空气分离 本发明涉及一种分离空气的方法和装置。
工业上用于分离空气的最重要方法是通过精馏。在这种方法中,典型地包括以下步骤:在包括高压精馏塔和低压精馏塔的双精馏塔的高压塔中压缩并提纯空气,分馏被压缩,净化了空气;通过用低压塔中分离的富氧流体间接热交换,冷凝高压精馏塔中分离的氮蒸气;用所得第一冷凝物流作为高压精馏塔中的回流,用所得第二冷凝物流作为低压精馏塔中的回流;从高压精馏塔中排出富氧液体空气流,将富氧的气态空气流引入低压精馏塔,并在此将该富氧的气态空气流分离成富氧和富氮馏分。
进行空气提纯以去除相对低挥发性的杂质,特别是水蒸汽和二氧化碳。如需要也可去除烃。
典型地使从高压精馏塔中排出的富氧液态空气至少部分完全气化,以形成引入低压精馏塔的气态富氧空气。
局部最大氩浓度产生在引入气态富氧空气流的水平面之下的低压精馏塔的中间水平面处。如要生产氩产品,从低于气态富氧空气入口的低压精馏塔附近取出富氩氧气流,此处氩浓度典型地在5至15%(vol)的范围内,将富氩氧气流引入副精馏塔底部,在此分离出氩产品。副精馏塔的回流由该塔前面地冷凝器提供。该冷凝器由从高压精馏塔排出的部分或所有富氧液态空气冷却,从而该富氧液态空气被气化。这种方法例如在EP-A-377,117中说明了。
从空气中分离氩产品的副精馏塔的此种部署趋于降低低压精馏塔的热力学的效率。此热力学效率的降低不仅趋于增加该方法的总能耗,在一定情况下还可导致氩和氧产品之一或两者的回收(即收率)下降。这些情况包括要求这些精馏塔除分离第一气态进料空气流之外还分离第二液态进料空气流。当氧产品以液态从低压精馏塔排出加压,并通过热交换用加入的空气气化以形成升压的气态氧产品时,需要此第二液态空气流。液态空气进料还典型地用于低压精馏塔的氧和氮产品之一或两者以液态取出的情况中。
本发明的目的是提供一种能使上述问题,或至少之一得到改善的方法和装置
根据本发明,提供一种空气分离方法,包括使用含高压精馏塔和低压精馏塔的双精馏塔以将压缩空气流分离成富氧馏分和富氮馏分,和一副精馏塔从由低压精馏塔的中间出口排出的富氩氧气蒸汽流中分离氩馏分,其中将富氧液态空气流从高压精馏塔中取出,通过位于所述中间出口之上的入口将气态富氧空气流引入低压精馏塔,其特征在于至少部分所述富氧液态空气流在高压精馏塔底部压力和低压精馏塔所述入口压力之间的一压力下部分地再沸腾和分离,从而形成进一步富含氧的液态空气流和贫氧的蒸气,用从所述中间出口至所述入口延伸的低压精馏塔区域排出的蒸气流或从副精馏塔的中间区域排出的蒸气流间接热交换实现所述部分再沸腾,使所述进一步富集的液体至少之一流气化以形成部分或所有所述气态富氧空气流,冷凝贫氧蒸气流,和将至少部分冷凝的贫氧蒸气引入低精馏塔或作为产品取出。
本发明还提供一种空气分离装置,包括含高压精馏塔和低压精馏塔的双精馏塔用于将压缩空气流分离成富氧馏分和富氮馏分,和一副精馏塔用于分离从低压精馏塔中间出口排出的富氩氧蒸气,其中高压精馏塔有一富氧液态空气流出口,低压精馏塔有一位于所述中间出口之上的富氧气态空气流入口,其特征在于该设备还包括用于在高压精馏塔底部压力和低压精馏塔的所述入口压力之间的一压力下使所述富氧液态空气流部分再沸腾的再沸腾器和使之至少部分分离的容器,从而形成进一步富含氧的液态空气流和贫氧蒸气;用于使所述进一步富氧的液态空气流气化以形成加入到低压精馏塔的部分或所有气态富氧空气进料的热交换器,和用于冷凝贫氧蒸气流的冷凝器,有一冷凝液出口与低压精馏塔的另一入口或与产品收集容器相连;和所述再沸腾器有热交换通道与从所述中间入口至所述富氩氧蒸气出口延伸的低压精馏塔区域的出口或所述副精馏塔中间区域的出口相连。
