一种双环低压差线性稳压器电路.pdf

上传人:111****112 文档编号:654390 上传时间:2018-03-01 格式:PDF 页数:14 大小:731.06KB
返回 下载 相关 举报
摘要
申请专利号:

CN200610124852.7

申请日:

2006.10.25

公开号:

CN1949121A

公开日:

2007.04.18

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):G05F 1/56申请日:20061025授权公告日:20081112终止日期:20091125|||授权|||实质审查的生效|||公开

IPC分类号:

G05F1/56(2006.01)

主分类号:

G05F1/56

申请人:

华中科技大学;

发明人:

邹雪城; 刘政林; 张科峰; 雷鑑铭; 郑朝霞; 邹志革; 骞海荣

地址:

430074湖北省武汉市洪山区珞喻路1037号

优先权:

专利代理机构:

华中科技大学专利中心

代理人:

曹葆青

PDF下载: PDF下载
内容摘要

本发明公开了一种双环低压差线性稳压器电路,包括误差放大器、第二级放大器、功率管、补偿单元、输出采样网络、负载电容和负载电路、前馈放大器、上拉驱动管、下拉驱动管和采样管。包括两条环路,主环路包括误差放大器、第二放大器、上拉驱动管、功率管和输出采样网络,形成负反馈回路稳定输出电压VOUT。附加环路包括前馈放大器、采样管、下拉驱动管和功率管,该环路参照输出电压,形成负反馈回路,动态补偿电路,进一步稳定输出电压VOUT,参照负载电流,形成正反馈回路,加速响应电路的负载阶跃变化。本发明使电路提供更好的瞬态响应和更好的外围电路选择,以及更好的相位裕度。

权利要求书

1、  一种双环低压差线性稳压器电路,包括误差放大器(1)、第二级放大器(2)、功率管(3)、补偿单元(4)、输出采样网络(5)、负载电容(6)和负载电路(7);
误差放大器(1)的负向输入端接参考电压VREF,正向输入端接输出采样网络产生的反馈电压信号VFB,误差放大器(1)比较两个输入信号,将两输入信号的误差信号进行放大后单端输出,误差放大器(1)的输出端与放大电路(2)的输入端连接,将输出信号输入到放大电路(2)进行下一级放大;
补偿单元(4)连接在误差放大器(1)输出端和放大电路(2)输入端连接处,对电路进行频率补偿;
输出采样网络(5)包括串联的电阻R1和R2,R2上端接LDO电路的输出电压VOUT,下端和R1的上端相连,产生VFB电位,输入到误差放大器的正相输入端;R1的下端接地;
负载电容(6)上端接LDO电路输出电压VOUT;下端直接接地;
负载电路(7)接LDO电路的输出电压VOUT
其特征在于:
该电路还包括前馈放大器(8)、上拉驱动管(9)、下拉驱动管(10)和采样管(11);
前馈放大器(8)的负向输入端接LDO电路的输出电压VOUT;正向输入端接采样管(11)的漏端,其输出端与下拉管(10)的栅极相接;
上拉驱动管(9)的源极接功率管(3)的栅极,其栅极接放大电路(2)的输出,其漏极接LDO输入电源VIN或LDO功率管(3)的衬底电位;
下拉驱动管(10)的漏极接功率管(3)的栅极,其栅极接前馈放大器(8)的输出,其源端接地;
采样管(11)与功率管(3)并联,二者的栅极、源极分别相接,采样管(11)的漏极连接前馈放大器(8)的正相输入端;
误差放大器(1)、第二放大器(2)、上拉驱动管(9)、功率管(3)和输出采样网络(5)构成主环路,形成负反馈回路稳定输出电压VOUT;前馈放大器(8)、采样管(11)、下拉驱动管(10)和功率管(3)构成附加环路,该环路参照输出电压,形成负反馈回路,动态补偿电路,进一步稳定输出电压VOUT,并参照负载电流,形成正反馈回路,加速响应电路的负载阶跃变化。

