信所造成的损害是多径失真。单载波系统和OFDM系统都必须包含那些设计为对抗这种失真的均衡器。单载波系统将均衡器设计在它的前同步码和报头上。在双分组结构中,这个均衡器信息没有被OFDM接收机重新使用。因此,OFDM部分使用一个前同步码或报头来使OFDM接收机可以重新捕获信号。特别地,OFDM接收机必须重新捕获功率(AGC)、载波频率、载波相位、均衡器以及信号的定时参数。

    干扰是WLAN的一个严重问题。多种不同的信号类型正在开始激增。根据蓝牙标准实施的系统为基于802.11的系统造成了一个较大的干扰源。所述蓝牙标准定义了一个廉价和短程的跳频WLAN。而对于良好的接收机捕获而言,前同步码是非常重要的。因此,面对干扰,在从单载波变换到多载波时丢失全部信息并不合乎需要。

    目前存在几个与信号变换尤其是传统设备(legacy equipment)有关的潜在问题。发射机可能会经历模拟瞬态(例如功率、相位、滤波增量(filter delta))、功率放大器回退(例如功率增量)以及功率放大器的功率反馈变化。接收机有可能经历因为功率变化而导致的AGC扰动、因为频谱变化而导致的AGC扰动、因为多径效应而导致的AGC扰动、信道脉冲响应(CIR)(多径)估计的丢失、载波相位的丢失、载波频率的丢失以及定时校准的丢失。

    【发明内容】

    在这里公开了一种被配置为使用混合波形结构来进行通信的无线通信系统,所述系统包括一个配置为根据一个混合波形结构来进行发送的发射机,以及一个获取并接收那些具有混合波形结构的分组的接收机。混合波形包括一个根据单载波方案调制并具有一个前同步码和报头的第一部分,以及一个根据多载波方案调制的第二部分。并且所述波形将被指定,由此可以重复使用那些能够从第一部分中得到的信道脉冲响应(CIR)估计来获取第二部分。

    在一种结构中,发射机保持功率、载波相位、载波频率、定时以及所述波形的第一与第二部分之间的多径频谱。发射机可以包括第一和第二核心,以及一个转接器。第一核心按照单载波调制方案来对第一部分进行调制,第二核心则根据多载波调制方案来产生第二部分。转接器对用于第一部分的第一核心以及用于第二部分的第二核心加以选择,从而形成一个发送波形。在一个实施例中,第一核心以第一取样速率进行操作,第二核心则以第二取样速率进行操作。第一核心可以使用一个与多载波调制方案的多载波频谱类似的单载波频谱。

    第一核心可以使用一个在连续时间中确定的时间整形脉冲。这个时间整形脉冲可以通过使用砖墙式(brick wall)近似的无限脉冲响应来导出,其中所述砖墙式近似是使用一个长到足以实现预期频谱特性并且短到足以将复杂性减至最小的连续时间窗口来截取的。第一核心可以按照奈奎斯特判据来对时间整形脉冲进行取样。实质上,第一核心的平均输出信号功率与第二核心的平均输出信号功率可以保持相等。第一核心可以使用一个第一取样速率时钟,而第二核心则使用一个第二取样速率时钟。在后一种情况中,第一和第二取样速率时钟是在预定的定时间隔上校准的。并且,在开始了单载波调制方案的最后一个取样之后,多载波调制方案的第一个完全取样开始一个定时间隔。

    来自第一核心的单载波信号可以根据一个为802.11a标准中定义的OFDM信号整形所指定的窗口函数而终止。在第一与第二核心之间,载波频率可以是相干的。在第一与第二核心之间,载波相位可以是相干的。在一个实现相干相位的实施例中,第二核心多载波信号的载波相位是由第二核心单载波信号的最后一部分确定的。第二核心多载波信号的载波相位还可以旋转多个旋转倍数(rotation multiple)中的一个相应倍数,其中每个旋转倍数都对应于第二核心单载波信号的最后部分的多个预定相位之一。在某个实施例中,第一核心单载波调制方案依据的是802.11b Barker,其中每个巴克码字(Barkerword)都是第一、第二、第三和第四个可能相位中的一个,如在802.11a标准的附录G中定义的那样,第二核心多载波调制方案依据的则是OFDM。在这种情况下,如果最后一个巴克码字具有第一相位,则第二核心将OFDM符号旋转了零角度,如果最后一个巴克码字具有第二相位,则将所述符号旋转90度,如果最后一个巴克码字具有第三相位,则将所述符号旋转了180度,如果最后一个巴克码字具有第四相位,则将所述符号旋转-90度。