本发明的方法和装置与可比的常规方法和装置相比,可降低总能耗、增加氩的产率和增加富氧馏分的产率。改善的程度趋于大于高压精馏塔接收部分液态压缩空气流的方法和装置。本发明方法和装置取得这些优点的能力取决于富氧液态空气流的部分再沸腾及其分离形成贫氧蒸气,和该蒸气的冷凝以形成的用于提供在低压精馏塔的所述区域中比可比的常规方法和装置中高的回流比的液体。
通常将冷凝的贫氧蒸气引入低压精馏塔。但如果在本发明方法和装置的一实施例中,该贫氧蒸气是产品纯的氮,则该冷凝的贫氧蒸气可优先于典型地在高压精馏塔顶部形成的部分氮蒸气直接作为产品。因此,在这种实施例中,可用更大比例的高压精馏塔中分离的氮蒸气(其冷凝下流)作为低压精馏塔中的回流。从而,即使在此实施例中,低压精馏塔从富氩氧蒸气中间出口至富氧空气蒸气入口间延伸的区域中回流比也可增加。
本文中所用术语“精馏塔”意指蒸馏或分馏塔、一个或多个区,即液相和气相在其证逆流接触以实现流体混合物分离的接触塔,一个或多个区,例如通过气相和液相在安装在该塔中的一个或多个区中的填料上或一系列垂直间隔的塔盘或塔板上接触。一个精馏塔可包括在分开的容器中的多个区,例如在这样的情况下如果所有塔盘,塔板或填料均装在单个容器中,所得精馏塔的高度则可能不希望地太高。例如,已知在氩精馏塔中包括的填料高度总计达200理论板。如果所有这些填料均包括在一个容器中,典型地该容器可有超过50m的高度。因此,要将该氩精馏塔构造成两个分开的容器,以避免不能不应用单个不期望地高的容器。
优选与所述部分富氧液态空气间接热交换的所述蒸气流与富氩氧气流组成相同,从而从由富氩氧气流的中间出口至富氧气态空气流间延伸的区间的底部取出。因此,装置的组成比热交换物流从所述区域中间位置取出的简单,一般在富氧液态空气流的再沸器和贫氧蒸气的冷凝器中能得到更便利的温差。但从所述区域的中间位置取热交换物流也有优点,即该物流的量可能较大。
优选使总的富氧液态空气流部分地再沸腾。该富氧液态空气流优选为与从低压精馏塔的所述区域排出的蒸气流热交换的过冷的上游。
富氧液态空气流可以是完成进一步富集的液体与贫氧蒸气的分离的容器的部分再沸的上游。或者,完成此再沸的再沸器可位于此容器中。使进一步富集的液体与贫氧蒸气分离的容器可简单地为相分离器。在本发明方法和装置的此种实施例中,贫氧蒸气仍含有一些氧而不是产品纯的氮。因此,优选进行进一步富集的液体与贫氧蒸气分离的容器本身是另一个有足够的液-气接触元件(例如塔盘、塔板或填料)以能生产产品纯氮的精馏塔。
优先使进一步富集的液体流通过例如节流阀减压,再与贫氧蒸气间接热交换以冷凝该蒸气。在此容器形成另一个精馏塔的情况下,将部分冷凝液返回完成贫氧蒸气与进一步富集液体的分离的容器。从而为此精馏塔提供回流。
优选使其余的进一步富集的液流减压而用于冷凝富氩蒸气。富氩蒸气的冷凝温度由副塔顶部压力和富氩蒸气的组成确定。如果用进一步富集的液体冷凝富氩蒸气,则必须选择副塔顶部的压力以确保与富氩蒸气热交换的减压的进一步富集的液态空气流和富氩蒸气本身之间有适当的温差。仅部分地再沸部分富氧液态空气流而用另一部分冷凝富氩蒸气在本发明的范围内。用减压的、进一步富集的单一液流冷凝贫氧蒸气和富氩蒸气也在本发明的范围内。在这种实施例中,进一步富集的蒸气的冷凝可在氩蒸气冷凝的上游或下游完成。根据本发明,贫氧蒸气或富氩蒸气或两者的冷凝中形成的进一步富集的液体的蒸气,形成通过所述入口引入低压精馏塔的气态富氧空气。