2、
  根据权利要求1所述的双环低压差线性稳压器电路,其特征在于:前馈放大器(8)包括第一、第二PMOS管(81、82)、第一至第三电流源负载(83、84和85)、共源放大管(86)和前馈放大器输出级(87);
第一PMOS管(81)的栅极和漏极相接,再分别与第一电流源负载(83)的正端及第二PMOS管(82)的栅极连接,第一PMOS管(81)的源极接LDO的输出电压VOUT
第二PMOS管(82)的源端分别与采样管(11)的漏端和第三电流源负载(85)的负端连接,其漏端与共源放大管(86)的栅极相连,并与第二电流源负载(84)的正端和前馈放大器输出级(87)的电阻R3的上端连接;
第一、第二电流源负载(83、84)的负端均接地,第三电流源负载(85)的正端接LDO输入电源VIN或LDO功率管(3)的衬底电位;
前馈放大器输出级(87)包括电阻R3和MOS管电容N1,MOS电容N1是以栅极为上极板,源、漏相连作为下极板的电容;电阻R3上端接第二PMOS管(82)的漏极和共源放大管(86)的栅极,以及第二电流源负载(84)的正端;电阻R3的下端作为输出,同时连接MOS管电容N1管的栅极,MOS管电容N1的源漏接地。

