超高纯氮、氧生成装置 本发明涉及采用精馏塔从作为原料的空气中同时生产超高纯氮和超高纯氧的超高纯氮、氧生成装置,特别是涉及用于生产能够用在半导体制造过程的其中杂质氧浓度为10ppb或更低的超高纯氮和纯度达99.999995%或更高的超高纯氧的生成装置。
图3表示日本专利申请公开(KOKAI)公报第296,651/1993号中所述的常规超高纯氮、氧生成装置流程图。图中,标号54、55、56、57、58、53及59分别表示第一精馏塔、第二精馏塔、第三精馏塔、第四精馏塔、氮冷凝器、主换热器及膨胀透平。
原料空气经压缩后其中不含有二氧化碳和水分,之后由主换热器53对原料空气进行冷却。由此将一股原料空气在液化的同时引入第一精馏塔54的塔底54e。进入塔底54e的原料空气的液相部分收集在塔底54e的底部而其中的气相部分沿塔向上流过第一精馏塔54,即依次流经下部精馏段54d、中间精馏段54c及上部精馏段54b以与自上而下流动的主要含有液氮的回流液进行逆流接触。因此,气相中的氧以及沸点高于氧沸点的主要组分(烃类、氪、氙等)被回流液吸收而回流液中的氮和沸点低于氮沸点的主要组分(氖、氢、氦等)被蒸发并释放到气相中。结果,含有低沸点组分地高纯氮气收集在塔顶54a中而含有高沸点组分的富氧液态空气收集在塔底54e中。
将收集在塔顶54a中的高纯氮气引入氮冷凝器58中以对高纯氮气进行冷却并将由此冷凝的高纯液氮再次供入上部精馏段54b作为回流液而其中富集了低沸点组分的不凝性气体从系统中排出。
收集在塔底54e中的一股富氧液态空气进入膨胀阀61并在此降低压力以获得低温的富氧废气,该富氧废气将被引入氮冷凝器58作为冷冻剂。从氮冷凝器58排出的富氧废气进一步进入膨胀透平59,经在主换热器53中换热后排出系统。
在氮冷凝器58中冷凝下来并供入上部精馏段54b的液氮在上部精馏段54b中向下流动时与主要含氮的上升气体进行逆流接触,由于其中残余的低沸点组分被进一步释放出来而获得超高纯度的液氮。该超高纯液氮收集在设于上部精馏段54b与中间精馏段54c之间的储存段54g中。由此可采出一股超高纯液氮,经膨胀透平63降压并经换热之后送到系统外作为超高纯氮气产品,而其余部分的超高纯液氮进一步向下流过中间精馏段54c作为回流液。
将收集在塔底54e中的另一股富氧液态空气加入膨胀阀62使富氧液态空气的压力降低并部分蒸发以获得一气-液混合物,该气-液混合物在第二精馏塔55的精馏段55b的上方供入塔中。该气-液混合物的气相部分收集在塔顶55a中而其中的液相部分向下流过精馏段55b作为回流液,在此它与自下向上流动的气体进行逆流接触以增加其中的氧浓度并释放出低沸点组分,之后该液相部分收集在塔底55c中。在塔底55c中安装有一再沸器71对收集在塔底55c中的液体进行加热以使沸点低于氧沸点的组分(氩、一氧化碳、氮等)与氧一起选择蒸发并上升流过精馏段55b。结果,含有较高沸点组分的液氧收集在塔底55c中而含有氧、氮及较低沸点组分的气体收集在塔顶55a中。它们将分别从塔底部和塔顶部排出系统。
收集在第二精馏塔55的塔底55c中的液位以上的气相中的氧气被送往第三精馏塔56的塔底56c。供入56c中的氧气在上升流经精馏段56b时与回流液(高纯液氧)进行逆流接触,由此高沸点组分被回流液吸收并且回流液中的部分氧同时被蒸发。在第三精馏塔56的塔顶56a安装有一冷凝器81对收集在塔顶56a中的气体(高纯氧)进行冷却和冷凝并将由此冷凝下来的气体送往精馏段56b作为上述的回流液。结果,含有痕量高沸点组分的液氧收集在塔底56c中而含有痕量低沸点组分的高纯氧气收集在塔顶56a中。收集在塔底56c中的含高沸点组分的液氧返回第二精馏塔55的塔底55c。