如果双精馏塔是那种附有冷凝器-再沸器用于通过低压精馏塔分离的富氧液体的间接热交换冷凝高压精馏塔分离的氮蒸气的,则本发明的方法和装置特别适用。这样,该冷凝器-再沸器能为高压精馏塔和低压精馏塔提供回流。在本发明的方法和装置中,低压精馏塔优选在1.2至1.5bar的塔顶压力下操作。
本发明的方法和装置可有其它的常规特征。例如,用于分离的压缩空气流优选通过吸附提纯以除去低挥发性杂质,特别是水蒸汽和二氧化碳。典型地将气态的压缩、提纯的第一空气流和液态的压缩、提纯的第二空气流引入高压精馏塔。如需要,可将液态的压缩、提纯的第三空气流引入低压精馏塔,在进一步富集的液体与贫氧蒸气的分离在一精馏塔中进行的实施例中,可将压缩、提纯的第四空气流以液态加入此另外的精馏塔中。将来自膨胀透平的气态的提纯的第五空气流引入低压精馏塔也在本发明的范围内。
本发明的方法和装置可用于生产仅为气态的氧和氮产品,或者可生产一些液态的氧和氮产品。
如需要生产气态氧产品,可作为蒸气从低压精馏塔排出,或可作为液体取出并再升压下气化。如要液态氧和氮产品,或者如要通过从低压精馏塔排出液体氧、使之加压和气化生产气态氧产品,则典型地需要生产液态空气和利用一种或多种压缩、提纯的第二、第三和第四空气流。当生产这种液态空气时,本发明方法和装置的优点趋于更显著。
典型地通过在一个或多个膨胀透平中膨胀压缩,提纯的空气或升压的氮气流,来满足本发明方法和装置的致冷要求。
优选通过用从低压精馏塔取出的物流间接热交换将空气流转化成气态或液态。
以下参考附图通过实施例描述本发明的方法和装置,其中:
图1为构成部分空气分离装置的精馏塔的布置的示意流程图;
图2为用于生产加入图1中所示空气分离装置部分的进料物料的热交换器及辅助装置的示意流程图;
图3为说明本发明方法的一个实施例中低压精馏操作的示意McCabe-Thiele图;
图4为说明在可比的传统装置中低压精馏塔的操作的类似McCabe-Thiele图;
图5为构成空气分离装置的一部分的精馏塔的另一种布置的示意流程图;
图6为构成空气分离装置的一部分的精馏塔的再一种布置的示意流程图;
这些图不按比例。
参考图1,气态第一空气流通过入口2加入高压精馏塔4的底部,高压精馏塔4通过冷凝器-再沸器8与低压精馏塔6热关联。高压精馏塔4和低压精馏塔6一起构成双精馏塔10。高压精馏塔4含有塔板、塔盘或填料形成的液-气接触装置12。装置12使上升的气相与下降的液相密切接触从而在两相间发生传质。从而,上升的蒸气渐进地富集氮,提纯的空气的三种主要组分(氮、氧和氩)中最易挥发的组分,下降的液体逐渐地富集氧,所述的氧是三种组份中最不易挥发的。
压缩、提纯的第二空气流通过入口14以液态加入高压精馏塔4,入口14典型地设置在一水平面上,以致其下的塔或塔盘数或填料高度相当于几个理论板(例如,约5)。
高压精馏塔4中包括足够高度的填料或足够数量的塔板或塔盘,以致必要纯度的氮气从塔4顶部流出进入冷凝器-再沸器8,在此冷凝。
