交流直流转换器中的输出电压动态采样电路.pdf

上传人:a3 文档编号:663999 上传时间:2018-03-02 格式:PDF 页数:14 大小:1.15MB
返回 下载 相关 举报
摘要
申请专利号:

CN201410364898.0

申请日:

2014.07.29

公开号:

CN104143928A

公开日:

2014.11.12

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||著录事项变更IPC(主分类):H02M 7/04变更事项:发明人变更前:郭越勇 赵汗青变更后:郭越勇 赵汗青 刘柳胜 程宝洪|||实质审查的生效IPC(主分类):H02M 7/04申请日:20140729|||公开

IPC分类号:

H02M7/04; H02M3/335; G01R19/00

主分类号:

H02M7/04

申请人:

美芯晟科技(北京)有限公司

发明人:

郭越勇; 赵汗青

地址:

100086 北京市海淀区知春路106号皇冠假日酒店写字楼1006

优先权:

2014.04.21 CN 201410160556.7

专利代理机构:

北京亿腾知识产权代理事务所 11309

代理人:

陈霁

PDF下载: PDF下载
内容摘要

本发明涉及一种交流-直流转换器中的输出电压动态采样电路。所述电路包括:振荡器,用于产生第一脉冲振荡信号和第二脉冲振荡信号;第一采样保持单元,用于接收所述第一脉冲振荡信号,当所述第一脉冲振荡信号为高电平时采样所述输出电压信号,得到第一采样电压信号;第二采样保持单元,用于接收所述第二脉冲振荡信号,当所述第二脉冲振荡信号为高电平时采样所述输出电压信号,得到第二采样电压信号;线或单元,用于接收所述第一采样电压信号和所述第二采样电压信号并输出第三采样电压信号;第三采样保持单元,用于接收并对所述第三采样电压信号进行采样得到第四采样电压信号。本发明实现了在任何负载条件下都能对输出电压进行比较精确的检测。

权利要求书

1.  一种交流-直流转换器中的输出电压动态采样电路,其特征在于,所述电路包括:
振荡器,用于产生第一脉冲振荡信号和第二脉冲振荡信号;
第一采样保持单元,与所述振荡器相连接,用于接收所述第一脉冲振荡信号,当所述第一脉冲振荡信号为高电平时采样所述输出电压信号,得到第一采样电压信号;
第二采样保持单元,与所述振荡器相连接,用于接收所述第二脉冲振荡信号,当所述第二脉冲振荡信号为高电平时采样所述输出电压信号,得到第二采样电压信号;
线或单元,分别与所述第一采样保持单元和第二采样保持单元相连接,用于接收所述第一采样电压信号和所述第二采样电压信号并输出第三采样电压信号;
第三采样保持单元,与所述线或单元相连接,用于接收并对所述第三采样电压信号进行采样得到第四采样电压信号。

2.
  根据权利要求1所述的交流-直流转换器中的输出电压动态采样电路,其特征在于,所述振荡器包括第一电流源、第二电流源、第一开关、第二开关、电容、第一比较器、第二比较器、第三比较器、RS触发器、反相器、第一D触发器、第二D触发器、第一三输入与门和第二三输入与门;
所述第一电流源与所述第一开关相连并分别接入所述第一比较器的正向输入端和所述第二比较器的正向输入端,所述电容连接于所述第一开关和所述第一比较器的正向输入端之间,所述第一比较器的负向输入端接入第一比较阈值,所述第一比较器的输出端与所述RS触发器的R端相连接,所述第二比较器的负向输入端接入第二比较阈值,所述第二比较器的输出端与所述RS触发器的S端相连接,所述RS触发器的输出端与所述第一D触发器相连接,所述RS触发器的输出端经由所述反相器后与所述第二D 触发器相连接,所述第一D触发器的输出端、所述RS触发器的输出端和所述第三比较器的输出端分别与所述第一三输入与门相连接,所述第二D触发器的输出端、所述RS触发器的输出端和所述第三比较器的输出端分别与所述第二三输入与门相连接;
当所述第一开关闭合、所述第二开关断开,所述第一电流源对所述电容进行充电,所述电容两端的电压上升到所述第一比较阈值时,所述第一比较器输出高电平使得所述RS触发器的输出端被置为低电平,从而控制所述第一开关断开、所述第二开关闭合,所述第二电流源为所述电容放电,所述电容两端的电压下降到所述第二比较阈值时所述第二比较器输出高电平使得所述RS触发器的输出端被重置为高电平,从而控制所述第一开关闭合、所述第二开关断开。

3.
  根据权利要求1所述的交流-直流转换器中的输出电压动态采样电路,其特征在于,所述线或单元包括第一运算放大器、第二运算放大器、第一NMOS管、第二NMOS管、第三电流源、第四电流源和电源;
所述第一运算放大器的正向输入端接入所述第一采样电压信号,所述第一运算放大器的负向输入端与所述第一NMOS管的源极相接经由所述第三电流源接地,所述第二运算放大器的正向输入端接入所述第二采样电压信号,所述第二运算放大器的负向输入端与所述第二NMOS管的源极相接经由所述第四电流源接地,所述第一NMOS管的漏极和所述第二NMOS管的漏极分别接电源,所述第一NMOS管的源极和所述第二NMOS管的源极相接并作为所述线或单元的输出端,从而输出所述第三采样电压信号;
当所述第一采样电压信号大于所述第二采样电压信号时,所述第一NMOS管的栅极电压大于所述第二MOS管的栅极电压,所述第一NMOS管的源极同时驱动所述第三电流源和所述第四电流源使得所述第一NMOS管导通第二NMOS管截止,使得所述第三采样电压信号等于所述第一采样电压信号;
当所述第一采样电压信号小于所述第二采样电压信号时,所述第一NMOS 管的栅极电压小于所述第二MOS管的栅极电压,所述第一NMOS管的源极同时驱动所述第三电流源和所述第四电流源使得所述第一NMOS管截止第二NMOS管导通,使得所述第三采样电压信号等于所述第二采样电压信号。

