《一种基于改进EZW的声纳图像数据压缩方法.pdf》由会员分享,可在线阅读,更多相关《一种基于改进EZW的声纳图像数据压缩方法.pdf(14页珍藏版)》请在专利查询网上搜索。
1、10申请公布号CN104079947A43申请公布日20141001CN104079947A21申请号201410291450022申请日20140625H04N19/63201401H04N19/9620140171申请人武汉大学地址430072湖北省武汉市武昌区珞珈山武汉大学72发明人饶云华曾敏74专利代理机构武汉科皓知识产权代理事务所特殊普通合伙42222代理人鲁力54发明名称一种基于改进EZW的声纳图像数据压缩方法57摘要本发明公开了一种基于改进EZW的声纳图像数据压缩方法,包括步骤1采集声纳图像信号,分析其统计特性和能量分布特点;2对声纳图像进行整数提升小波变换,建立小波系数树结构;。
2、3将小波变换后图像的低频子带经过调整后直接存储;4将高频部分应用改进的嵌入式零树编码EZW;5合并低高频数据,实现声纳数据的压缩。本发明的优点在于采用小波变换对声纳图像信号进行处理,使其幅值分布相对集中,更利于压缩编码;采用整数提升小波变换进行声纳图像处理,可有效地提高运算效率,实现图像的无损压缩;压缩声纳数据其压缩速度和PSNR值均优于传统的EZW算法。51INTCL权利要求书2页说明书6页附图5页19中华人民共和国国家知识产权局12发明专利申请权利要求书2页说明书6页附图5页10申请公布号CN104079947ACN104079947A1/2页21一种基于改进EZW的声纳图像数据压缩方法,。
3、其特征在于,包括以下步骤步骤1、采集声纳图像信号,并采用提升格式的LEGALL5,3小波对声纳图像进行小波变换,建立小波系数树结构;提升小波变换分为分裂、预测和更新三个步骤,LEGALL小波整数实现形式如下正变换反变换式中符号表示取整运算,XEXT表示周期对称延拓后的信号;按照LEGALL小波变换算法,完成一次对图像水平方向上的提升小波变换,得到水平方向上低频L和高频H两个部分;接下来用同样的方法分别再对这两个部分进行垂直方向上的提升小波变换小波,得到LL,LH,HL,HH;这样整个2维的提升小波变换就完成了;到这里,完成的是一级的2维提升小波变换,对小波变换后的低频部分再做小波变换,如此循环。
4、N次,就得到N级的2维小波变换;经过N级小波变换的小波图像,对于低频子图中的某一系数而言,与其对应的具有相同空间定位的高频子图中的系数称为是它的子孙,从图像的低频层开始依照子孙关系延伸,得到树形结构;步骤2、将步骤1中得到的高频与低频数据分开编码;若为低频子带的数据,按公式将低频数据映射到0,255之间后直接存储,存储后转至步骤35;若为高频子带的数据,则进行步骤3;式中,C为小波系数,MIN为小波系数的最小值,MAX为小波系数的最大值,FC为映射后的值;步骤3、将高频部分应用改进的嵌入式零树编码,具体包括如下子步骤步骤31、初始化阈值CI,J为小波系数;步骤32、改进的主扫描过程按“Z”字形。
5、扫描,对于不同的系数类型,做不同的处理选择处理一如果为正重要系数输出符号POS,再根据其绝对值输出幅值码如果在区间T,TT/4则输出00;如果在区间TT/4,TT/2输出01;如果在区间TT/2,T3T/4输出10;如果在区间T3T/4,2T输出11;选择处理二如果为负重要系数输出符号NEG,再根据其绝对值输出幅值码如果在区间T,TT/4输出00;如果在区间TT/4,TT/2输出01;如果在区间TT/2,T3T/4权利要求书CN104079947A2/2页3输出10;如果在区间T3T/4,2T输出11;选择处理三如果为孤立零点输出符号IZ;选择处理四如果为零树根输出符号ZTR;步骤33、重新设。