部分所得冷凝液作为回流返回高压精馏塔4。富氧液体(典型地含约38%(vol)的氧)通过出口16从高压精馏塔14的底部排出。该富氧液态空气流通过热交换器18的一部分被过冷却。过冷的富氧液态空气流通过节流阀20减压。所得减压的液流通过再沸器22的再沸通道部分地再沸腾。由于氮比氧易挥发,此部分再沸导致形成贫氧蒸气和进一步富集氧蒸气的液体。所得的进一步富氧液体和贫氧蒸气的混合物通过入口26流入另一精馏塔24。精馏塔24包括液-气接触装置28,其导致上升的气相和下降的液相间密切接触从而在上升的气相和下降的液相间发生传质。因此,随着气相在精馏塔24中上升,其氧含量进一步降低。在精馏塔24中一般包括足够高的填料或足够数量的塔盘或塔板,以致在塔顶蒸气是基本上纯的氮。该蒸气流入冷凝器30在此被冷凝。所得冷凝液部分用作此进一步精馏塔24中的回流。
冷凝器一再沸器8中形成的冷凝液流通过热交换器18的一部分被过冷却,通过节流阀32减压,再通过入口34进入低压精馏塔6顶部。氮冷凝液流取自冷凝器30,通过热交换器18的一部分被过冷却,再通过节流阀36减压。所得减压液态氮与通过入口34引入低压精馏塔6的液流混合,该混合发生在节流阀32的下游。通过入口34引入低压精馏塔6的液态氮为塔6提供回流。
进一步富氧的液态空气流(进一步富集的液态空气)通过出口38从进一步的精馏塔24底部排出。将此进一步富集的液态空气流(含约40%(vol)氧)分成三子流。(虽然图1中未示出,但如需要,该进一步富集的液态空气流可以是其化分成三个子流的过冷的上游。)该子流之一流过节流阀40,再通过在塔中间的入口42进入低压精馏塔6。该进一步富集的液体之第二子流通过节流阀44以使其压力减至比低压精馏塔6的压力稍高一点,再通过冷凝器30以便为其中氮蒸气的冷凝提供必要的冷量。从而该进一步富集的第二液态空气流或者部分或者全部气化。所得流体通过位于入口42之下的另一个中间入口44流入低压精馏塔6。进一步富集液体之第三子流通过节流阀48减压至比低压精馏塔6的操作压力稍高一点。该减压的,进一步富集液体之第三子流用于为与分离氩的副塔52顶部相连的冷凝器50提供冷量。副塔52的操作将在下面描述。从而该减压的进一步富集的液体空气流气化,所得蒸气与通过入口46加入精馏塔6的气化的进一步富集液体的第二子流上游合并。
如需要,液态的、压缩、提纯的空气的第三流可通过热交换器18过冷却,通过节流阀54减压至低压精馏塔6的操作压力,再通过位于入口42之上的另一个中间入口56进入塔6。虽然图1中未示出,但也可使压缩提纯空气的第四流在热交换器18中过冷,减压至进一步精馏塔24的操作压力,再在其中间的物质交换位置加入塔24。在附图1中所示装置的另一些实施例中,可将气态的压缩,提纯空气的第五流通过入口58加入低压精馏塔6,入口58典型地,但未必与入口56在同一水平面。
加入低压精馏塔6的各空气流在其中分离,在塔6底部形成优选含小于0.5%(vol)杂质(更优选小于0.1%(vol)杂质)的氧产品,在塔顶形成含小于0.1%(vol)杂质的氮产品。上升的气相与下降的液相在液一气接触装置60上接触实现分离,接触装置60优选为填料(特别是结构填料),也可是塔板或塔盘。低压精馏塔6的底部冷凝氮在再沸器-冷凝器8中使液态氧沸腾产生上升蒸气。液态氧产品通过出品62用泵64从精馏塔6底部排出。另外或者,氧产品可以气态通过另一出口(未示出)排出。氮产品通过出口66从精馏塔6顶部排出,再与被过冷的流体呈逆流热交换通过热交换器18。
在从中间出口70至中间入口46间延伸的低压精馏塔6的区域68中产生局部最大氩浓度。富氩气流从出口70排出,分成两个子流。一个子流通过入口72加入副精馏塔52的底部。另一富氩子流在再沸器22中与减压的富氧液态空气流进行间接热交换,从而实现该液态空气的再沸,而其本身冷凝。如需要,用于再沸器22的富氩气流可不从低压精馏塔6的区域68底部的出口70取出,而从该区域的中间部位取出。