    整个混合波形结构的必要保真度可以由一个为多载波方案指定的必要保真度来指定。在一个实施例中,所述必要保真度是第二部分的数据速率的一个函数,并且如在802.11a标准中为OFDM规定的那样,它是依照受到信号功率归一化的均方误差来确定的。

    符号速率时钟和波形的载波频率可以源自同一基准时钟。实质上,关于符号速率的时钟基频的百万分之一(PPM)误差以及关于载波频率的时钟基频的PPM误差可以是相等的。

    接收机可以包括一个单载波接收机、一个多载波接收机以及一个转接器,其中转接器提供了接收到单载波接收机的第一部分信号,并且提供了接收到多载波接收机的第二部分信号。单载波接收机获取包括前同步码和报头在内的输入信号的第一部分并且确定一个CIR估计,而多载波接收机则将CIR估计用于输入信号的第二部分。在一个特定结构中,单载波接收机根据CIR估计来对第一均衡器的分支(tap)进行编程,多载波接收机则包括一个第二均衡器,并且多载波接收机基于第一均衡器确定的CIR估计来修改第二均衡器的分支。

    【附图说明】

    在结合下图来考虑以下关于优选实施例的详细描述时,可以更好地理解本发明,其中:

    图1是包含了在同一空间或区域内部运作的四个设备的WLAN系统的框图,其中两个设备是根据802.11b标准执行的,而另外两个设备则是根据802.11g建议执行的。

    图2是根据本发明的实施例而执行并且可以在图1的这两种高速设备中使用的混合信号接收机的框图。

    图3是根据本发明一个实施例而执行的混合信号分组的概念图。

    图4A和4B分别是802.11b的巴克码片以及802.11a OFDM的频谱曲线的图表。

    图5A和5B分别是说明所述波形完全不同的802.11b QPSK巴克码片以及802.11a OFDM的时域曲线的图表。

    图6A是出自802.11a标准中定义的64个可能子载波中的单个子载波的功率谱密度(PSD)曲线的图表。

    图6B是在802.11a中使用的52个非零子载波的合成PSD曲线的图表。

    图7A是以0MHz为中心的示范性“砖墙式”的双侧频谱曲线的图表。

    图7B是与图7A的砖墙式频谱相对应的相关无限持续时间响应的一部分的图表。

    图8是作为Hanning窗的连续时间版本的示范性连续时间窗口曲线的图表。

    图9是与对应于图7A砖墙式频谱的无限持续时间响应部分相重叠的图8 Hanning窗曲线的图表。

    图10是由图9中所述的重叠产生并截取为大约0.8μs的示范性脉冲p(t)的曲线的图表。

    图11是对脉冲与OFDM频谱非常匹配进行描述的脉冲p(t)的频谱特性曲线的图表。

    图12是用于使用连续时间脉冲p(t)来构造一个数字式22MHz输出取样速率的示范性数字滤波器的框图。

    图13是对使用图12的取样方案所进行的连续时间脉冲p(t)的取样和多相分解进行描述的图表。

    图14是用于使用脉冲p(t)来构造一个数字式20MHz输出取样速率的另一个示范性数字滤波器的框图。

    图15是对使用图14的取样方案所进行的连续时间脉冲p(t)的取样和多相分解进行描述的图表。

    图16是根据本发明一个实施例而执行的发射机的框图。

    图17是将11MHz的巴克码片时钟相对于20MHz的OFDM取样时钟来进行比较的图表。

    图18是对OFDM信号部分与单载波部分的报头的最后一个巴克码字的校准进行描述的概念性图表。

    图19是描述正常的OFDM符号重叠的图表。

    图20是对示范性802.11a OFDM符号的起始和终止进行描述的图表。

    图21是对按照802.11a整形的示范性单载波终止以及根据802.11a整形OFDM起始进行描述的图表。

    图22A是描述BPSK在两个象限(2个相位之一)中引入了实部和虚部的BPSK曲线的简化图表。

    图22B是描述QPSK在所有四个象限(4个相位之一)中引入了实部和虚部的QPSK曲线的简化图表。