4.
  根据权利要求1所述的交流-直流转换器中的输出电压动态采样电路,其特征在于,所述第一脉冲振荡信号的相位和所述第二脉冲振荡信号的相位相差半个周期。

5.
  根据权利要求2所述的交流-直流转换器中的输出电压动态采样电路,其特征在于,所述第一比较阈值大于所述第二比较阈值。

说明书

交流-直流转换器中的输出电压动态采样电路
技术领域
本发明涉及集成电路设计领域,具体涉及交流-直流转换器中的输出电压动态采样电路。
背景技术
在交流-直流转换器电路中,对输出电压的检测可以通过采样变压器电感的电压来实现,而主级电感电压可以通过变压器辅助绕组传输给控制芯片。图1为现有技术中的一种交流-直流转换器中的输出电压动态采样电路的结构图。如图1所示,电阻R1表示次级绕组的串联寄生电阻与输出引线的串联寄生电阻的和。在不同的输出负载电流下,次级绕组的电压是有区别的。图2为现有技术中在不同输出负载电流下交流-直流转换器中的输出电压的波形比较图。从图2中可以看出,由于负载的不同,在去磁时间(Tdmg)内次级绕组的输出电流也不同,造成电阻R1上的压降不同,最后使在FB脚的波形不同。但是,在去磁时间结束时,次级绕组的电流降为0A,电阻R1上的压降也降为0V。因此,理想情况下,控制芯片对输出电压的采样应该在次级绕组去磁时间结束之前进行。
发明内容
本发明的目的是针对现有技术的不足,在交流-直流转换器电路中,提出了一种在去磁时间结束前对输出电压进行采样的电路,从而使控制芯片在任何负载条件下都能对输出电压进行比较精确的检测。
为实现上述目的,本发明提供了一种交流-直流转换器中的输出电压动态 采样电路,所述电路包括:
振荡器,用于产生第一脉冲振荡信号和第二脉冲振荡信号;
第一采样保持单元,与所述振荡器相连接,用于接收所述第一脉冲振荡信号,当所述第一脉冲振荡信号为高电平时采样所述输出电压信号,得到第一采样电压信号;
第二采样保持单元,与所述振荡器相连接,用于接收所述第二脉冲振荡信号,当所述第二脉冲振荡信号为高电平时采样所述输出电压信号,得到第二采样电压信号;
线或单元,分别与所述第一采样保持单元和第二采样保持单元相连接,用于接收所述第一采样电压信号和所述第二采样电压信号并输出第三采样电压信号;
第三采样保持单元,与所述线或单元相连接,用于接收并对所述第三采样电压信号进行采样得到第四采样电压信号。
优选地,所述振荡器包括第一电流源、第二电流源、第一开关、第二开关、电容、第一比较器、第二比较器、第三比较器、RS触发器、反相器、第一D触发器、第二D触发器、第一三输入与门和第二三输入与门;
所述第二开关与所述第二电流源相连并接地;所述第一电流源与所述第一开关相连并分别接入所述第一比较器的正向输入端和所述第二比较器的正向输入端,所述电容连接于所述第一开关和所述第一比较器的正向输入端之间,所述第一比较器的负向输入端接入第一比较阈值,所述第一比较器的输出端与所述RS触发器的R端相连接,所述第二比较器的负向输入端接入第二比较阈值,所述第二比较器的输出端与所述RS触发器的S端相连接,所述RS触发器的输出端与所述第一D触发器相连接,所述RS触发器的输出端经由所述反相器后与所述第二D触发器相连接,所述第一D触发器的输出端、所述RS触发器的输出端和所述第三比较器的输出端分别与所述第一三输入与门相连接,所述第二D触发器的输出端、所述RS触发器的输出端和所述第三比较 器的输出端分别与所述第二三输入与门相连接;
当所述第一开关闭合、所述第二开关断开,所述第一电流源对所述电容进行充电,所述电容两端的电压上升到所述第一比较阈值时,所述第一比较器输出高电平使得所述RS触发器的输出端被置为低电平,从而控制所述第一开关断开、所述第二开关闭合,所述第二电流源为所述电容放电,所述电容两端的电压下降到所述第二比较阈值时所述第二比较器输出高电平使得所述RS触发器的输出端被重置为高电平,从而控制所述第一开关闭合、所述第二开关断开。
优选地,所述线或单元包括第一运算放大器、第二运算放大器、第一NMOS管、第二NMOS管、第三电流源、第四电流源和电源;
所述第一运算放大器的正向输入端接入所述第一采样电压信号,所述第一运算放大器的负向输入端与所述第一NMOS管的源极相接经由所述第三电流源接地,所述第二运算放大器的正向输入端接入所述第二采样电压信号,所述第二运算放大器的负向输入端与所述第二NMOS管的源极相接经由所述第四电流源接地,所述第一NMOS管的漏极和所述第二NMOS管的漏极分别接电源,所述第一NMOS管的源极和所述第二NMOS管的源极相接并作为所述线或单元的输出端,从而输出所述第三采样电压信号;
当所述第一采样电压信号大于所述第二采样电压信号时,所述第一NMOS管的栅极电压大于所述第二MOS管的栅极电压,所述第一NMOS管的源极同时驱动所述第三电流源和所述第四电流源使得所述第一NMOS管导通第二NMOS管截止,使得所述第三采样电压信号等于所述第一采样电压信号;
当所述第一采样电压信号小于所述第二采样电压信号时,所述第一NMOS管的栅极电压小于所述第二MOS管的栅极电压,所述第一NMOS管的源极同时驱动所述第三电流源和所述第四电流源使得所述第一NMOS管截止第二NMOS管导通,使得所述第三采样电压信号等于所述第二采样电压信号。