6、置阈值TT/2,如果T1或者达到码率要求,算法终止,否则转至步骤32;步骤34、对主扫描输出的类型码和幅值码进行自适应二进制编码;步骤35、输出高频数据码流,编码过程结束;步骤4、将低高频数据合并,输出码流,实现声纳数据的编码压缩;步骤5、解码为编码的逆过程,首先对得到的码流进行算术解码;对于最低频子带的编码码流按公式进行调整,就得到相应的最低频子带小波变换重建系数;对于其他高频子带的码流,解码器利用接收到的编码器发送过来的相关信息,设置相应的阈值,进行主扫描解码在解码出POS、NEG、ZTR、IZ类型码之后,如果是重要系数POS或者NEG,则直接进行幅值码的解码,即根据区间码进行重要系数的重。
7、构;“00”重构为1125TI,“01”重构为1375TI,“10”重构为1725TI,“11”重构为1875TI;阈值减半,重复主扫描过程,直到阈值为1或者达到码率要求,结束解码;最后进行5,3逆整数提升小波变换,即可转换为原始声纳图像了。权利要求书CN104079947A1/6页4一种基于改进EZW的声纳图像数据压缩方法技术领域0001本发明涉及涉及图像压缩方法,尤其是涉及一种基于改进EZW的声纳图像数据压缩方法。背景技术0002声纳是水下目标探测的重要工具。获取声纳数据的主要方法是将声纳探测到的数据通过无线或有线通信介质实时传输回水面。这种方式的灵活性和实时性都非常好,但是,由于信道容量。
8、,尤其是无线信道容量非常有限,而声纳数据量通常又较大,因此,对声纳数据进行压缩就非常必要。0003目前,声纳数据压缩的方法有很多,主要方法有基于DCT变换的压缩方法和基于小波变换的压缩方法。传统的基于DCT变换的图像压缩虽然在较高码率下能够提供较好的图像质量,但在码率低于025BPP时,重构图像存在严重的方块效应;同时,基于DCT变换的图像压缩不能在单一码流中实现图像的有损和无损压缩,从而不能实现从有损到无损的累进式传输。基于小波变换的压缩方法的提出有效地克服了以上缺点。由WIMSWELDENS等人提出的整数提升的小波变换通过简单地分裂、预测和更新等步骤来完成对一列数字信号的变换,是整数到整数。
9、的小波变换,有效地提高运算效率。0004SHAPRIO根据小波分解后同方向子带中的小波系数存在的相似性,利用一种称为小波树的树形结构来组织这些小波系数,设计了嵌入式零树小波编码方法EMBEDDEDZEROTREEWAVELET,EZW,有效地利用了小波系数的特性,是至今最有效的小波编码方法之一。但该方法在压缩声纳数据上存在一些缺点,主要表现在经过小波变换后,声纳图像的大部分能量集中在低频子带,低频子带的编码几乎不影响整个图像的压缩比,但其较小损失就可能对恢复图像的质量造成较大的影响。而EZW将低频数据和高频数据用同样的方法进行编码,在较低码率的情况下,低频子带的信息损失较多,难以保证恢复图像的。
10、质量。在量化过程中,门限T的值按2的负幂级逐步减小,每减小一次T,就需要对整个高频子带重新做零树分类。对于每一次扫描,得到的重要系数的绝对误差上限为T/4,对于重要系数不是很多的声纳图像来说,每一轮的扫描输出较多是表示零树根和孤立零的码字,而表示重要系数的码字则相对较少,因此在输出的码流中,大部分的复原数据为0,这些0值对复原图像是无效的。在每次主扫描后,要将重要系数的相关信息存储在辅表中,在辅扫描的过程中对辅表中的元素逐个细化编码。若能在主扫描中对重要系数直接细化编码,则将有效地节省时间内存。0005以上研究虽然对经典小波压缩算法进行了改进,但由于压缩结果与图像本身特点关系密切,不同类型图像。