将收集在塔顶56a中的高纯氧气加入位于第四精馏塔57的上部精馏段57b与下部精馏段57d之间的中间段57c。供入其中的高纯氧气在上升流过上部精馏段57b时与回流液(高纯液氧)进行逆流接触,由此氧气被回流液吸收并且回流液中的低沸点组分同时被蒸发。在第四精馏塔57的塔顶57a中安装有一冷凝器82对收集在塔顶57a中的气体(高纯氧)进行冷却和冷凝并将由此冷凝下来的气体送往精馏段57b作为上述的回流液。另一方面,在塔底57e中安装有一再沸器72对收集在塔底57e中的液体(超高纯液氧)进行加热以使沸点低于氧沸点的组分与氧一起选择蒸发。由此蒸发出的组分上升依次流过下部精馏段57d和上部精馏段57b以与回流液(高纯液氧)进行逆流接触。结果,超高纯液氧收集在塔底57e中而其中富集了低沸点组分的氧气收集在塔顶57a中。收集在塔顶57a中的氧气将从塔顶排出系统而收集在塔底57e中的超高纯液氧将被回收作为产品并送到系统外。
日本专利申请公开(KOKAI)公报第105,088/1986号描述了一种采用双精馏塔生产氮气(99.97%)和超高纯氧气(99.998%)的方法。根据该方法,原料空气被加入到第一精馏塔塔底而在第一精馏塔精馏段下端的上一平衡级上采出的富氧液态空气被送到第二精馏塔的顶部;其中在第一精馏塔的塔顶附近回收富氮气体而在第二精馏塔精馏段下端的上一平衡级上回收超高纯氧气(参考公报的图2)。
虽然在日本专利申请公开(KOKAI)公报第296,651/1993号中所述的装置所具有的优势是能够仅在一个装置内对原料空气进行液化和精馏生产超高纯氮和超高纯氧,但不足之处是需要四个精馏塔且由于安装了多个冷凝器和再沸器使管道系统和操作条件均很复杂。日本专利申请公开(KOKAI)公报第105,088/1986号中所述的方法不能同时制得超高纯氮。
考虑到上述的问题,本发明意在提供一种采用一个简单装置就能够同时生产超高纯氮和超高纯氧的生成装置,其中可仅由一个阀的操作控制超高纯氮和超高纯氧的产量之比。
根据本发明的超高纯氮、氧生成装置包括:
第一精馏塔,沿塔自上而下依次为第一塔塔顶、上部精馏段、上级中间精馏段、下级中间精馏段、下部精馏段及第一塔塔底;
第二精馏塔,它具有第二塔塔顶、上部精馏段、下部精馏段及第二塔塔底;
主换热器,它通过与冷冻剂间接热交换对作为原料的空气进行冷却并将由此冷却的空气在所说的下部精馏段下方供入;
高纯液氮输送管道,它将用于补充冷量的高纯液氮(亦作为回流液)在所说的上部精馏段上方供入;
氮冷凝器,它对进入并收集在第一塔塔顶的高纯氮气进行冷却并将由此冷凝下来的高纯液氮在上部精馏段的上方加入作为回流液并将不凝性气体从系统排出;
使进入并收集在第一塔塔底的富氧液态空气的压力降低并将由此产生的富氧废气加入氮冷凝器作为冷冻剂的第一膨胀阀;
用于输送在氮冷凝器中作为冷冻剂的富氧废气并将富氧废气从氦冷凝器排出到所说的主换热器作为冷冻剂的富氧废气管道;
在上部精馏段与上级中间精馏段之间将部分回流液回收作为超高纯液氮的超高纯氮输送管道;
使在上级中间精馏段与下级中间精馏段之间引入的一股回流液的压力降低并将由此产生的气-液混合物在第二精馏塔上部精馏段的上方加入的第二膨胀阀;
位于第二塔塔底对收集在第二塔塔底的液体进行加热使部分液体蒸发的再沸器;
在下级中间精馏段与下部精馏段之间采出空气并将由此采出的空气送往再沸器作为热源的管道;
设有第四膨胀阀用于将再沸器中作为热源而自身被冷却并液化的空气在下部精馏段上方供入的管道;
将收集在第二塔塔顶的气体排出系统外的废气排放管道;以及
将收集在第二塔塔底的液体回收作为超高纯液氧的超高纯氧输送管道。
在此将对采用本装置同时生产超高纯氮和超高纯氧的方法予以描述。