    图23是对802.11g报头中的最后一个巴克码字的相位以及按照802.11a标准的附录G中所述的OFDM符号的相对相位加以说明的曲线的图表。

    【具体实施方式】

    根据本发明的结构重新使用了在捕获信号单载波部分的过程中得到的均衡器信息。因此,尽管为了便利和精密调谐而仍旧给出OFDM前同步码,但是OFDM前同步码并不是必需的。本公开描述了一种用于在单载波与OFDM(多载波)分段之间提供完全连续性的技术。这种连续性是通过为单载波和OFDM分段完整指定发送波形以及指定所述转换来提供的。这样就能在这两个信号分段之间提供完全连续性,其中包括AGC(功率)、载波相位、载波频率、定时和频谱(多径)。这样一来,由于在单载波部分(前同步码/报头)的持续过程中形成的信息有效并且将其用于开始捕获多载波部分,因此不必借助接收机的多径部分来重新获取信号。面对无线通信中遭受的普遍干扰,保持和积累信息会使信号更加健壮。

    图1是在特定空间或区域101内部操作的无线局域网(WLAN)系统100的框图,其中包括位于区域101内部的四个WLAN设备103、105、107和109(103-109)。设备103和105是根据本发明若干实施例中的至少一个实施例并结合所关注的802.11g建议来实施的,而设备107和109则是根据802.11b标准来实施的。所有这些设备103-109都工作在2.4GHz频段。设备103-109可以是任何类型的无线通信设备,例如任何类型的计算机(桌面,便携,膝上型等等)、任何类型的可兼容无线电通信设备、任何类型的个人数字助理(PDA)或是任何其他类型的网络设备,例如打印机、传真机、扫描仪、集线器、转接器、路由器等等。需要指出的是,尽管在某些实施例中可以使用802.11g建议、802.11b标准、802.11a标准或2.4GHz频带,但是本发明并不局限于这些标准和频率。

    设备107和109以任何一种标准的802.11b速率而与对方进行通信,其中包括了1、2、5.5以及11Mbps。设备103和105是混合信号模式设备,它们使用根据若干实施例中的任何一个实施例的混合信号结构而以不同或是更高的数据速率相互通信,例如大小为6、9、12、18、24、36、48或54Mbps的标准802.11a的数据速率。在这里还考虑到了替换的数据速率群。由于包含5.5和11Mbps这两个802.11b标准数据速率,因此第二个组是非常有优势的。

    在一个或多个第一实施例中,混合信号设备103-109可以运行或共存于同一区域101之中,但却不会为对方造成明显干扰,其中设备103、105在不同或高于802.11b设备107、109的数据速率上相互通信。在第一实施例中,设备103、105可以相互通信,同时设备107、109可以相互通信,但是设备103、105不与设备107、109进行通信。在一个或多个第二实施例中,至少一个混合信号设备103、105是结合一种标准模式来配置的,从而能以任何一个或多个标准802.11b的数据速率而与任何一个设备107、109进行通信。在至少一个第三实施例中,混合信号设备103、105在不同或更高的数据速率上进行通信,并且不与设备107和109兼容,因此设备103-109不能共存于同一区域101内部。尽管认为其他频带也是可能的,但是混合信号设备103、105将被实施,以便工作在2.4GHz的频带以内。

    在第一或第二实施例中,希望所述设备103和105能够相互通信,而不受到设备107和109中任何一个设备的中断或干扰。这就给出了一个相当大的技术挑战,因为在相互通信的时候,设备103、105是以不同数据速率来进行操作的。本发明允许所实施的设备103和105使用不同或更高的数据速率来与对方进行通信,同时与802.11b设备107、109驻留在同一区域,由此解决这个问题。此外在第二实施例中,设备103、105还能以802.11b的数据速率而与任何一个设备107、109进行通信。