说明书

一种双环低压差线性稳压器电路
技术领域
本发明属于线性电源技术,具体为一种双环低压差线性稳压器(LDO)电路,它可以改善LDO电路动态性能。
背景技术
随着电子技术高速发展,电子产品需要更高性能的电源系统供电。LDO电路凭借其电路结构简单,占用芯片面积小,低噪音、高纹波抑制等优点,而被广泛应用在锂电池充电、低压数字电路电源等场合下。为了适应电源市场的发展需要,良好的系统稳定性和负载瞬态性能成为线性电源技术的重点研究方向。
高精度LDO电路需要采用高增益的误差放大器来满足需要,而高增益就需要频率补偿,以便保证电路的稳定性能。但是电路的性能越高,所需误差放大器的增益就越高,需要的补偿强度就越大,时常就要牺牲电路的动态性能,来满足要求。多种频率补偿方案被用于提供稳定性,例如Miller补偿,嵌套Miller环,以及可能成为一部分补偿的芯片外或晶粒外大负载电容。这些方法虽然可以实现电路稳定工作时的频率补偿,但是都或多或少的牺牲了LDO电路的动态性能。这样就对补偿方案提出了进一步的限制。
图1描绘了一种现有技术的典型LDO电路及其频率补偿单元。典型LDO电路工作原理是比较输出的采样信号VFB与基准电压VREF,经放大后调节输出电压VOUT达到预设值。为了减小稳态误差,电路采用三级电路,包括误差放大器1、第二级放大器2、功率管3对误差信号进行放大。多级放大电路会带入过多的极点,导致过大的相移,造成相位裕度严重不够,系统稳定很难。图1中采用补偿单元4和输出电容6来引入零点,从而补偿电路中过多的极点。高精度的LDO电路常需要大型或很复杂的补偿元件,使系统稳定。例如,通过加大输出电容6,来实现补偿。这样,就会使系统的动态响应受到影响,很难取得精度和动态响应都最佳的补偿方法。
发明内容
本发明的目的在于提供一种双环低压差线性稳压器电路,该电路降低了电路所需的补偿强度,改善了电路动态性能。
本发明提供的一种双环低压差线性稳压器电路,包括误差放大器、第二级放大器、功率管、补偿单元、输出采样网络、负载电容和负载电路;误差放大器的负向输入端接参考电压VREF,正向输入端接输出采样网络产生的反馈电压信号VFB,误差放大器比较两个输入信号,将两输入信号的误差信号进行放大后单端输出,误差放大器的输出端与放大电路的输入端连接,将输出信号输入到放大电路进行下一级放大;补偿单元连接在误差放大器输出端和放大电路输入端连接处,对电路进行频率补偿;输出采样网络包括串联的电阻R1和R2,R2上端接LDO电路的输出电压VOUT;下端和R1的上端相连,产生VFB电位,输入到误差放大器的正相输入端;R1的下端接地;负载电容上端接LDO电路输出电压VOUT,下端接地;负载电路接LDO电路的输出电压VOUT;其特征在于:
该电路还包括前馈放大器、上拉驱动管、下拉驱动管和采样管;前馈放大器的负向输入端接LDO电路的输出电压VOUT;正向输入端接采样管的漏端,其输出端与下拉管的栅极相接;上拉驱动管的源极接功率管的栅极,其栅极接放大电路的输出,其漏极接LDO输入电源VIN或LDO功率管的衬底电位;下拉驱动管的漏极接功率管的栅极,其栅极接前馈放大器的输出,其源端接地;采样管与功率管并联,二者的栅极、源极分别相接,采样管的漏极连接前馈放大器的正相输入端;
误差放大器、第二放大器、上拉驱动管、功率管和输出采样网络,构成主环路,形成负反馈回路稳定输出电压VOUT;前馈放大器、采样管、下拉驱动管和功率管构成附加环路,该环路参照输出电压,形成负反馈回路,动态补偿电路,进一步稳定输出电压VOUT,并参照负载电流,形成正反馈回路,加速响应电路的负载阶跃变化。
本发明采用一种改善电路动态性能的双环LDO结构,该结构对LDO的负载瞬态响应、线瞬态响应和稳定性有极好的改进。本发明主要是通过增加一个前馈放大器AMP2,该放大器相对于图1中误差放大器,具有低增益,高带宽的特点,前馈放大器AMP2将LDO输出电压和采样LDO功率管电流的采样电压比较,输出控制LDO功率管栅极驱动,形成第二条环路改善电路的动态性能。与现有方法相比,增加的第二条环路会补偿一个零点,降低电路所需的其他补偿单元的补偿强度,减小了补偿元件和晶粒面积,节省了成本。本发明的另一个优点是,前馈放大器一个输入端为LDO功率管电流的采样信号,在电路中形成一个正反馈环,这样可以加速响应负载或电源的变化,极大地提高了LDO电路的动态性能。这种双环LDO的结构可以对LDO电路进行动态补偿,使得电路可以采用更高增益的误差放大器,以得到更高的精度。
附图说明
图1为一种现有技术的典型LDO稳压电路示意图;
图2为本发明双环低压差线性稳压器电路的示意图;
图3为图2中前馈放大器AMP2的一种具体实现电路示意图。
具体实施方式
如图2所示,本发明双环低压差线性稳压器电路包括误差放大器1、第二级放大器2、功率管3、补偿单元4、输出采样网络5、负载电容6、负载电路7、前馈放大器8、上拉驱动管9、下拉驱动管10和采样管11。上述各部分在电路中构成主环路和附加环路两条环路,主环路包括误差放大器1、第二放大器2、上拉驱动管9、功率管3和输出采样网络5,形成负反馈回路稳定输出电压VOUT。附加环路包括前馈放大器8、采样管11、下拉驱动管10和功率管3,构成第二个环路,该环路参照输出电压,形成负反馈回路,动态补偿电路,进一步稳定输出电压VOUT;参照负载电流,形成正反馈回路,加速响应电路的负载阶跃变化。下面对各部件作具体的说明。