通过入口72加入精馏塔52底部的富氩氧气从中分离出氩产品。塔52含有液-气接触装置74,以在上升气相和下降液相间实现密切接触,从而传质。下降的液相由操作冷凝器50冷凝取自塔顶的氩产生。部分冷凝液作为回流返回塔52顶部;另一部分作为液态氩产品通过出口76排出。如果氩产品含有大于1%(vol)的氧,液-气接触元件74可包括填料,典型地是低压降结构填料,或塔板或塔盘以实现此分离。但如果要求低浓度氧的氩,通常使用低压降填料以确保氩塔顶部压力是这样的,以使氩的冷凝温度高于用于冷却冷凝器50的流体的温度。
不纯的液体氧流通过出口78从副精馏塔52底部排出,由泵80通过入口82通至精馏塔6的与富氩氧气流通过出口70排至相同的部位。
在操作图1中所示部分装置的典型实施例中,低压精馏塔6在塔顶压力约1.3bar下操作,高压精馏塔4在塔顶压力约5.2bar下操作;副精馏塔52在塔顶压力近似1.2bar的压力下操作,进一步精馏塔24在塔顶压力近似2.9bar的压力下操作。
参考附图2,示出空气分离装置的另一部分,其中形成用于图1中所示装置部分的空气流。参考图2,空气流在第一压缩机100中压缩。压缩机100有一水冷却器(示出)与之相连,以除去压缩空气的压缩热。压缩机100的下游空气流通过提纯装置102以去除水蒸汽和二氧化碳。装置102采用吸附床(未示出)实现水蒸汽和二氧化碳的去除。这些床相互间不顺序操作,以致当一个或多个床提纯压缩的空气流时,其余的能够例如通过吹扫热氮流再生。这种提纯装置及其操作为本领域公知,不需进一步描述。
提纯的空气流分为两个子流。第一提纯空气子流从热端106至冷端108流过主热交换器104,而被冷却至接近其露点。所得冷却的空气流构成图1所示部分装置中通过入口2加入高压精馏塔4的第一空气流的一部分。
再参考图2,提纯的压缩空气的第二子流在附有水冷却器以去除压缩热的压缩机110中进一步压缩。进一步压缩的空气流分成两部分。一部分从热端106至中间部位通过主热交换器104冷却而从中排出。该冷却的,进一步压缩的空气流用膨胀透平112膨胀,而形成图1所示部分装置中通过入口58加入低压精馏塔6的第五空气流。再参考图2,取自压缩机110的压缩空气流的第二部分在附有水冷却器以去除压缩热的压缩机114中进一步压缩。此进一步压缩的空气流本身分成两个子流。一子流从热端106至冷端108流过主热交换器104。所得进一步压缩空气流通过节流阀116,得到的液态空气流用于形成参考图1所述的第二、第三和第四空气流。
再参考图2,在压缩机114中进一步压缩的空气的第二子流在第二膨胀透平118中膨胀。所得膨胀的空气流在中间热交换区引入主热交换器104,而流至热交换器104的冷端108。所得空气流形成参考图1所述的第一空气流的其余部分。
图1所示部分装置中由泵64加压的液态氧流与空气流呈逆流地流过主热交换器104,与空气流间接换热而气化。此外,氮产品流从图1中所示部分设备的热交换器18中取出,通过热交换器104与空气流逆流换热升至室温。
图3是说明图1中所示低压精馏塔6的操作的McCabe-Thiele图。在此实施例中,各精馏塔的操作压力如上面参考图1所描述的。未供给第三和第四空气流。第一空气流速与第二空气流速之比为1.7∶1。