    图2是根据本发明一个实施例而实施的混合信号接收机201的框图,所述接收机既可以在设备103、105中的任何一个设备中使用,也可以同时用在这两个设备之中。输入信号由一个自动增益控制(AGC)203接收,所述设备对接收功率进行调整并将一个相应信号提供到转接器205。转接器205最初将接收信号提供到单载波接收机207。单载波接收机207包括均衡器以及其他电路,它比照已知数据而对接收信号的预定前同步码进行分析,并且“学习”那些与传播信号所经由的多径介质相关联的参数。单载波接收机207还对报头进行检查,以便确定是否计划将所述分组用于混合信号接收机201以及是否所述分组是一个混合分组,如果是的话,则使转接器205将输入信号剩余部分提供到一个多载波接收机209。应该注意的是,报头包括一个诸如模式比特等等将分组识别为混合模式分组的混合模式标识符(未显示)。因此,在一个实施例中,单载波接收机207从目的地地址等等中确定所述分组计划用于混合信号接收机201,并且从模式标识符中确定所述分组是一个混合模式分组。如果计划将所述分组用于混合信号接收机201,但是所述分组不是一个混合模式分组(例如标准802.11b的分组),则单载波接收机207继续处理这个分组。此外还在报头中提供了一个长度字段,其中包括了识别混合模式分组总长的长度值。因此,包括混合模式或传统设备(例如802.11b设备)在内的任何一种设备都可以判定所述分组并不计划用于这个方面,并且回退与所述长度值相对应的大量时间。

    多载波接收机209则被配置为接收信号,其中所述信号是根据OFDM或类似标准来发送的。多载波接收机209与单载波接收机207耦合,因此重新使用单载波接收机207确定的多径信息,以便允许在输入信号的分组部分之间进行平滑转换。特别地,来自单载波接收机207的AGC(功率)、载波频率、载波相位、均衡器以及定时参数均由多载波接收机209使用,以便接收输入信号。由于获取并使用了单载波接收机207所使用的信息,因此OFDM多载波接收机209不必重新获取信号。

    图3是根据本发明一个实施例实施的混合信号分组301的示意图。分组301包括一个以每秒1兆位(Mbps)的速率发送的巴克前同步码303,其后跟随的是一个以1或2Mbps速率发送的巴克报头305,然后则是一个或多个引入了净荷数据的OFDM符号307,所述符号是以从6、9、12、18、24、36、48或54Mbps这些典型数据速率中选出的任何一个数据速率并结合20兆赫(MHz)的选定取样速率来发送的。前同步码303和报头305是与单载波一起以11MHz的四相移相键控(QPSK)符号速率(并且也可以考虑二进制移相键控[BPSK])来发送的。此外还会考虑到不同的OFDM取样速率,例如18.333兆赫(MHz)、22MHz等等,其中都应用了相同的原则。发送信号是为补码键控OFDM或CCK-OFDM(使用OFDM[多载波]所跟随的巴克[单载波]的802.11b前同步码和报头)指定的。可选地,波形的OFDM部分可以是若干个有效取样速率(例如22、20或18.33MHz)中的一个。并且分组301显示使用了大小为20MHz的802.11a的取样速率。其中目标是指定信号,以便将那些在前同步码和报头上得到的信道脉冲响应(CIR)估计重新用于OFDM。因此,将会在没有使用自由变量的情况下被完全指定所述变换,由此允许在转换时保留重要的均衡器信息。并且,较为理想的是消除因为信号变换所引起的接收机功率变化。功率阶跃则有可能导致传统设备进入一个不确定的状态,因为这些设备既不了解OFDM,也不具有对其进行接收的能力。

    图4A和4B分别是以分贝(dB)对比归一化频率(freq)为方式的802.11b的巴克码片与802.11a OFDM频谱的曲线图表。所述频谱涉及中心频率、功率谱密度以及频率响应。802.11b的巴克码片频谱具有一个圆形的“顶端”,而802.11a OFDM的频谱则具有一个平坦的顶端。并且3dB带宽也不相同。图5A和5B分别是说明波形全然不同的802.11b QPSK的巴克码片与802.11a OFDM的曲线的时域图表。目前期望的是,即使波形不同,也要在前同步码/报头的单载波部分303、305与OFDM符号部分307之间创建一个平滑转换。一种解决方案是使802.11b的巴克前同步码及报头像OFDM那样具有大致相同的发送频谱和大致相同的功率。