11、其统计特性不同,即使同一类图像统计特性也有差别,故其压缩算法不仅要能针对特定类型的图像进行,而且还需要能够在一定范围内适应统计特性的变化。针对声纳图像数据的特点,如何用声纳获得图像数据并进行高效率的压缩,是本专利介绍的内容。0006综上所述,由于现有技术存在不足,就需一种高效率的声纳图像数据压缩方法。说明书CN104079947A2/6页5发明内容0007本发明主要是解决现有技术所存在的技术问题;提供了一种采用小波变换对声纳图像信号进行处理,使其幅值分布相对集中,更利于压缩编码的一种基于改进EZW的声纳图像数据压缩方法。0008本发明还有一目的是解决现有技术所存在的技术问题;提供了一种采用整数。
12、提升小波变换进行声纳图像处理,是整数到整数的小波变换,可有效地提高运算效率,实现图像的无损压的一种基于改进EZW的声纳图像数据压缩方法。0009本发明的上述技术问题主要是通过下述技术方案得以解决的0010一种基于改进EZW的声纳图像数据压缩方法,其特征在于,包括以下步骤0011步骤1、采集声纳图像信号,并采用提升格式的LEGALL5,3小波对声纳图像进行小波变换,建立小波系数树结构;提升小波变换分为分裂、预测和更新三个步骤,LEGALL小波整数实现形式如下0012正变换001300140015反变换001600170018式中符号表示取整运算,XEXT表示周期对称延拓后的信号;0019按照LE。
13、GALL小波变换算法,完成一次对图像水平方向上的提升小波变换,得到水平方向上低频L和高频H两个部分;0020接下来用同样的方法分别再对这两个部分进行垂直方向上的提升小波变换小波,得到LL,LH,HL,HH;这样整个2维的提升小波变换就完成了;到这里,完成的是一级的2维提升小波变换,对小波变换后的低频部分再做小波变换,如此循环N次,就得到N级的2维小波变换;0021经过N级小波变换的小波图像,对于低频子图中的某一系数而言,与其对应的具有相同空间定位的高频子图中的系数称为是它的子孙,从图像的低频层开始依照子孙关系延伸,得到树形结构;0022步骤2、将步骤1中得到的高频与低频数据分开编码;若为低频子。
14、带的数据,按公说明书CN104079947A3/6页6式将低频数据映射到0,255之间后直接存储,存储后转至步骤35;若为高频子带的数据,则进行步骤3;式中,C为小波系数,MIN为小波系数的最小值,MAX为小波系数的最大值,FC为映射后的值;0023步骤3、将高频部分应用改进的嵌入式零树编码,具体包括如下子步骤0024步骤31、初始化阈值CI,J为小波系数;0025步骤32、改进的主扫描过程按“Z”字形扫描,对于不同的系数类型,做不同的处理0026选择处理一如果为正重要系数输出符号POS,再根据其绝对值输出幅值码如果在区间T,TT/4则输出00;如果在区间TT/4,TT/2输出01;如果在区间。
15、TT/2,T3T/4输出10;如果在区间T3T/4,2T输出11;0027选择处理二如果为负重要系数输出符号NEG,再根据其绝对值输出幅值码如果在区间T,TT/4输出00;如果在区间TT/4,TT/2输出01;如果在区间TT/2,T3T/4输出10;如果在区间T3T/4,2T输出11;0028选择处理三如果为孤立零点输出符号IZ;0029选择处理四如果为零树根输出符号ZTR;0030步骤33、重新设置阈值TT/2,如果T1或者达到码率要求,算法终止,否则转至步骤32;0031步骤34、对主扫描输出的类型码和幅值码进行自适应二进制编码;0032步骤35、输出高频数据码流,编码过程结束;0033步。
16、骤4、将低高频数据合并,输出码流,实现声纳数据的编码压缩;0034步骤5、解码为编码的逆过程,首先对得到的码流进行算术解码;对于最低频子带的编码码流按公式进行调整,就得到相应的最低频子带小波变换重建系数;对于其他高频子带的码流,解码器利用接收到的编码器发送过来的相关信息,设置相应的阈值,进行主扫描解码在解码出POS、NEG、ZTR、IZ类型码之后,如果是重要系数POS或者NEG,则直接进行幅值码的解码,即根据区间码进行重要系数的重构;“00”重构为1125TI,“01”重构为1375TI,“10”重构为1725TI,“11”重构为1875TI;阈值减半,重复主扫描过程,直到阈值为1或者达到码率。