优选地,所述第一脉冲振荡信号的相位和所述第二脉冲振荡信号的相位 相差半个周期。
优选地,所述第一比较阈值大于所述第二比较阈值。
通过本发明实施例提供的一种交流-直流转换器中的输出电压动态采样电路,该电路的振荡器产生两个脉冲振荡信号,分别控制第一采样保持单元和第二采样保持单元,交流-直流转换器中的输出电压通过第一采样保持单元和第二采样保持单元得到第一采样电压信号和第二采样电压信号,第一采样电压信号和第二采样电压信号通过线或单元得到第三采样电压信号,第三采样电压信号通过第三采样保持单元在控制信号下进行采样得到第四采样电压信号,从而实现了在去磁时间结束前对输出电压的采样,使得控制芯片在任何负载条件下都可以对输出电压进行比较精确的检测。
附图说明
图1为现有技术中的一种交流-直流转换器中的输出电压动态采样电路的结构图;
图2为现有技术中在不同输出负载电流下交流-直流转换器中的输出电压的波形比较图;
图3为本发明实施例提供的一种交流-直流转换器中的输出电压动态采样电路的结构图;
图4为本发明实施例提供的一种交流-直流转换器中的输出电压动态采样电路的时序图;
图5为本发明实施例提供的振荡器电路的结构示意图;
图6为本发明实施例提供的振荡器电路的时序图;
图7为本发明实施例提供的线或单元的结构示意图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
本发明提出一种在去磁时间结束前对输出电压进行采样的电路,从而使控制芯片在任何负载条件下都能对输出电压进行比较精确的检测。
图3为本发明实施例提供的一种交流-直流转换器中的输出电压动态采样电路的结构图,如图3所示,该输出电压动态采样电路包括:振荡器U1、第一采样保持单元U21、第二采样保持单元U22、线或单元U3和第三采样保持单元U23。
振荡器U1的输入端为图1中所示的FB节点的电压信号,振荡器U1用于产生第一脉冲振荡信号CLK1和第二脉冲振荡信号CLK2。由于整个开关电源的负反馈作用,FB电压波形的高电平最终会约等于图1中误差放大器的另一个输入端,即参考电压Vref。因此振荡器U1内部会将FB电压波形与一个小于Vref电压的参考电压(Vref-Voff)相比较,其中Voff可以选择的范围是0.01V-Vref:当FB电压波形比(Vref-Voff)高时,振荡器U1的输出端第一脉冲振荡信号CLK1和第二脉冲振荡信号CLK2为两个相位相差半个周期的脉冲振荡信号;当FB电压波形比(Vref-Voff)低时,振荡器U1的输出端第一脉冲振荡信号CLK1和第二脉冲振荡信号CLK2为逻辑低电平。
图4为本发明实施例提供的一种交流-直流转换器中的输出电压动态采样电路的时序图,如图4所示。在FB电压高于(Vref-Voff)时,第一脉冲振荡信号CLK1立刻为高电平,高电平的时间为t1,低电平的时间为(t1+2*t2),因此脉冲周期为(2*t1+2*t2);第二脉冲振荡信号CLK2在延时(t1+t2)后为高电平,高电平的时间为t1,低电平的时间为(t1+2*t2),因此脉冲周期为(2*t1+2*t2)。CLK2的上升沿与CLK1的上升沿的延迟为(t1+t2),因此相位相差半个周期。
第一采样保持单元U21与振荡器U1相连接,第一采样保持单元U21的输入端分别为FB和第一脉冲振荡信号CLK1,输出为第一采样电压信号VFBA,当第一脉冲振荡信号CLK1为逻辑高时,VFBA采样FB的电压值,当第一脉冲信号CLK1为逻辑低时,VFBA保持上一次的采样值;
第二采样保持单元U22与振荡器U1相连接,第二采样保持单元U22的输入端分别为FB和第二脉冲振荡信号CLK2,输出为第二采样电压信号VFBB,当脉冲振荡信号CLK2为逻辑高时,VFBB采样FB的电压值,当脉冲信号CLK2为逻辑低时,VFBB保持上一次的采样值。
线或单元U3分别与所述第一采样保持单元U21和第二采样保持单元U22相连接,线或单元U3的输入端为第一采样电压信号VFBA和第二采样电压信号VFBB,将VFBA和VFBB进行线或处理并输出第三采样电压信号VFBC。具体地,第三采样电压信号VFBC为线或单元的输出VFBA和VFBB两个电压中最大的电压值。
第三采样保持单元U23与线或单元U3相连接,对第三采样电压信号VFBC进行采样得到第四采样电压信号VFB。具体的,第三采样保持单元U23的输入端为第三采样电压信号VFBC和图1中的Gate信号,输出为图1所示中的VFB节点的电压信号,即与误差放大器的一个输入端。当Gate信号为逻辑高时,VFB采样VFBC的电压值,当Gate信号为逻辑低时,VFB保持上一次的采样值。
进一步地,振荡器U1的具体实现方式如图5所示。振荡器U1包括:第一电流源I1、第二电流源I2、第一开关SW1、第二开关SW2、电容C1、第一比较器、第二比较器、第三比较器、RS触发器、反相器、第一D触发器、第二D触发器、第一三输入与门AND1和第二三输入与门AND2。