    图6A是出自802.11a标准中定义的64个可能子载波的单个子载波功率谱密度(PSD)曲线的dB-频率形式的图表。图6B是802.11a中使用的52个非零子载波的合成PSD曲线的图表。这些曲线分别是相对于归一化频率(nfreq)并以MHz为单位来描绘的。目前期望的是设计一种频谱/时间整形脉冲,以使信号单载波部分的频谱与OFDM类似。并且使这个脉冲成为已知,由此接收机能为分组的OFDM部分补偿CIR。由于所述脉冲是在连续时间中指定的,因此它是独立实施的。对于数字实施而言,所述脉冲可以在任何一个预期的恰当实施速率上取样。并且信号应该在通带提供一个近似平坦的频谱,其中所述频谱在频带边缘具有足够陡峭的滚降。目前所期望的是发送脉冲能够很容易由802.11b的传统接收机处理。因此,它应该具有一个在脉冲响应中只具有少量扩展的最大峰值。由此允许802.11b接收机锁定在这个脉冲响应分量上。并且目前希望所述信号具有一个很短的持续时间,从而将复杂程度减至最小。

    图7A是以0MHz为中心的示范性“砖墙式”双侧频谱曲线的图表,它在大约为2(8.5)=17MHz或是值为0的选定带宽上具有一个大小为1的幅度。实质上,砖墙式频谱是一个理想化的低通滤波器。在所示实施例中将示范性频率范围选为(2)(27)(20MHz/64)=16.875MHz。图7B是与砖墙式频谱相对应的一部分相关无限持续时间响应的图表。通常,目标频谱是为单载波系统选择的。而这是通过将砖墙式近似指定到预期频谱来实现的。在时域中,砖墙式频谱具有无限脉冲响应(也就是从+/-无穷大开始的范围)。然后使用一个连续时间窗口来截取所述脉冲。并且选择一个足够长的窗口来给出预期的频谱特性,同时选择一个足够短的窗口而使复杂性减至最小,其中每个窗口通常都会使用到工程判断。

    图8是示范性连续时间窗口曲线的图表,所述窗口是汉宁(Hanning)窗的一个连续时间版本。可以了解的是,所述窗口只是可以成功用于实现预期结果的多个不同窗口结构之一。图9是与对应于砖墙式频谱的无限持续时间响应部分相重叠的汉宁窗曲线的图表。图10是截取成大约0.8μs的合成的示范性脉冲p(t)曲线的图表,因此它在+/-0.4μs外部都为零。脉冲p(t)的短持续时间提供了非常低的复杂性。图11是说明所述脉冲与OFDM频谱非常匹配的脉冲p(t)的频谱特性曲线的图表。脉冲p(t)频谱特性包括:在OFDM平坦的地方具有近似平的频谱并且在OFDM下降的地方将会快速跌落。连续时间脉冲可用于确切地构造任何一个数字滤波器,并且所述连续时间脉冲独立于所述特定实施。在目标保真度的等级上应该满足奈奎斯特判据(连续时间脉冲的取样)。脉冲p(t)则是根据奈奎斯特判据而被“数字化”或取样的。在某些实施例中,如下文更进一步描述的那样,之后将对所述取样进行分解。