将在主换热器中通过与冷冻剂进行间接热交换而被冷却的原料空气在第一精馏塔的下部精馏段下方加入塔中。另一方面,用来补充冷量(亦作为回流液)的高纯液氮通过高纯液氮输送管道自系统外在第一精馏塔上部精馏段的上方加入塔中。
所加入的原料空气上升流过第一精馏塔,即依次流过下部精馏段、下级中间精馏段、上级中间精馏段及上部精馏段以与自上而下流动的主要含有液氮的回流液进行逆流接触。由此,气相中的氧和沸点高于氧沸点的主要组分(烃类、氪、氙等)被回流液吸收而回流液中的氮和沸点低于氮沸点的主要组分(氖、氢、氦等)被蒸发并释放到气相中。结果,含有低沸点组分的高纯氮气收集在第一塔塔顶而含有高沸点组分的富氧液态空气收集在第一塔塔底。
将收集在第一塔塔顶的高纯氮气引入氮冷凝器以对高纯氮气进行冷却并将由此冷凝下来的高纯液氮在上部精馏段上方加入塔中再次作为回流液,而其中富集了低沸点组分的不凝性气体从系统排出。
将收集在第一塔塔底的富氧液态空气引入第一膨胀阀,在此使其压力降低以获得低温富氧废气,该富氧废气将被加入氮冷凝器作为冷冻剂。进一步降低在氮冷凝器中用作冷冻剂的富氧废气的压力,之后通过富氧废气管道将其送往主换热器作为冷冻剂对原料空气进行冷却,然后富氧空气从系统排出。
在上部精馏段上方加入作为回流液的高纯氮和在氮冷凝器中冷凝下来的高纯液氮与主要含氮的上升气体进行逆流接触以在它们向下流经上部精馏段时进一步释放出其中残余的低沸点组分。之后它们在上部精馏段和上级中间精馏段之间进入塔中。这样,通过超高纯氮输送管道将一股高纯液氮回收作为超高纯液氮产品,其余部分的高纯液氮向下流经上级中间精馏段作为回流液。进一步在上级中间精馏段和下级中间精馏段之间将一股回流液采出并将其引入第二膨胀阀,而其余部分的回流液向下流过下级中间精馏段和下部精馏段以吸收原料空气中的高沸点组分,之后这部分回流液收集在第一塔塔底。
将进入第二膨胀阀、其中具有已不含高沸点组分的液态空气的回流液的压力降低并由第二膨胀阀使其部分蒸发以获得一气-液混合物,之后将此气-液混合物在第二精馏塔上部精馏段的上方加入塔中。该气-液混合物的气相部分收集在塔顶而其中的液相部分向下流过精馏段作为回流液以通过与自下而上流动的气体逆流接触释放出低沸点组分并增加氧浓度,之后回流液收集在塔底。在塔底安装有一再沸器,用来对收集在塔底的液体进行加热以使沸点低于氧沸点的组分(氩、一氧化碳、氮等)与氧一起选择蒸发,由此蒸发出的组分上升流过精馏段。结果,含有沸点低于氧沸点的组分的氮气收集在塔顶并通过废气管道从塔顶排出系统而超高纯液氧收集在塔底并通过超高纯氧输送管道回收作为产品。
在上述的装置中,经高纯液氮输送管道自系统外引入的高纯液氮(回流液)的冷量用作为装置操作所必需的冷源。但是也可以在该系统中产生冷量代替这一冷源,在此情形下须安装一膨胀透平。该膨胀透平使在氮冷凝器中用作冷冻剂之后从氮冷凝器排出的富氧废气的压力降低以降低富氧废气的温度,其后将该富氧废气送往上述的主换热器作为冷冻剂对原料空气进行冷却。
通过安装第三膨胀阀亦能够将超高纯液氮的冷量回收。在此情形下,经所说的超高纯氮输送管道将超高纯液氮引入第三膨胀阀以使超高纯液氮的压力降低并将由此产生的处于气-液混合态的低温超高纯氮气在上述的氮冷凝器中作为一股冷冻剂,之后将超高纯氮气送到系统外作为产品。
此外,原料空气还可以作为安装在第二精馏塔塔底的再沸器的热源。此时,将从下级中间精馏段和下部精馏段之间来的一股原料空气引入再沸器作为热源。经第四膨胀阀降低压力后冷却并冷凝的原料空气在所说的第二精馏塔的上部精馏段与下部精馏段之间返回塔中。
进一步,为了调节流经第一精馏塔下部精馏段的回流液量,安装有一流量调节阀。通过该流量调节阀在下级中间精馏段与下部精馏段之间采出一股回流液并将采出的回流液直接加入第一塔塔底。通过调节流经下部精馏段的回流液量能够对加入第二精馏塔的液态空气中的氧浓度进行调节。