第二开关SW2与第二电流源I2相连并接地;第一电流源I1与第一开关SW1相连并分别接入第一比较器的正向输入端和第二比较器的正向输入端,电容C1连接于第一开关SW1和第一比较器的正向输入端之间,第一比较器的负向输入端接入第一比较阈值VthH,第一比较器的输出端与RS触发器的R端相连接,第二比较器的负向输入端接入第二比较阈值VthL,第二比较器的输出端与RS触发器的S端相连接,RS触发器的输出端与第一D触发器相连接,RS触发器的输出端经由反相器后与第二D触发器相连接,第一D触发器的输出端、所述RS触发器的输出端和第三比较器的输出端分 别与第一三输入与门AND1相连接,第二D触发器的输出端、RS触发器的输出端和第三比较器的输出端分别与第二三输入与门AND2相连接。
其中,第一电流源I1、第二电流源I2,第一开关SW1、第二开关SW2,电容C1,第一比较器,第二比较器,和RS触发器构成了传统的振荡器。
图6为本发明实施例提供的振荡器电路的时序图。如图6所示,当第一开关SW1闭合、第二SW2断开时,第一电流源I1对电容C1进行充电,电容C1两端的电压上升,也就是锯齿波Saw上升,当上升到第一比较器的第一比较阈值VthH时,第一比较器输出高电平,RS触发器的输出端Q1被重置为低电平,从而控制第一开关SW1断开第二开关SW2闭合,第二电流源I2为电容C1放电,当电容C1两端的电压锯齿波Saw下降到第二比较器的第二比较阈值VthL时,第二比较器输出高电平,RS触发器的输出Q1被置位为高电平,从而控制第一开关SW1闭合第二开关SW2断开。如此往复使得RS触发器的输出Q1为振荡脉冲波。Q1为高电平的时间t1和低电平的时间t2分别为:
t1=C1(VthH-VthL)I1]]>
t2=C1(VthH-VthL)I2]]>
振荡脉冲波Q1和经由反相器产生的Q1的反向信号分别被第一D触发器和第二D触发器分频,产生两个分频信号Q2和Q3。
第三比较器将FB的电压波形与阈值(Vref-Voff)相比较,产生逻辑控制信号VFBHigh。当FB比阈值(Vref-Voff)低时,VFBHigh为低,第一三输入与门AND1和第二三输入与门AND2的输出第一脉冲振荡信号CLK1和第二脉冲振荡信号CLK2为低;当FB比阈值(Vref-Voff)高时,VFBHigh为低,第一三输入与门AND1的输出第一脉冲振荡信号CLK1为Q1和Q2的与,第二三输入与门AND2的输出第二脉冲振荡信号CLK2为Q1和Q3的与。
进一步地,线或单元U3的具体实现方式如图7所示,线或单元U3包括:线或单元包括第一运算放大器、第二运算放大器、第一NMOS管NM1、第二NMOS 管NM2、第三电流源I3和第四电流源I4。
第一运算放大器的正向输入端接入第一采样电压信号VFBA,第一运算放大器的负向输入端与第一NMOS管NM1的源极相接经由第三电流源I3接地,第二运算放大器的正向输入端接入第二采样电压信号VFBB,第二运算放大器的负向输入端与第二NMOS管NM2的源极相接经由第四电流源I4接地,第一NMOS管NM1的漏极和第二NMOS管NM2的漏极分别接电源,第一NMOS管NM1的源极和第二NMOS管NM2的源极相接并作为线或单元U3的输出第三采样电压信号VFBC。
第一运算放大器的负向输入端与第一NMOS管NM1的源极短接形成增益为1的放大器,正向输入端与图3中的第一采样电压信号VFBA相连。运算放大器驱动由第一NMOS管NM1和第三电流源I3构成的甲类放大器。
同样,第二运算放大器的负向输入端与第二NMOS管NM2的源极短接形成增益为1的放大器,正向输入端与图3中的第二采样电压信号VFBB相连。运算放大器驱动由第二NMOS管NMOS管NM2和第四电流源I4构成的甲类放大器。
第一NMOS管NM1和第三电流源I3构成的甲类放大器具有较大的高电平驱动能力,和受第三电流源I3限制的低电平驱动能力,第二NMOS管NM2和第四电流源I4构成的甲类放大器同样具有较大的高电平驱动能力,和受第四电流源I4限制的低电平驱动能力。如图7所示,当NM1和NM2的源极短接到一起并连接到VFBC时,VFBC的电压由VFBA和VFBB的最高电压决定,这就是线或单元的“线或”功能。例如,当VFBA>VFBB时,NM1的栅极电压大于NM2的栅极电压,那么NM1的源极就会同时驱动电流源I3和I4,NM1导通,使得VFBC=VFBA,并且第二运算放大器的负向输入端电压等于VFBA大于VFBB,因此第二运算放大器的输出更低,使得NM2截止。反之当VFBB>VFBA时,NM2的栅极电压大于NM1的栅极电压,那么NM2的源极就会同时驱动电流源I3和I4,NM2导通,使得VFBC=VFBB,并且第一运算放大器的负向输入端电压等于VFBB大于VFBA,因此第一运算放大器的输出更低,使得NM1截止。
本发明实施例提出一种在去磁时间结束前对输出电压进行采样的电路,其中包括:振荡器产生两个脉冲振荡信号分别控制两个采样保持单元,这两个采样保持单元分别对输出电压进行采样得到两个采样信号,该两个采样信号再通过线或单元得到第三采样电压信号,第三采样电压信号再通过一个采样保持单元得到对输出电压进行采样的最终采样电压,从而使得控制芯片在任何负载条件下都能对输出电压进行比较精确的检测。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