17、要求,结束解码;最后进行5,3逆整数提升小波变换,即可转换为原始声纳图像了。0035因此,本发明具有如下优点1、采用小波变换对声纳图像信号进行处理,使其幅值分布相对集中,更利于压缩编码;2、采用整数提升小波变换进行声纳图像处理,是整数到整数的小波变换,可有效地提高运算效率,实现图像的无损压缩;3、改进的EZW算法压缩声纳数据在压缩速度和PSNR值均优于传统的EZW算法。附图说明0036附图1是改进的EZW编码算法流程图。0037附图2是改进的EZW解码算法流程图。说明书CN104079947A4/6页70038附图3A是声纳图像信号的幅度分布图。0039附图3B是声纳图像信号经小波变换后的幅度。
18、分布图。0040附图4是零树结构图。0041附图5是Z字形示意图。0042附图6A是原始声纳图像。0043附图6B是重构后的声纳图像。具体实施方式0044下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。0045实施例0046本发明提供了一种基于改进EZW的声纳图像数据压缩方法,如图1,具体步骤如下0047步骤1、采集声纳图像信号,分析其统计特性和能量分布特点。由于声纳波束在海水中传播时,遇到尺寸小于波长的散射体时发生散射,散射波之间相互干扰,导致回波幅度波动。由于前视声纳具有一定的探测角度与距离分辨率,其分辨单元内的散射体个数有限,当其服从二项式分布时,接收到的声纳信号服从K。
19、分布,其幅值分布如图2A。由图2A可以看出,由于散射波的干扰,接收到的回波幅值区间较大,根据熵编码的原理,不利于压缩编码,而在编码之前进行有效的变换可以降低图像熵。如在对声纳图像信号做三级小波变换后,其幅值分布相对集中,将有利于压缩处理,如图2B所示。0048步骤2、采用提升格式的LEGALL5,3小波对声纳图像进行小波变换,建立小波系数树结构。提升小波变换分为分裂、预测和更新三个步骤,5,3小波整数实现形式如下0049正变换005000510052反变换005300540055式中符号“”表示取整运算,XEXT表示周期对称延拓后的信号。0056按照此5,3小波变换算法,完成一次对图像水平方向。
20、上的提升小波变换,得到水平方向上低频L和高频H两个部分。接下来用同样的方法分别再对这两个部分进行垂直说明书CN104079947A5/6页8方向上的提升小波变换小波,得到LL,LH,HL,HH。这样整个2维的提升小波变换就完成了。到这里,完成的是一级的2维提升小波变换,对小波变换后的低频部分再做小波变换,如此循环N次,就得到N级的2维小波变换。经过N级小波变换的小波图像,对于低频子图中的某一系数而言,与其对应的具有相同空间定位的高频子图中的系数称为是它的子孙,从图像的低频层开始依照子孙关系延伸,得到树形结构。图3是三级小波变换的系数树结构。0057步骤3、将高频与低频数据分开编码。若为低频子带。
21、的数据,按公式将低频数据映射到0,255之间后直接存储,存储后转至45;若为高频子带的数据,则进行步骤4。式中,C为小波系数,MIN为小波系数的最小值,MAX为小波系数的最大值,FC为映射后的值。0058步骤4、将高频部分应用改进的嵌入式零树编码EZW。传统EZW编码算法应用已十分广泛,这里不再赘述。与传统EZW编码算法相比,改进的EZW编码算法不同之处为第一,幅值码改由2BIT表示,将量化器的输入间隔TI,2TI分为四个量化区间TI,125T,125TI,15T,15TI,175T,175TI,2T。对于这四个子区间分别用“00”,“01”,“10”,“11”编码。重构值仍采用子区间的中值,。