图1表示基于本发明的超高纯氮、氧生成装置的一个实施例的流程图。图中,标号5表示主换热器、6表示第一精馏塔、7表示第二精馏塔、8表示氮冷凝器、11表示第一塔塔顶、12表示上部精馏段、13表示上级中间精馏段、14表示下级中间精馏段、15表示下部精馏段、16表示第一塔塔底、21表示第二塔塔顶、22表示上部精馏段、23表示下部精馏段、24表示第二塔塔底、25表示再沸器、31表示第一膨胀阀、32表示第二膨胀阀、33表示第三膨胀阀、34表示第四膨胀阀、35表示第五膨胀阀、40表示绝热箱、60表示流量调节阀、100表示高纯液氮输送管道、109表示超高纯氮输送管道、110表示超高纯液氧输送管道、117表示富氧废气管道,118表示废气管道。
第一精馏塔沿塔自上而下依次为第一塔塔顶11、上部精馏段12、上级中间精馏段13、下级中间精馏段14、下部精馏段15和第一塔塔底16。此外,在上部精馏段12上方还设有一储存回流液的储存段17,在上部精馏段12与上级中间精馏段13之间有一储存回流液的上级中间储存段18,在上级中间精馏段13与下级中间精馏段14之间有一储存回流液的下级中间储存段19,在下级中间精馏段14与下部精馏段15之间有一储存回流液的下部储存段20,以及将一股来自所说的下部储存段20的回流液直接加入塔底16对流经下部精馏段15的回流液量进行调节的流量调节阀60。第二精馏塔7具有第二塔塔顶21、上部精馏段22、下部精馏段23及第二塔塔底24。主换热器5中的一个原料空气通道经管道105与第一塔塔底16相连。用于输送从系统外来的补充冷量的高纯液氮(亦作为回流液)的高纯液氮输送管100与上部储存段17相连。
氮冷凝器8的进料侧通过管道106与第一塔塔顶11的顶部相连,排料侧通过管道107及高纯液氮输送管道100与上部储存段17相连。氮冷凝器8的排料侧进一步还与用来将不凝性气体通过一气液分离器(未示出)排出系统的管道119相连。氮冷凝器8的第一冷冻剂进料口通过管道108与第一塔塔底16的底部相连,在所说的管道108上设有第一膨胀阀31。氮冷凝器8的第一冷冻剂排出口通过管道上设有第五膨胀阀35的富氧废气管道117与主换热器5相连。氮冷凝器8的第二冷冻剂进料口通过超高纯氮输送管道109与上级中间储存段18相连,在所说的超高纯氮输送管道109上设有第三膨胀阀33。氮冷凝器8的第二冷冻剂排料口通过管道111与主换热器5相连。
下级中间储存段19通过管道114与第二精馏塔7的精馏段22的上方相连,在所说的管道114上设有第二膨胀阀32。在第二塔塔底24中安装有再沸器25。所说的再沸器25的热介质进口通过管道115在下级中间精馏段14与下部精馏段15之间与塔体相连,而热介质出口通过管道116与第二塔中部26相连。第二塔塔顶21的顶部通过废气管道118与富氧废气管道117相连。超高纯液氧输送管道110与第二塔塔底24相连。
此外,第一精馏塔6、第二精馏塔7、氮冷凝器8、主换热器5以及与之相连的管道、阀门均设置在绝热箱40中。
在此对采用本装置生产超高纯氮和超高纯氧的方法予以描述。
原料空气经过滤机(未示出)除尘后由压缩机1将其压缩到压力约为8.4kg/cm2G。其后依次进行如下过程:在一装有氧化催化剂的一氧化碳/氢转化器2中将原料空气中所含有的氢、一氧化碳及烃类氧化;由冷冻机3将原料空气冷却,之后由脱二氧化碳/干燥装置4a或4b将二氧化碳和水分从原料空气中除去。此后,在主换热器5中通过与冷冻剂间接热交换将原料空气冷却到温度约-167℃并在原料空气部分液化时将原料空气通过管道105供给第一精馏塔6下部精馏段15的下方。另一方面,通过高纯液氮输送管道100将用来补充冷量的高纯液氮(亦作为回流液)从系统外部加入设在第一精馏塔6上部精馏段12上方的上部储存段17中。