交流直流转换器中的输出电压动态采样电路.pdf_第1页
第1页 / 共14页
交流直流转换器中的输出电压动态采样电路.pdf_第2页
第2页 / 共14页
交流直流转换器中的输出电压动态采样电路.pdf_第3页
第3页 / 共14页
点击查看更多>>
资源描述

《交流直流转换器中的输出电压动态采样电路.pdf》由会员分享,可在线阅读,更多相关《交流直流转换器中的输出电压动态采样电路.pdf(14页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104143928A43申请公布日20141112CN104143928A21申请号201410364898022申请日20140729201410160556720140421CNH02M7/04200601H02M3/335200601G01R19/0020060171申请人美芯晟科技(北京)有限公司地址100086北京市海淀区知春路106号皇冠假日酒店写字楼100672发明人郭越勇赵汗青74专利代理机构北京亿腾知识产权代理事务所11309代理人陈霁54发明名称交流直流转换器中的输出电压动态采样电路57摘要本发明涉及一种交流直流转换器中的输出电压动态采样电路。所述电路包括。

2、振荡器,用于产生第一脉冲振荡信号和第二脉冲振荡信号;第一采样保持单元,用于接收所述第一脉冲振荡信号,当所述第一脉冲振荡信号为高电平时采样所述输出电压信号,得到第一采样电压信号;第二采样保持单元,用于接收所述第二脉冲振荡信号,当所述第二脉冲振荡信号为高电平时采样所述输出电压信号,得到第二采样电压信号;线或单元,用于接收所述第一采样电压信号和所述第二采样电压信号并输出第三采样电压信号;第三采样保持单元,用于接收并对所述第三采样电压信号进行采样得到第四采样电压信号。本发明实现了在任何负载条件下都能对输出电压进行比较精确的检测。66本国优先权数据51INTCL权利要求书2页说明书6页附图5页19中华人。

3、民共和国国家知识产权局12发明专利申请权利要求书2页说明书6页附图5页10申请公布号CN104143928ACN104143928A1/2页21一种交流直流转换器中的输出电压动态采样电路,其特征在于,所述电路包括振荡器,用于产生第一脉冲振荡信号和第二脉冲振荡信号;第一采样保持单元,与所述振荡器相连接,用于接收所述第一脉冲振荡信号,当所述第一脉冲振荡信号为高电平时采样所述输出电压信号,得到第一采样电压信号;第二采样保持单元,与所述振荡器相连接,用于接收所述第二脉冲振荡信号,当所述第二脉冲振荡信号为高电平时采样所述输出电压信号,得到第二采样电压信号;线或单元,分别与所述第一采样保持单元和第二采样保。

4、持单元相连接,用于接收所述第一采样电压信号和所述第二采样电压信号并输出第三采样电压信号;第三采样保持单元,与所述线或单元相连接,用于接收并对所述第三采样电压信号进行采样得到第四采样电压信号。2根据权利要求1所述的交流直流转换器中的输出电压动态采样电路,其特征在于,所述振荡器包括第一电流源、第二电流源、第一开关、第二开关、电容、第一比较器、第二比较器、第三比较器、RS触发器、反相器、第一D触发器、第二D触发器、第一三输入与门和第二三输入与门;所述第一电流源与所述第一开关相连并分别接入所述第一比较器的正向输入端和所述第二比较器的正向输入端,所述电容连接于所述第一开关和所述第一比较器的正向输入端之间。

5、,所述第一比较器的负向输入端接入第一比较阈值,所述第一比较器的输出端与所述RS触发器的R端相连接,所述第二比较器的负向输入端接入第二比较阈值,所述第二比较器的输出端与所述RS触发器的S端相连接,所述RS触发器的输出端与所述第一D触发器相连接,所述RS触发器的输出端经由所述反相器后与所述第二D触发器相连接,所述第一D触发器的输出端、所述RS触发器的输出端和所述第三比较器的输出端分别与所述第一三输入与门相连接,所述第二D触发器的输出端、所述RS触发器的输出端和所述第三比较器的输出端分别与所述第二三输入与门相连接;当所述第一开关闭合、所述第二开关断开,所述第一电流源对所述电容进行充电,所述电容两端的。

6、电压上升到所述第一比较阈值时,所述第一比较器输出高电平使得所述RS触发器的输出端被置为低电平,从而控制所述第一开关断开、所述第二开关闭合,所述第二电流源为所述电容放电,所述电容两端的电压下降到所述第二比较阈值时所述第二比较器输出高电平使得所述RS触发器的输出端被重置为高电平,从而控制所述第一开关闭合、所述第二开关断开。3根据权利要求1所述的交流直流转换器中的输出电压动态采样电路,其特征在于,所述线或单元包括第一运算放大器、第二运算放大器、第一NMOS管、第二NMOS管、第三电流源、第四电流源和电源;所述第一运算放大器的正向输入端接入所述第一采样电压信号,所述第一运算放大器的负向输入端与所述第一。

7、NMOS管的源极相接经由所述第三电流源接地,所述第二运算放大器的正向输入端接入所述第二采样电压信号,所述第二运算放大器的负向输入端与所述第二NMOS管的源极相接经由所述第四电流源接地,所述第一NMOS管的漏极和所述第二NMOS管的漏极分别接电源,所述第一NMOS管的源极和所述第二NMOS管的源极相接并作为所述线或单元的输出端,从而输出所述第三采样电压信号;当所述第一采样电压信号大于所述第二采样电压信号时,所述第一NMOS管的栅极电权利要求书CN104143928A2/2页3压大于所述第二MOS管的栅极电压,所述第一NMOS管的源极同时驱动所述第三电流源和所述第四电流源使得所述第一NMOS管导通。

