连续变速传动装置之中的或 与之有关的各项改进 本发明涉及无级变速器-即用于连续变速传动装置(CVT)的圆环面滚道滚动牵引式速比变动机构,并具体地涉及所谓“半圆环面”式无级变速器,其中各滚轮设置在由形成于输入和输出各圆盘上的各个部分圆环面滚道所限定的空腔的中心的内侧。这一点与所谓“全圆环面”式变速器相反,那种形式里,各滚轮基本上沿直径横跨圆环面空腔。
在已知的半圆环面式无级变速器中,操作者习惯于使用在本技术领域中已知的“切向移位”来改变传动速比。每一托架及其相关的滚轮安装得可围绕其所谓进动轴线转动,以此改变滚轮与输入和输出各圆盘相接触处的半径,并以此改变所传动的速比。每一滚轮及其托架也安装得可使其受到控制以便沿着进动轴线在大致相切于由两只圆盘所形成的圆环面的中心圆的方向上作整体移动。一滚轮围绕其进动轴线的转动因而由一切向移动予以实现,该转动导致所传动的速比发生改变,其结果是,在接触点处引入滚轮与圆盘之间地一调整角度,以便把滚轮调整到一新的速比。不过,在半圆环面CVT的技术领域中众所公认的是,因为在各滚轮托架上的巨大的向外作用力,依靠切向移位改变速比会造成一些设计问题,该作用力必须以轴承反作用,以容许直线和转动运动二者具有最小摩擦。
不过,已经提出了某些半圆环面式CVT的这种切向移位的替代方法。一种这样的建议说明在US-A-3008337之中,其中每一滚轮-总数三个一的托架,横跨输入与输出两只圆盘之间的圆环形空腔,安装得不仅围绕已经说明的一进动轴线作转动,而且还围绕平行于两只圆盘的底共轴线的一第二或“倾斜”轴线作转动。速比变化由每一滚轮托架围绕其倾斜轴线的转动来实现,如此引入一调整角度并导致托架围绕进动轴线作转动。
这种几何关系使得一种所谓“扭矩控制”式CVT成为可能,其中各滚轮趋向于采取某一速比角度,在此角度下,由输入和输出两个圆盘所传递的扭矩之和匹配施加于此装置的控制力而使每一滚轮围绕其倾斜轴线作枢转。在US-A-300 8337中,这种力是以液压方式施加的。
一般在圆环面滚道CVT,并特别在半圆环面设计技术领域中,众所周知,只当每一滚轮的转动轴线相交各圆盘的公共轴线时,CVT才可能在一特定的所传动的速比下处于平衡。如果这一条件不得到满足,各滚轮将具有“调整角度”并因而必须处在把所传动的速比改变到使相交得以恢复的一新的数值的进程之中。US-A-3008337的几何关系,特别是进动和倾斜轴线的取向,是这样的,即平衡只能存在于当每一滚轮围绕其倾斜轴线的倾斜是在一中间位置上的时候。换句话说,各滚轮的速比角度从一平衡值向另一平衡值的转换必须由每一滚轮脱离其中间倾斜位置来起始,并且只能结束于当这一中间倾斜位置随着新的速比值的达到而得以恢复的时候。因而,不存在传动装置的每一平衡速比与每一滚轮围绕其倾斜轴线的一特定转向之间的唯一相关关系。这一运作模式可能导致有关响应和尤其是稳定性方面的一些令人失望的特性。
本发明是由理解到可有不同的几何关系而来的,导致一种具有较好响应和稳定性潜势的倾斜控制式CVT,其中每一滚轮的每一平衡速比角度与该滚轮围绕其倾斜轴线的一特定取向相关联。
本发明由各项权利要求说明,其内容应当理解为包含在本说明书的阐述之中,而本发明现在将通过范例参照所附简化和示意图予以说明附图中:
图1是通过本发明一项实施例的一大致横向的剖面;
图2是通过同一实施例的一轴向剖面;
图3表明沿图1中箭头III的方向所见的一个部件,以及
图4更为详细地表明同一部件。
图2表明半圆环面滚动牵引式CVT无级变速器的两个圆盘1、2。两只圆盘形成了部分圆环面滚道3和4,并且可围绕一公共的无级变速器轴线5而独立地转动。一滚轮6的轮缘,其安装方式将在后面说明,运行时接触滚道3和4并在其间传递牵引力。滚轮实际上是两个或三个、可能多个为一组之中的一个,围绕轴线5相互以一定的角度间隔隔开。如图所示,而且凡是无级变速器以其正在传动的速比处于平衡的时候都将如此,滚轮轴线7与无级变速器轴线5相交。不过,如图3最清楚地示出,限定了滚轮进动轴线10的滚轮托架主要构件8倾斜于横向平面11一个角度C,这一角度将称作倾角(Castor angle)。