加入第一精馏塔6的原料空气的液相部分收集在第一塔塔底16的底部,而其中的气相部分上升流过第一精馏塔6,即依次流经下部精馏段15、下级中间精馏段14、上级中间精馏段13及上部精馏段12以与自上而下流动的主要含有液氮的回流液逆流接触。由此,气相中的氧及沸点高于氧沸点的主要组分(甲烷、氪、氙等)溶解到回流液中而回流液中的氮及沸点低于氮沸点的组分(氖、氢、氦等)被蒸发并释放到气相中。结果,含有低沸点组分的高纯氮气收集在第一塔塔顶11而含有高沸点组分的富氧液态空气收集在第一塔塔底16。
将所有收集在第一塔塔顶11中含低沸点组分的高纯氮气经管道106引入氮冷凝器8以与冷冻剂间接热交换将高纯氮气冷却。由此冷凝下来的高纯液氮经管道107及高纯液氮输送管道100返回到上部精馏段12上方的上部储存段17作为回流液,而其中富集了低沸点组分的不凝性气体经管道119从系统排出。
将收集在第一塔塔底16的底部的一股温度约-168℃的富氧液态空气经管道108加入第一膨胀阀31使其压力降低到约3kg/cm2G并将其送往氮冷凝器8作为冷冻剂。由膨胀阀35将此处所用的温度约-175℃的富氧废气的压力进一步降低到约0.3kg/cm2G并将此富氧废气经富氧废气管道117加入主换热器5作为冷冻剂对原料空气进行冷却。在富氧废气进一步用作脱二氧化碳/干燥装置4a或4b的再生气之后将其从系统排出。
加入上部精馏段12上方的上部储存段17的高纯液氮以及在氮冷凝器8中冷凝下来的高纯液氮在向下流经上部精馏段12时与主要含氮的上升气体逆流接触获得超高纯液氮并进一步释放出其中残余的低沸点组分。该超高纯液氮收集在设于上部精馏段12与上级中间精馏段13之间的上部储存段18中。经超高纯氮输送管道109从上部储存段18采出一股超高纯液氮并将其加入第三膨胀阀33,上部储存段18中的其余超高纯液氮进一步作为回流液向下流过上级中间精馏段13。第三膨胀阀33使所加入的超高纯液氮的压力降低以获得压力约6.8kg/cm2G、温度约-173℃气液混合态的超高纯氮气并将所得的超高纯氮气加入氮冷凝器8作为一股上述的冷冻剂。将从氮冷凝器8采出的超高纯氮气经管道111进一步引入主换热器5作为一股冷冻剂对原料空气进行冷却。之后,将其经管道113从系统排出作为超高纯氮气产品。
收集在设于上级中间精馏段13与下级中间精馏段14之间的下级中间储存段19、其中已获得不含高沸点组分的液态空气的一股回流液进一步向下流经下部精馏段14将原料空气中的高沸点组分吸收之后收集在第一塔塔顶16,而其余部分的回流液经管道114采出并加入第二膨胀阀32。将引入第二膨胀阀32的回流液的压力降低到约0.3kg/cm2G并使其部分蒸发以获得温度约-190℃的气液混合物,该气-液混合物在第二精馏塔7上部精馏段22的上方进入塔中。该气-液混合物的气相部分收集在第二塔塔顶21而其中的液相部分作为回流液向下流过上部精馏段22以与自下上升的气体逆流接触释放出低沸点组分并增加氧的浓度。之后该液相部分收集在第二塔塔底24。在第二塔塔底24安装有一再沸器25,经管道115将从第一塔下级中间精馏段14和第一塔下部精馏段15之间来的其中不含高沸点组分如甲烷的原料空气加入再沸器25作为热源以对收集在第二塔塔底24的液体进行加热使沸点低于氧沸点的组分(氩、一氧化碳、氮等)与氧一起选择蒸发,由此蒸发出的组分上升流过下部精馏段23与上部精馏段22。此外,在再沸器25中作为热源的原料空气被冷凝并经管道116采出之后进入第四膨胀阀34,在此将原料空气的压力降低到约0.3kg/cm2G,并将原料空气在上部精馏段22与下部精馏段23之间加入塔中。