8、第二NMOS管截止,使得所述第三采样电压信号等于所述第一采样电压信号;当所述第一采样电压信号小于所述第二采样电压信号时,所述第一NMOS管的栅极电压小于所述第二MOS管的栅极电压,所述第一NMOS管的源极同时驱动所述第三电流源和所述第四电流源使得所述第一NMOS管截止第二NMOS管导通,使得所述第三采样电压信号等于所述第二采样电压信号。4根据权利要求1所述的交流直流转换器中的输出电压动态采样电路,其特征在于,所述第一脉冲振荡信号的相位和所述第二脉冲振荡信号的相位相差半个周期。5根据权利要求2所述的交流直流转换器中的输出电压动态采样电路,其特征在于,所述第一比较阈值大于所述第二比较阈值。权利要求。

9、书CN104143928A1/6页4交流直流转换器中的输出电压动态采样电路技术领域0001本发明涉及集成电路设计领域,具体涉及交流直流转换器中的输出电压动态采样电路。背景技术0002在交流直流转换器电路中,对输出电压的检测可以通过采样变压器电感的电压来实现,而主级电感电压可以通过变压器辅助绕组传输给控制芯片。图1为现有技术中的一种交流直流转换器中的输出电压动态采样电路的结构图。如图1所示,电阻R1表示次级绕组的串联寄生电阻与输出引线的串联寄生电阻的和。在不同的输出负载电流下,次级绕组的电压是有区别的。图2为现有技术中在不同输出负载电流下交流直流转换器中的输出电压的波形比较图。从图2中可以看出,。

10、由于负载的不同,在去磁时间TDMG内次级绕组的输出电流也不同,造成电阻R1上的压降不同,最后使在FB脚的波形不同。但是,在去磁时间结束时,次级绕组的电流降为0A,电阻R1上的压降也降为0V。因此,理想情况下,控制芯片对输出电压的采样应该在次级绕组去磁时间结束之前进行。发明内容0003本发明的目的是针对现有技术的不足,在交流直流转换器电路中,提出了一种在去磁时间结束前对输出电压进行采样的电路,从而使控制芯片在任何负载条件下都能对输出电压进行比较精确的检测。0004为实现上述目的,本发明提供了一种交流直流转换器中的输出电压动态采样电路,所述电路包括0005振荡器,用于产生第一脉冲振荡信号和第二脉冲。

11、振荡信号;0006第一采样保持单元,与所述振荡器相连接,用于接收所述第一脉冲振荡信号,当所述第一脉冲振荡信号为高电平时采样所述输出电压信号,得到第一采样电压信号;0007第二采样保持单元,与所述振荡器相连接,用于接收所述第二脉冲振荡信号,当所述第二脉冲振荡信号为高电平时采样所述输出电压信号,得到第二采样电压信号;0008线或单元,分别与所述第一采样保持单元和第二采样保持单元相连接,用于接收所述第一采样电压信号和所述第二采样电压信号并输出第三采样电压信号;0009第三采样保持单元,与所述线或单元相连接,用于接收并对所述第三采样电压信号进行采样得到第四采样电压信号。0010优选地,所述振荡器包括第。

12、一电流源、第二电流源、第一开关、第二开关、电容、第一比较器、第二比较器、第三比较器、RS触发器、反相器、第一D触发器、第二D触发器、第一三输入与门和第二三输入与门;0011所述第二开关与所述第二电流源相连并接地;所述第一电流源与所述第一开关相连并分别接入所述第一比较器的正向输入端和所述第二比较器的正向输入端,所述电容连接于所述第一开关和所述第一比较器的正向输入端之间,所述第一比较器的负向输入端接说明书CN104143928A2/6页5入第一比较阈值,所述第一比较器的输出端与所述RS触发器的R端相连接,所述第二比较器的负向输入端接入第二比较阈值,所述第二比较器的输出端与所述RS触发器的S端相连接。

13、,所述RS触发器的输出端与所述第一D触发器相连接,所述RS触发器的输出端经由所述反相器后与所述第二D触发器相连接,所述第一D触发器的输出端、所述RS触发器的输出端和所述第三比较器的输出端分别与所述第一三输入与门相连接,所述第二D触发器的输出端、所述RS触发器的输出端和所述第三比较器的输出端分别与所述第二三输入与门相连接;0012当所述第一开关闭合、所述第二开关断开,所述第一电流源对所述电容进行充电,所述电容两端的电压上升到所述第一比较阈值时,所述第一比较器输出高电平使得所述RS触发器的输出端被置为低电平,从而控制所述第一开关断开、所述第二开关闭合,所述第二电流源为所述电容放电,所述电容两端的电。

14、压下降到所述第二比较阈值时所述第二比较器输出高电平使得所述RS触发器的输出端被重置为高电平,从而控制所述第一开关闭合、所述第二开关断开。0013优选地,所述线或单元包括第一运算放大器、第二运算放大器、第一NMOS管、第二NMOS管、第三电流源、第四电流源和电源;0014所述第一运算放大器的正向输入端接入所述第一采样电压信号,所述第一运算放大器的负向输入端与所述第一NMOS管的源极相接经由所述第三电流源接地,所述第二运算放大器的正向输入端接入所述第二采样电压信号,所述第二运算放大器的负向输入端与所述第二NMOS管的源极相接经由所述第四电流源接地,所述第一NMOS管的漏极和所述第二NMOS管的漏极。

15、分别接电源,所述第一NMOS管的源极和所述第二NMOS管的源极相接并作为所述线或单元的输出端,从而输出所述第三采样电压信号;0015当所述第一采样电压信号大于所述第二采样电压信号时,所述第一NMOS管的栅极电压大于所述第二MOS管的栅极电压,所述第一NMOS管的源极同时驱动所述第三电流源和所述第四电流源使得所述第一NMOS管导通第二NMOS管截止,使得所述第三采样电压信号等于所述第一采样电压信号;0016当所述第一采样电压信号小于所述第二采样电压信号时,所述第一NMOS管的栅极电压小于所述第二MOS管的栅极电压,所述第一NMOS管的源极同时驱动所述第三电流源和所述第四电流源使得所述第一NMOS。