误差放大器1的负向输入端接一个参考电压VREF,该电压一般通过带隙电路产生,具有高精度的稳定性,不随电源或温度的变化而变化;正向输入端接输出采样网络产生的反馈电压信号VFB。误差放大器1比较两个输入信号,将两输入信号的误差信号进行放大后单端输出。误差放大器1的输出端与放大电路2的输入端连接,将输出信号输入到放大电路2进行下一级放大。
放大电路2的输出端与上拉驱动管9的栅极相接。该放大电路为了进一步放大误差信号,减小电路的稳态误差,它常被设计成增益有限,具有高带宽的放大级电路。因此其频率响应对于调节器的整体频率响应影响很小。
功率管3通常是一个P-型或P-沟道MOSFET,PMOS共源级,或与其等价的用于双极型处理技术的P-型或PNP晶体管,现如今趋势为采用PMOS管获取最小电压降,本发明电路中采用PMOS作功率管,其源端接电源,一般由电池提供;漏端输出电压,外接采样网络5、负载电容6、负载电路7;其栅极分别连接上拉驱动管9的源端、下拉驱动管10的漏端,以及采样管11的栅极。这里方便起见,功率管3的栅极电位称为PG。
补偿单元4连接在误差放大器1输出端和放大电路2输入端连接处,对电路进行频率补偿。本发明采用直接对地并联电容的自补偿方式,可以获得更理想的补偿效果。
输出采样网络5包括两个电阻R1和R2。R2上端接LDO电路的输出电压VOUT;下端和R1的上端相连,产生VFB电位,输入到误差放大器的正相输入端;R1的下端直接接地。输出采样网络通过两个电阻分压,采样输出电压VOUT的大小。两个电阻的选择可以采用分离元件,也可以直接在芯片内部制作,通过外部控制信号或EEPROM设置来调节电阻分压比。
负载电容6上端接LDO电路输出电压VOUT;下端直接接地。RESR为电容寄生的串联等效电阻。负载电容用于帮助LDO电路稳定输出,滤除高频噪声,同时完成频率补偿。该电容的选择不宜过大,过大的电容将延迟电路的动态响应,而且还会占用过大的面积。
负载电路7是LDO电路输出电压VOUT供电给另一个电路负载,该电路负载表示为电流负载,即负载电路7。负载电路7直接接VOUT
附加环路中的前馈放大器8,其负向输入端接LDO电路的输出电压VOUT;正向输入端接采样管11的漏端,为采样功率管3上流经的负载电流的采样信号。前馈放大器8同样产生一个误差信号输出,输出连接LDO栅极驱动电路的下拉管10的栅极,形成电路的第二个环路,动态补偿电路,同时改善电路动态性能。
上拉驱动管9位于主环路中,为LDO功率管3的栅极驱动电路的上拉网络,其源极接功率管3栅极;栅极接放大电路2的输出;漏极接电源VDD,也可以直接接入LDO输入电源VIN,或者另外接一个稳定的电源,例如LDO电路功率管的背栅控制电路产生的衬底电位。
下拉驱动管10位于附加环路中,为LDO功率管3的栅极驱动电路的下拉网络。下拉驱动管10的漏极接功率管3的栅极,栅极接前馈放大器8的输出,漏端接地。
采样管11与LDO功率管3并联,它们栅源分别相接,具有相同的VGS,保证了它们的电流大小与器件尺寸成正比,实现了精准采样电流的目的;其漏极连接前馈放大器8的正相输入端。
图3描绘了双环LDO电路中组成第二个环路的前馈放大器AMP2的示例性电路,它具有结构简单,动态补偿LDO电路的特点。前馈放大器8包括第一、第二PMOS管81、82、第一至第三电流源负载83、84和85、共源放大管86和前馈放大器输出级87。前馈放大器8主体部分是电流镜结构作比较,在输出端接了一个共源放大管86作有源负反馈。这样放大器的小信号增益主要由共源放大管86决定,为共源放大增益级。其具体连接为,第一PMOS管81的栅极和漏极相接,下接第一电流源负载83的正端,然后再连接第二PMOS管82的栅极;第一PMOS管81的源极接LDO的输出电压VOUT。第二PMOS管82源端接采样管11的漏端,同时上接第三电流源负载85的负端;漏端连接共源放大管86的栅极,同时连接第二电流源负载84的正端和前馈放大器输出级87的电阻R的上端。第一、第二电流源负载83、84负端都接地。第三电流源负载85的正端接VDD,与上拉驱动管9漏端所接电源相同可直接接入LDO输入电压VIN,或者LDO功率管3的衬底电位。第三电流源负载85是为了保证前馈放大器电路在轻载或空载时仍能正常工作而引入的最小支路电流保障。前馈放大器输出级87包括电阻R3,MOS管电容N1,连接成一阶低通滤波网络,用以过滤掉放大器响应负载阶跃变化时产生的高频扰动。其中MOS电容N1可看作栅极为上极板,源漏为下极板的电容;电阻R3上端接第二PMOS管82的漏极和共源放大管86的栅极,以及第二电流源负载84的正端;电阻R3的下端输出OUT2,同时连接MOS管电容N1管的栅极。MOS管电容N1管的源漏直接接地。图3所示电路中的LDO电路是为了便于说明采样管11连接而列出来的。
图2中,前馈放大器8的工作过程可以分成两部分来看,一部分假设负载电流不变,前馈放大器响应输出电压的变化;另一部分输出电压不变,前馈放大器响应负载电流的变化。当负载电流不变,即前馈放大器8的正向输入端可视为参考基准,输出电压VOUT变化(假设变大),前馈放大器8输出变低,下拉驱动管10下拉能力下降,功率管3栅极电位升高,调节输出VOUT下降,形成负反馈回路稳定输出;当输出电压VOUT不变,即放大器负向输入端可视为参考基准,负载电流ILOAD变化(假设需要变大),放大器输出变高,下拉驱动管10下拉能力增强,功率管3栅极电位下降,调节输出电流ILOAD增加,形成正反馈回路,加速电路的动态响应。以上两部分在实际中是交错参杂、相互影响的。