结果,含有沸点低于氧沸点的组分的氮气收集在第二塔塔顶21而超高纯液氧收集在第二塔塔底24。收集在第二塔塔顶21的氮气从塔顶出去经废气管道118与富氧废气管道117相连之后进入主换热器5作为冷冻剂,而收集在第二塔塔底24的超高纯液氧经超高纯氧输送管道110回收作为产品。
图2表示基于本发明的超高纯氮、氧生成装置的另一个实施例的流程图。图中,标号50表示一膨胀透平。在该实施例中,膨胀透平50的进料侧经管道121与设在主换热器5上的富氧废气采出口相连,排料侧经管道122与主换热器5的冷冻剂进口相连。此外,本装置不设从系统外将作为冷源(亦作为回流液)的高纯液氮加入第一精馏塔的管道(对应于图1中的管道100)并且废气管道118与管道122相连。除了这些不同点之外,本实施例的装置与图1中所述的装置的结构相同。
将收集在第一塔塔底16底部的温度约-168℃的一股富氧液态空气经管道108引入第一膨胀阀31使其压力降低到约3.2kg/cm2G之后将富氧液态空气加入氮冷凝器8作为冷冻剂。在将此处所用的温度约为-175℃的富氧废气经富氧废气管道117引入主换热器5后,从主换热器5中,采出温度约-150℃的富氧废气并经管道121将其加入膨胀透平50。通过蒸汽透平50将其压力降低到约0.3kg/cm2G、温度降低到约-180℃的富氧废气经管道122再次加入主换热器5用来对原料空气进行冷却。由于安装了膨胀透平50,有可能在系统中提供本装置操作所必需的冷量,因此不需要从系统外部加入补充冷量用(亦作为回流液)的高纯液氮。
通过直接将从位于下级中间精馏段14和下部精馏段15之间的下部储存段20中采出的一股回流液经流量调节阀60加入第一塔塔底16,可以对流经下部精馏段15的回流液量进行调节,结果,经管道115加入第二精馏塔7的原料空气不含诸如甲烷的高沸点组分并且同时能够通过调节氧浓度对作为产品的超高纯液氧的产量进行调节。
在基于本发明的装置中,第一精馏塔内部精馏段被分成四段,其中超高纯液氮在上部精馏段与上级中间精馏段之间得以回收。在上级中间精馏段和下级中间精馏段之间回收的不含高沸点组分的液态空气经膨胀阀降低压力后在第二精馏塔精馏段上方进入塔中,而在第一精馏塔的下级中间精馏段和下部精馏段之间回收的不含高沸点组分的气态空气在不改变压力下进入第二精馏塔的再沸器作为再沸器的热源,由此,储存在第二精馏塔塔底的超高纯液氧中的氧及沸点低于氧沸点的组分被蒸发并与第二精馏塔精馏段中的回流液进行气-液逆流接触将低沸点组分分离出去。将作为再沸器热源的气态空气冷却、液化、从再沸器排出并由膨胀阀降低压力后,在第二精馏塔的上部精馏段与下部精馏段之间加入塔中以增加在第二精馏塔中所产生的超高纯液氧的原料量及回流液量。借助于安装在同一下部精馏段之间的流量调节阀改变向下流过第一精馏塔的下部精馏段的回流液量,可以改变超高纯氮与超高纯氧的比例。由于上述的结构,能够由包括两个精馏塔的相对简单的装置高效地同时生产超高纯氮气和超高纯液氧。
图1表示基于本发明的超高纯氮、氧生成装置的一个实施例;
图2表示基于本发明的超高纯氮、氧生成装置的另一实施例;
图3表示现有技术的超高纯氮、氧生成装置的一个实施例。
标号:1:压缩机 2:一氧化碳/氢转化器3:冷冻机 4a,4b:脱二氧化碳/干燥塔5:主换热器 6:第一精馏塔7:第二精馏塔 8:氮冷凝器11:第一塔塔顶 12:上部精馏段13:上级中间精馏段 14:下级中间精馏段15:下部精馏段 16:第一塔塔底21:第二塔塔顶 22:上部精馏段23:下部精馏段 24:第二塔塔底25:再沸器 31:第一膨胀阀32:第二膨胀阀 33:第三膨胀阀34:第四膨胀阀 35:第五膨胀阀40:绝热箱 50:膨胀透平60:流量调节阀 100:高纯液氮输送管道109:超高纯氮输送管道110:超高纯液氧输送管道。