16、管截止第二NMOS管导通,使得所述第三采样电压信号等于所述第二采样电压信号。0017优选地,所述第一脉冲振荡信号的相位和所述第二脉冲振荡信号的相位相差半个周期。0018优选地,所述第一比较阈值大于所述第二比较阈值。0019通过本发明实施例提供的一种交流直流转换器中的输出电压动态采样电路,该电路的振荡器产生两个脉冲振荡信号,分别控制第一采样保持单元和第二采样保持单元,交流直流转换器中的输出电压通过第一采样保持单元和第二采样保持单元得到第一采样电压信号和第二采样电压信号,第一采样电压信号和第二采样电压信号通过线或单元得到第三采样电压信号,第三采样电压信号通过第三采样保持单元在控制信号下进行采样得到。

17、第四采样电压信号,从而实现了在去磁时间结束前对输出电压的采样,使得控制芯片在任何负载条件下都可以对输出电压进行比较精确的检测。说明书CN104143928A3/6页6附图说明0020图1为现有技术中的一种交流直流转换器中的输出电压动态采样电路的结构图;0021图2为现有技术中在不同输出负载电流下交流直流转换器中的输出电压的波形比较图;0022图3为本发明实施例提供的一种交流直流转换器中的输出电压动态采样电路的结构图;0023图4为本发明实施例提供的一种交流直流转换器中的输出电压动态采样电路的时序图;0024图5为本发明实施例提供的振荡器电路的结构示意图;0025图6为本发明实施例提供的振荡器电。

18、路的时序图;0026图7为本发明实施例提供的线或单元的结构示意图。具体实施方式0027下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。0028本发明提出一种在去磁时间结束前对输出电压进行采样的电路,从而使控制芯片在任何负载条件下都能对输出电压进行比较精确的检测。0029图3为本发明实施例提供的一种交流直流转换器中的输出电压动态采样电路的结构图,如图3所示,该输出电压动态采样电路包括振荡器U1、第一采样保持单元U21、第二采样保持单元U22、线或单元U3和第三采样保持单元U23。0030振荡器U1的输入端为图1中所示的FB节点的电压信号,振荡器U1用于产生第一脉冲振荡信号CLK1和第。

19、二脉冲振荡信号CLK2。由于整个开关电源的负反馈作用,FB电压波形的高电平最终会约等于图1中误差放大器的另一个输入端,即参考电压VREF。因此振荡器U1内部会将FB电压波形与一个小于VREF电压的参考电压VREFVOFF相比较,其中VOFF可以选择的范围是001VVREF当FB电压波形比VREFVOFF高时,振荡器U1的输出端第一脉冲振荡信号CLK1和第二脉冲振荡信号CLK2为两个相位相差半个周期的脉冲振荡信号;当FB电压波形比VREFVOFF低时,振荡器U1的输出端第一脉冲振荡信号CLK1和第二脉冲振荡信号CLK2为逻辑低电平。0031图4为本发明实施例提供的一种交流直流转换器中的输出电压动。

20、态采样电路的时序图,如图4所示。在FB电压高于VREFVOFF时,第一脉冲振荡信号CLK1立刻为高电平,高电平的时间为T1,低电平的时间为T12T2,因此脉冲周期为2T12T2;第二脉冲振荡信号CLK2在延时T1T2后为高电平,高电平的时间为T1,低电平的时间为T12T2,因此脉冲周期为2T12T2。CLK2的上升沿与CLK1的上升沿的延迟为T1T2,因此相位相差半个周期。0032第一采样保持单元U21与振荡器U1相连接,第一采样保持单元U21的输入端分别为FB和第一脉冲振荡信号CLK1,输出为第一采样电压信号VFBA,当第一脉冲振荡信号CLK1为逻辑高时,VFBA采样FB的电压值,当第一脉冲。

21、信号CLK1为逻辑低时,VFBA保持上一次的采样值;说明书CN104143928A4/6页70033第二采样保持单元U22与振荡器U1相连接,第二采样保持单元U22的输入端分别为FB和第二脉冲振荡信号CLK2,输出为第二采样电压信号VFBB,当脉冲振荡信号CLK2为逻辑高时,VFBB采样FB的电压值,当脉冲信号CLK2为逻辑低时,VFBB保持上一次的采样值。0034线或单元U3分别与所述第一采样保持单元U21和第二采样保持单元U22相连接,线或单元U3的输入端为第一采样电压信号VFBA和第二采样电压信号VFBB,将VFBA和VFBB进行线或处理并输出第三采样电压信号VFBC。具体地,第三采样电。

22、压信号VFBC为线或单元的输出VFBA和VFBB两个电压中最大的电压值。0035第三采样保持单元U23与线或单元U3相连接,对第三采样电压信号VFBC进行采样得到第四采样电压信号VFB。具体的,第三采样保持单元U23的输入端为第三采样电压信号VFBC和图1中的GATE信号,输出为图1所示中的VFB节点的电压信号,即与误差放大器的一个输入端。当GATE信号为逻辑高时,VFB采样VFBC的电压值,当GATE信号为逻辑低时,VFB保持上一次的采样值。0036进一步地,振荡器U1的具体实现方式如图5所示。振荡器U1包括第一电流源I1、第二电流源I2、第一开关SW1、第二开关SW2、电容C1、第一比较器。

23、、第二比较器、第三比较器、RS触发器、反相器、第一D触发器、第二D触发器、第一三输入与门AND1和第二三输入与门AND2。0037第二开关SW2与第二电流源I2相连并接地;第一电流源I1与第一开关SW1相连并分别接入第一比较器的正向输入端和第二比较器的正向输入端,电容C1连接于第一开关SW1和第一比较器的正向输入端之间,第一比较器的负向输入端接入第一比较阈值VTHH,第一比较器的输出端与RS触发器的R端相连接,第二比较器的负向输入端接入第二比较阈值VTHL,第二比较器的输出端与RS触发器的S端相连接,RS触发器的输出端与第一D触发器相连接,RS触发器的输出端经由反相器后与第二D触发器相连接,第。