在现有技术的图1中显示了典型的LDO电路的频率补偿技术,它采用了补偿单元4,与负载电容6一起完成频率补偿功能。在此典型的现有技术的情况下,LDO电路的零极点如下。主极点PO是由负载电容6和LDO功率管3的导通电阻产生,由下式给出:
P O = - 1 2 π ( R DS + R ESR ) C L ≈ - 1 2 π R DS C L ]]>式(1)
误差放大器1和第二级放大器之间的极点如下:
P B = - 1 2 π R EQ C EQ ]]>式(2)
式中,REQ为两级之间连接点的对地等效电阻,一般主要是前一级误差放大器1的输出电阻加上第二级放大器2的输入等效电阻之和;CEQ为该节点的对地等效电容,主要是补偿电容加上第二级的输入电容。
通常极点PB会和主极点PO比较接近,需要补偿来抵消极点的影响。于是,就会在图1所示电路中补偿两个零点,分别为:
Z B = - 1 2 π [ ( 1 / G m ) - R B ] C B ≈ - G m 2 π C B ]]>式(3)
Z ESR ≈ - 1 2 π R ESR C L ]]>式(4)
补偿单元4引入的零点由式(3)给出,其中GM是第二级的等效跨导,CB为补偿采用的电容。与负载电容相关的补偿零点由式4给出,其中CL是负载电容6,RESR是其串联等效电阻。
本申请的图由图2给出,图1中电路对应称为;其他相同结构单元顺次标注。在图2所示的双环结构中,对电路稳定有特别贡献的是快慢两条通路,第一条是与图一所示相同、高增益的慢通路;另一条是本申请中重点说明的低增益快通路。通过快慢两条通路作用,引入一个零点进系统,这就是本申请中双环结构补偿电路的基本原理。其补偿的零点通过图3所示电路计算得到。
R AMP 2 , closed = R OUT , loop 1 + Av , loop ≈ 1 g m 86 ]]>式(5)
Z dual , loop ≈ - 1 2 π [ R 87 + ( 1 / g m 86 ) ] ( C 87 + C 10 ) ]]>式(6)
由式(5)给出的前馈放大器8的输出阻抗为RAMP2.closed,因为8内部具有负反馈回路,因此其增益、输出电阻都只由共源放大管86决定。双环结构补偿的零点由式(6)给出,C87为MOS电容N1,C10为前馈放大器8输出控制的下拉驱动管10的栅极输入电容。实际中引入的应该是一对零-极点,只是零点比极点更靠近坐标原点,通过设置零点在单位增益带宽附近,可以将极点设置在带宽范围外,这样极点对电路的影响就可以忽略。因此,这里就只给出了零点公式。此外,式(6)零点公式中有gm86项,它与采样管11采样的负载电流是有直接关系的,也就是说这里补偿的零点Zdual.loop是动态的补偿系统。通常,采用双环结构的LDO电路的环路频率分析,可以接近单极点稳定系统,相位裕度接近90度。
这里已经在一个实施例的情况下说明了本发明的实现。所说明的实施例提供了一个双环结构的LDO电路,它具有快慢两条负反馈回路,一条是由高增益误差放大器,控制功率管栅极驱动上拉网络,进而控制输出,提供一个稳定电压的慢通路;另一条是由较低增益的放大器,比较输出电压和负载电流的采样信号,控制功率管栅极驱动下拉网络,进而稳定输出的快通路。这两条快慢通路对小信号的响应,会引入一个零点,对系统进行频率补偿。再加上电路另外两处补偿,可以使电路的频率响应接近单极点系统的频率响应,极好地稳定电路。同时通过附加的第二环路还形成了一个正反馈的环路,响应负载的阶跃变化,极大的改善了电路的瞬态响应。同时从大信号讲,当负载或电源阶跃变化时,输出电压会立刻有一个负向的跳变,此时双环电路中快通路首先响应改阶跃变化,然后慢通路也开始调节电路;当响应进行一段时间,快通路的调节效果下降,慢通路将起主要的调节作用,最终由慢通路的高增益实现电路的高精度,即非常低的稳态误差。
在实际的实现电路中,LDO电路还应该包括保护单元和接口元件,例如过温保护,短路电流限制等保护单元。
这些实施例意在说明而不是限制。许多变体、修改、添加和改进都是可能的。

一种双环低压差线性稳压器电路.pdf_第1页
第1页 / 共14页
一种双环低压差线性稳压器电路.pdf_第2页
第2页 / 共14页
一种双环低压差线性稳压器电路.pdf_第3页
第3页 / 共14页
点击查看更多>>
资源描述

《一种双环低压差线性稳压器电路.pdf》由会员分享,可在线阅读,更多相关《一种双环低压差线性稳压器电路.pdf(14页珍藏版)》请在专利查询网上搜索。

本发明公开了一种双环低压差线性稳压器电路,包括误差放大器、第二级放大器、功率管、补偿单元、输出采样网络、负载电容和负载电路、前馈放大器、上拉驱动管、下拉驱动管和采样管。包括两条环路,主环路包括误差放大器、第二放大器、上拉驱动管、功率管和输出采样网络,形成负反馈回路稳定输出电压VOUT。附加环路包括前馈放大器、采样管、下拉驱动管和功率管,该环路参照输出电压,形成负反馈回路,动态补偿电路,进一步稳定输。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 控制;调节


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1