图4是说明可比的传统装置的低压精馏塔的操作的McCabe-Thiele图。该传统装置中第一空气流速与第二空气流速之比与图3说明的装置中的相同。在传统设备中,未使用进一步精馏塔24,用富氧液态空气的一部分冷凝氩塔。所得气化的富氧液态空气加入低压精馏塔。副精馏塔的操作使图4中所示McCabe-Thiele图中的操作线在低压精馏塔的区域AB中相对地远离平衡线(区域AB即从排出富氩氧蒸气的A点至引入富氧蒸气的B点间延伸的区域)。类似地在A点之下及A点之上,图4中的操作线也相对地远离平衡线。
参考图3,部分冷凝的贫氧蒸气从冷凝器30通至低压精馏塔6增加了精馏塔;6的相应区域AB的回流比。因此,图3中的线AB比图4中更接近平衡线。而且,A点以下的操作线部分也类似更接近平衡线。因此,图3中说明的低压精馏塔的区域AB中比图4说明的低压精馏塔中需要较多一点的理论板。类似地,图3中说明的低压精馏塔中A点以下的区域中也需要较多一点的理论板。从这两个图中还可注意到:基于图3的方法在低压精塔顶部有更合适的回流比。该增强的回流条件能增加氧的回收,或节省能量,或二优点结合。
典型地,氩的回收可改善多于10%,例如从80%至90%。如果将此利益看作是节能,则通过入口58引入低压精馏塔6的进料空气的比例可增加约6%,表示主空气压机消耗的能量节省约4.5%。
一般地,当冷凝器-再沸器8为热虹吸管式而不是降液再沸式,氩塔入口压力与富氩氧蒸气从低压精馏塔中取出的压力相同而不是比之低时,可得到本发明方法的最大优点。
图1和2中所示的装置可作各种改变和修改,如下所述。优选地,加入膨胀透平118中的空气在主热交换器104中预冷,以致此空气在低于环境温度下进入透平118。装置的所有氧产品可用泵64(此情况下其不是加压泵)排出、过冷再加入储罐(未示出)。可从液态氧贮罐中放出一个或多个液流,加压,在主热交换器中气化而形成气态氧产品。例如,第一气态氧产品可在10至15bar的压力下生产,第二气态氧产品在35至40bar的压力下生产。因此,二空气流可在不同的压力下液化,选择此压力以便主热交换器104高效地操作。所有液态空气流可加入高压精馏塔4,与该液态空气组成类似的液流可从高压精馏塔的相同水平面排出。此液流的一部分可加入低压精馏塔6。其余部分可在与主热交换器104分开的再沸器(未示出)中与被过冷的液态氧间接换热而部分地气化。所得液态和气态的空气可通入低压精馏塔6中。为最大程度地回收氩,不需使用第五空气流,因而低压精馏塔的入口58可省去。从而,这两个膨胀透平可用于生产与第一空气流压力相同的膨胀空气流,这两股膨胀空气流可在紧邻高压精馏塔4的入口2的上游与第一空气流混合。此外,加入高压精馏塔4的一些或所有液态空气可在配有油闸(未示出)的进一步膨胀透平(未示出)中膨胀,而不是通过阀116膨胀。另外,为使液态产品能以可变速率从液态氧贮罐(未示出)中取出,装置可配有使部分或所有的一或二膨胀空气流以选择的速率经主热交换器104返回压缩机110入口的装置。阀(未示出)可用于此目的,可操作阀以选择引入高压精馏塔4的透平膨胀空气的比例,和返回压缩机110入口的比例。此外,如图5中所说明的,再沸器22可位于精馏塔24的罐中。如图5所示,富氧流体从阀20直接流入进一步精馏塔24的入口26。
图6中,示出一种修改,即副精馏塔52有两段填料74,用于加热再沸器22的物流由出口200从填料52的两段中间取出。此物流在再沸器22中与沸腾的富氧液体间接换热而冷凝。所得冷凝液在一般地与出口200相同的水平面由入口202返回副精馏塔52。
图5和6中所示的塔布置典型地提供与图1中所示的基本相同的优点。