24、一D触发器的输出端、所述RS触发器的输出端和第三比较器的输出端分别与第一三输入与门AND1相连接,第二D触发器的输出端、RS触发器的输出端和第三比较器的输出端分别与第二三输入与门AND2相连接。0038其中,第一电流源I1、第二电流源I2,第一开关SW1、第二开关SW2,电容C1,第一比较器,第二比较器,和RS触发器构成了传统的振荡器。0039图6为本发明实施例提供的振荡器电路的时序图。如图6所示,当第一开关SW1闭合、第二SW2断开时,第一电流源I1对电容C1进行充电,电容C1两端的电压上升,也就是锯齿波SAW上升,当上升到第一比较器的第一比较阈值VTHH时,第一比较器输出高电平,RS触发器。

25、的输出端Q1被重置为低电平,从而控制第一开关SW1断开第二开关SW2闭合,第二电流源I2为电容C1放电,当电容C1两端的电压锯齿波SAW下降到第二比较器的第二比较阈值VTHL时,第二比较器输出高电平,RS触发器的输出Q1被置位为高电平,从而控制第一开关SW1闭合第二开关SW2断开。如此往复使得RS触发器的输出Q1为振荡脉冲波。Q1为高电平的时间T1和低电平的时间T2分别为0040说明书CN104143928A5/6页800410042振荡脉冲波Q1和经由反相器产生的Q1的反向信号分别被第一D触发器和第二D触发器分频,产生两个分频信号Q2和Q3。0043第三比较器将FB的电压波形与阈值VREFV。

26、OFF相比较,产生逻辑控制信号VFBHIGH。当FB比阈值VREFVOFF低时,VFBHIGH为低,第一三输入与门AND1和第二三输入与门AND2的输出第一脉冲振荡信号CLK1和第二脉冲振荡信号CLK2为低;当FB比阈值VREFVOFF高时,VFBHIGH为低,第一三输入与门AND1的输出第一脉冲振荡信号CLK1为Q1和Q2的与,第二三输入与门AND2的输出第二脉冲振荡信号CLK2为Q1和Q3的与。0044进一步地,线或单元U3的具体实现方式如图7所示,线或单元U3包括线或单元包括第一运算放大器、第二运算放大器、第一NMOS管NM1、第二NMOS管NM2、第三电流源I3和第四电流源I4。004。

27、5第一运算放大器的正向输入端接入第一采样电压信号VFBA,第一运算放大器的负向输入端与第一NMOS管NM1的源极相接经由第三电流源I3接地,第二运算放大器的正向输入端接入第二采样电压信号VFBB,第二运算放大器的负向输入端与第二NMOS管NM2的源极相接经由第四电流源I4接地,第一NMOS管NM1的漏极和第二NMOS管NM2的漏极分别接电源,第一NMOS管NM1的源极和第二NMOS管NM2的源极相接并作为线或单元U3的输出第三采样电压信号VFBC。0046第一运算放大器的负向输入端与第一NMOS管NM1的源极短接形成增益为1的放大器,正向输入端与图3中的第一采样电压信号VFBA相连。运算放大器。

28、驱动由第一NMOS管NM1和第三电流源I3构成的甲类放大器。0047同样,第二运算放大器的负向输入端与第二NMOS管NM2的源极短接形成增益为1的放大器,正向输入端与图3中的第二采样电压信号VFBB相连。运算放大器驱动由第二NMOS管NMOS管NM2和第四电流源I4构成的甲类放大器。0048第一NMOS管NM1和第三电流源I3构成的甲类放大器具有较大的高电平驱动能力,和受第三电流源I3限制的低电平驱动能力,第二NMOS管NM2和第四电流源I4构成的甲类放大器同样具有较大的高电平驱动能力,和受第四电流源I4限制的低电平驱动能力。如图7所示,当NM1和NM2的源极短接到一起并连接到VFBC时,VF。

29、BC的电压由VFBA和VFBB的最高电压决定,这就是线或单元的“线或”功能。例如,当VFBAVFBB时,NM1的栅极电压大于NM2的栅极电压,那么NM1的源极就会同时驱动电流源I3和I4,NM1导通,使得VFBCVFBA,并且第二运算放大器的负向输入端电压等于VFBA大于VFBB,因此第二运算放大器的输出更低,使得NM2截止。反之当VFBBVFBA时,NM2的栅极电压大于NM1的栅极电压,那么NM2的源极就会同时驱动电流源I3和I4,NM2导通,使得VFBCVFBB,并且第一运算放大器的负向输入端电压等于VFBB大于VFBA,因此第一运算放大器的输出更低,使得NM1截止。0049本发明实施例提。

30、出一种在去磁时间结束前对输出电压进行采样的电路,其中包括振荡器产生两个脉冲振荡信号分别控制两个采样保持单元,这两个采样保持单元分别对输出电压进行采样得到两个采样信号,该两个采样信号再通过线或单元得到第三采样电压信号,第三采样电压信号再通过一个采样保持单元得到对输出电压进行采样的最终采样说明书CN104143928A6/6页9电压,从而使得控制芯片在任何负载条件下都能对输出电压进行比较精确的检测。0050以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。说明书CN104143928A1/5页10图1图2说明书附图CN104143928A102/5页11图3说明书附图CN104143928A113/5页12图4说明书附图CN104143928A124/5页13图5图6说明书附图CN104143928A135/5页14图7说明书附图CN104143928A14。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 发电、变电或配电


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1