    图12是用于使用连续时间脉冲p(t)来构造一个数字式22MHz输出取样速率的示范性数字滤波器1201的框图。在这种情况下,示范性QPSK符号发生器1203将一个11MHz的信号提供到一对多相数字滤波器1205与1207中的每一个滤波器的相应输入端。为了进行例示,在这里将QPSK符号发生器1203用作示范性发射机,所述发生器将各个符号(复数)以11MHz的速率传递到数字滤波器1205与1207。每个数字滤波器1205与1207对输入波形进行取样,并且以11MHz的速率来产生一个输出。数字滤波器的分支1205由偶数个取样构成,而数字滤波器的分支1207则由脉冲p(t)的奇数个取样构成。诸如复用器(MUX)电路等等的选择逻辑电路1209对多相数字滤波器分支1205与1207的各个输出加以选择,以便得到取样速率为2(11)=22MHz的信号。图13是描述连续时间脉冲p(t)的取样和多相分解的图表(相对以微秒“μs”为单位的时间来进行绘制)。由于使用了各个滤波器的各个输出,因此有效取样率是22MHz。

    图14是用于使用脉冲p(t)来构造数字式20MHz输出取样速率的另一个示范性数字滤波器1401的框图。在这种情况下,与发生器1203相似,示范性QPSK符号发生器1403将一个11MHz信号提供到二十个多相数字滤波器1405、1407、1409、……、1411的相应输入端。每一个数字滤波器1405-1411以11MHz的速率产生一个输出,因此取样率从11MHz增加到220MHz。每一个滤波器都包含了彼此间隔20个取样的取样。诸如复用器(MUX)电路等等的选择逻辑电路1413对多相数字滤波器1405-1411分别具有的11个输出中的一个输出进行选择,以便获取一个20MHz的取样信号。例如,对第一QPSK符号而言,使用的是滤波器1和11的相应输出,对第二QPSK符号而言,使用的是滤波器19与10的相应输出,依此类推。并且,来自各个11个输入信号中的一个信号将会产生一个输出取样,而剩余的输入取样各自产生两个输出取样。图15是对作为时间的函数的连续时间脉冲p(t)的取样以及多相分解进行说明的图表。由于使用了出自滤波器1405-1411的220MHz组合输出的11个输出之一,因此有效取样率是20MHz。

    图16是根据本发明一个实施例而被实施的发射机1601的框图。发射机1601包括一个OFDM核心部件1603,它把信号的OFDM部分提供到一个软切换部件1607,所述软切换部件从一个802.11b前同步码/报头核心部件1605中接收802.11b前同步码与报头部分。软切换部件1607将802.11g信号提供到一个数模转换器(DAC)1609,所述数模转换器将合成的模拟信号提供到低通滤波器(LPF)1611。经过滤波的信号提供到SAW滤波器1613,由此说明线性失真是在这两个信号分段上引起的。SAW滤波器1613的输出提供到混合器1615的一个输入,所述混合器还具有另一个从本机振荡器1617接收本机振荡器(LO)信号的输入。混合器1615则在其输出端声明一个混合或组合信号。

    失真也有可能是在发射机、多径信道以及接收机中引起的。在发射机中,一个明显的线性失真是SAW滤波器,例如SAW滤波器1613。在通信系统中经常假设线性失真非常普遍并且(实质上)时间恒定地穿越波形符号。例如,假设对于802.11a和802.11b通信而言,线性失真在前同步码/报头与净荷部分之间是非常普遍的。根据一种相似的方式,假设发送无线电的线性失真为单载波分段与多载波分段所共有。这样一来,将会利用到频谱绑定的必要条件,以便允许将均衡器信息和AGC从单载波移转到多载波。

    发射机1601还描述了一个取样功率匹配方案,以便能将AGC信息从单载波移转到信号的多载波部分。特别地,目前希望的是,在1620所示的OFDM核心部件1603输出的平均信号功率大约等同于在1622所示的802.11b前同步码/报头核心部件1605输出的平均信号功率。

    图17是对1701显示的11MHz巴克码片时钟与1703显示的20MHz OFDM取样时钟进行比较的图表,二者都是相对于以μs为单位的时间而被绘制的。802.11b通信方案使用大小为11MHz的码片速率。802.11b前同步码/报头则使用了11个码片的巴克码字,因此在这里是11码片/μs。802.11a OFDM使用了一个大小为20MHz的取样速率。如在每个1μs间隔上的校准期1705描述的那样,在所示实施例中,为了实现变换时间校准,802.11b(11MHz)以及802.11a(20MHz)信号分段在1MHz边界上每隔1μs间隔进行校准。图18是描述OFDM信号部分与单载波部分报头的最后一个巴克码字进行校准的概念性图表。在1803显示的各个巴克码字的第一码片以1μs校准为中心。在1801显示的OFDM信号的第一个完全20MHz取样在报头中最后一个巴克码字的第一码片的零相位峰值之后1μs出现。事实上,在1805所示的二分之一比例的OFDM取样将会出现在完全取样之前(出于平滑目的)。这种转换时间校准允许在信号的单相位与多相位部分之间移转均衡器信息和定时信息。