22、即1125TI,1375TI,1725TI,1875TI。这样绝对误差上限由T/4变为T/8;第二,取消辅扫描与辅扫描表,在高频数据的主扫描过程中,通过主扫描输出当前数据的类型码,即POS、NEG、ZTR和IZ其中之一。对重要系数POS或NEG,判断其所在区间并输出其所对应的幅值码,将该幅值码附加在主扫描输出的类型码之后直接输出,从而取消辅表和辅扫描,节省时间与内存。0059按照以上方案改进后的嵌入式零树小波编码的详细算法步骤如下006041、初始化阈值CI,J为小波系数。006142、改进的主扫描过程按“Z”字形扫描,如图4所示。对于不同的系数类型,做不同的处理0062处理一如果为正重要系数。
23、输出符号POS,再根据其绝对值输出幅值码如果在区间T,TT/4则输出00;如果在区间TT/4,TT/2输出01;如果在区间TT/2,T3T/4输出10;如果在区间T3T/4,2T输出11。0063处理二如果为负重要系数输出符号NEG,再根据其绝对值输出幅值码如果在区间T,TT/4输出00;如果在区间TT/4,TT/2输出01;如果在区间TT/2,T3T/4输出10;如果在区间T3T/4,2T输出11。0064处理三如果为孤立零点输出符号IZ。0065处理四如果为零树根输出符号ZTR。006643、重新设置阈值TT/2,如果T1或者达到码率要求,算法终止,否则转至步骤42。006744、对主扫描。
24、输出的类型码和幅值码进行自适应二进制编码。006845、输出码流,编码过程结束。0069步骤5、将低高频数据合并,从而实现声纳数据的压缩。0070解码为编码的逆过程,首先对得到的码流进行算术解码。对于最低频子带的编码说明书CN104079947A6/6页9码流按公式进行调整,就得到相应的最低频子带小波变换重建系数。对于其他高频子带的码流,解码器利用接收到的编码器发送过来的相关信息,设置相应的阈值,进行主扫描解码在解码出POS、NEG、ZTR、IZ类型码之后,如果是重要系数POS或者NEG,则直接进行幅值码的解码,即根据区间码进行重要系数的重构。“00”重构为1125TI,“01”重构为1375。
25、TI,“10”重构为1725TI,“11”重构为1875TI。阈值减半,重复主扫描过程,直到阈值为1或者达到码率要求。最后进行5,3逆整数提升小波变换,即可转换为原始声纳图像了。0071根据上述改进算法我们针对实际的声纳数据进行了压缩实验采用3级小波变换,记录了压缩时间和PSNR的实验结果,并与原始的EZW算法进行了对比。实验中,我们使用了SEABAT7128多波束前视声纳收集到的数据,其工作参数为工作频率396KHZ,声速为1451米/秒,工作距离为175米。图像数据宽度256,高度为1024。采用计算机的CPU为PM28GHZ,内存为15GB,其压缩结果如表1所示。0072表1实测数据压缩。
26、结果比较007300740075实验结果表明,本发明中的基于改进的EZW编码算法在压缩声纳图像上是有效的,并且压缩效率高于原始EZW编码。0076另外,为了进一步验证此方法的可行性,我们对压缩后的声纳图像进行了重构,重构压缩时间是取的100次压缩的平均值原始图像和重构图像比特率为08BPP如图5所示。0077本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。说明书CN104079947A1/5页10图1说明书附图CN104079947A102/5页11图2图3A说明书附图CN104079947A113/5页12图3B图4说明书附图CN104079947A124/5页13图5图6A说明书附图CN104079947A135/5页14图6B说明书附图CN104079947A14。