    图19是描述正常的OFDM符号重叠的图表。图20是描述示范性的802.11a OFDM符号的起始和终止的图表。图21是对2101所示的根据802.11a来进行整形的示范性单载波终止以及在2103所示的根据802.11a来进行整形的OFDM起始进行描述的图表。如在这些图表中描述的那样,当从单载波变换到多载波的时候,单载波是以一种受控方式终止的。这种单载波终止在即将转换的时候将会保持AGC,并使信号功率间隙减至最小,由此转而使得由另一个载波所造成的一个信号恶化减至最小。802.11b分段的单载波终止与用于802.11a OFDM整形的终止相似。802.11a为OFDM符号指定了一个用于定义单载波分段终止的窗口函数。单载波信号是在一个预定的时间窗口中终止的,例如标称的100纳秒(ns)。此外,没有必要完全冲洗单载波脉冲整形滤波器。与11码片处理增益、热噪声以及多径失真相比,最终得到的报头中的最后一个巴克码字的失真是非常小的。所述终止可以在数字信号处理中或是通过模拟滤波来明确实现。

    更为理想的则是载波频率相对于这两个波形分段而言都是相干的,而这是通过使用经由本机振荡器1617的单个LO信号来实现的。由此允许移转均衡器信息。并且可以使用一个锁相环路(PLL)电路等等来维持载波频率锁定。

    更为理想的是对载波相位进行校准,由此允许移转均衡器信息。图22A描述的是BPSK在两个象限中引入实部和虚部(2个相位之一)的BPSK曲线的简化图表,图22B是描述QPSK在所有四个象限中引入实部和虚部(4个相位之一)的QPSK曲线的简化图表。单载波信号使用了直接序列扩展频谱(DSSS),与OFDM信号格式以及调制方案相比,这些信号根本就不相同。对于802.11g CCK-ODFM而言,这些格式中的任何一种格式都可重新用于报头。

    图23是对802.11g报头与后续OFDM符号取样中的最后一个巴克码字而不是最后一个码片之间的相位关系加以说明的一系列图表。802.11a标准的附录G描述了如何发送一个包含实部和虚部的OFDM符号。在2301、2303、2305以及2307显示的箭头描述了最后一个巴克码字的四种可能相位。由于各个OFDM取样要么没有旋转,要么就是根据最后一个巴克码字相位旋转了相同的预定量,因此OFDM符号相位是由最后一个巴克码字的相位来决定的。在2302、2304、2306和2308显示的箭头代表了应用于与箭头2301、2303、2305和2307分别描述的巴克相位相对应的OFDM符号的相应的四个相对相位偏移。举例来说,如果最后一个巴克码字的相位处于第一象限,那么,相对于在802.11a标准的附录G中描述的OFDM相位而言,OFDM符号相位旋转零度(不旋转或与1相乘)。此外,如果最后一个巴克码字的相位处于第二象限(135度的相位旋转),那么,相对于802.11a附录G中的取样相位而言,OFDM符号的相位将会旋转90度(也就是与“j”相乘);如果最后一个巴克码字的相位处于第三象限(-135度的相位旋转),那么,相对于802.11a附录G中的取样相位而言,OFDM符号的相位将会旋转180度(也就是与“-1”相乘);如果最后一个巴克码字的相位处于第四象限(-45度的相位旋转),那么,相对于802.11a附录G中的取样相位而言,OFDM符号的相位将会旋转-90度(也就是与“-j”相乘)。

    在许多设计实施中,通常希望了解在不同的收发信机之间保持信号完整和兼容所需要的相对精确度和保真度。由此设计人员能够减少费用,并使效率增至最大,同时将参数和特性保持在规范以内。精确度特性约束了设计人员可以采取的简化操作,而从另一方面来讲,这些简化操作损害了接收机性能。在一个实施例中,整个波形性态的必要保真度是使用一个基于802.11a标准的OFDM信号保真度需要的量度来建立的。因此,即使单载波部分通常处于减小的数据速率,单载波部分的必要保真度也会等同于多载波部分。如802.11a规范中描述的那样,如在以下数据速率比照EVM的表1中描述的那样,OFDM的必要保真度是由差错矢量幅度(EVM)规范设定的:

    表1:数据速率与EVM规范  数据速率Mbps    EVM Spec    6    -5    9    -8    12    -10    18    -13    24    -16    36    -19    48    -22    54    -25

    其中数据速率以Mbps为单位来指定的,EVM则以dB为单位来指定。如表1所述,OFDM精确度是数据速率的一个函数。数据速率越高,发送波形就越是错综复杂,所需要的精确度也就越大。这个必要保真度被用于整个波形。EVM与信号功率归一化均方误差(MSE)是相同的。在最佳拟合时间排列、最佳拟合增益校准以及最佳拟合相位校准之后,可以对MSE进行测量。如果需要的话,还可以取消OFDM和单载波巴克码片共有的线性失真。如果以及当802.11b准确度规范更为严格的时候,还有可能将其用于单载波部分。

    一部分802.11b规范以及全部802.11a规范都使用了一个锁定振荡器要求。锁定振荡器的特性允许从载波频率和相位中导出定时追踪信息。在发送波形中存在两种基本时钟:符号速率时钟和载波频率。在发射机的至少一个实施例中,全部802.11g信号都具有源自相同时钟基准的符号速率时钟和载波频率。而更为理想的则是这两个时钟信号上的百万分之一(PPM)误差是相等的。接收机允许对来自载波频率误差的符号速率定时进行追踪。

    混合信号接收机201的多载波接收机209部分从这里所述的单载波接收机207中得到转换状态,以便接收信号的ODFM部分。并且载波频率和相位是相干的。此外,时间排列、信号电平(AGC)以及信道脉冲响应(CIR)都是相干的。单载波接收机207在单载波部分确定CIR估计。多载波接收机209则使用单载波分段采用的已知脉冲波形来为OFDM修改CIR估计。特别地,多载波接收机209的均衡器分支是通过使用发射机在单载波前同步码以及报头持续过程中使用的已知脉冲波形而被修改的。这样一来,多载波接收机209无须重新捕获信号的OFDM部分,而是使用单载波接收机207得到的信息以及预定或已知信息而将单载波转换到多载波信号。此外,尽管需要的话,可以为了便利以及精密调谐而使用独立的OFDM前同步码/报头,但这并不是必要的。

    尽管在这里已经结合优选实施例而对根据本发明的系统和方法进行了描述,但这并不意味着将其局限于这里阐述的特定形式,恰恰相反,其意图是覆盖这些可以合理包含在本发明实质和范围以内的替换、修改和等价物。

被配置为使用混合波形结构来进行通信的无线通信系统.pdf_第1页
第1页 / 共40页
被配置为使用混合波形结构来进行通信的无线通信系统.pdf_第2页
第2页 / 共40页
被配置为使用混合波形结构来进行通信的无线通信系统.pdf_第3页
第3页 / 共40页
点击查看更多>>
资源描述

《被配置为使用混合波形结构来进行通信的无线通信系统.pdf》由会员分享,可在线阅读,更多相关《被配置为使用混合波形结构来进行通信的无线通信系统.pdf(40页珍藏版)》请在专利查询网上搜索。

本发明涉及一种无线通信系统103,所述系统被配置成使用一个混和波形结构301来进行通信。所述混合波形包括一个根据单载波方案来进行调制并具有前同步码303和报头305的第一部分2101以及根据多载波方案来进行调制的第二部分2103。所述波形将被指定,以使一个可以从第一部分获取的CIR估计能够重新由接收机用于获取第二部分。发射机1601可以包括第一核心1605和第二核心1603以及一个转接器1607,。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 电通信技术


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1