如图1和2所示,托架构件8以滚动轴承13装在CVT的固定结构12上面,以致可以围绕轴线10自由转动,构件8在机架里面的轴向移动由止推轴承14予以防止。由构件8支撑的滚动轴承15限定了另一转动轴线16(图2),基本上平行于无级变速器轴线5并将称作倾斜轴线。最好是,轴承15允许构件8在轴线16方向上自由移动。这与滚轮6沿着轴线5的有限自由移动相结合,将有助于确保滚轮与两圆盘之间的正确接触,即使存在制造或装配误差或者运转期间的扭歪。各液压缸18制作在构件8之内并由导管19经由CVT的中心电子控制系统23控制的各阀件22连接于一泵26和排流口21。系统23可接收表示所有参数的输入,这些参数与CVT是其一部分的车辆或其他动力传动系统相对应,包括来自以24表示的一踏板控制装置的司机要求。
各液压缸18包含制有中心孔眼28的各活塞27。通过圆头的柱筒29,各活塞支撑在一圆盘30上,此圆盘制有一凸耳31,支持一安装得可在轴承15之内转动的心轴32。一圆筒形壳体34以缸体套住活塞的方式安装得可以相对于圆盘30运动。滚轮6由一将它与壳体34隔开的止推座圈35沿轴向予以支承。一滚动轴承36,以及一装有一密封圈40并与圆盘30一体的塞轴37,共同保持滚轮6与圆盘30对中。各活塞27之内的中心孔眼28通过各柱筒29之内的相应孔眼连通于制成在圆盘30之内的一导管43,并且此后通过一单向阀43连通于圆盘30与壳体34之间的腔室44。阀体43起的作用为,使任何时候存在于左边和右边液压缸28之中的两个液压的较高者通向腔室44。各柱筒29的圆头在凡是围绕轴线16存在倾斜的时候适应两构件27与30之间的任何不对中现象。
如已说明的那样,托架构件8由固定结构12约束住,以致它只能围绕进动轴线10转动,而为了保持滚道3和4与滚轮6轮缘之间的接触,所必需的“端部载荷”是由腔室44之中的液压产生的,在腔室之中,为了确保即使在CVT首次被供能时的一最小作用力可将圆盘10与液压缸34隔开,一予载荷可以方便地由各弹簧45提供。构件30和34的尺寸、泵26的功率和控制系统23的编程必须加以选择以产生适于所需各端部载荷的液压。
因为滚轮6从由滚道3和4所形成的圆环面的中心46(图1)偏移开相当远,所以,滚轮上的牵引力将造成一关于中心的倾斜力矩。倘若中心合理地靠近倾斜轴线16(如图所示,二者实际上重合),则一液压生成的反力矩可以控制牵引力,此反力矩正比于无级变速器上的输入和输出扭矩之和。于是,滚轮6与圆盘2、3之间“理想的”法向力可以通过沿着各流轮的转动轴线向各滚轮使用同样的控制液压而予以施加。在各液压缸18之中的压力的合力会造成一围绕轴线16的倾斜力矩,而且,如果在此力矩与出自牵引力的力矩之间存在某种不平衡的话,会出现倾斜动作导致各滚轮调整至一新的速比和一新的平衡。倾斜角(围绕轴线16)因而由倾斜和牵引力力矩的代数和来确定。无级变速器的几何关系决定了围绕进动轴线10的某种转动,直至达到一种平衡状态,其中在液压缸腔室18和44之中的载荷适于所需的牵引力,而且在这样一种平衡状态中,围绕轴线16的倾斜角与围绕轴线10的一唯一的进动角相关联。在前叙中已经说明,这一点是与US-A-3008337的图解中所描述的结构的性能相反的,那里没有倾角,而且那里各滚轮(20)的任一平衡速比角度位置只能与它们相对于“倾斜轴线”的中间位置重合(由肋板70限定),而且从中间位置的任何偏离只能伴随着滚轮从一个平衡速比角度向另一个的转变。
轴承36把牵引力从滚轮6传向托架构件8,而止推轴承35以壳体34把液压“端部载荷”传向滚轮。还应当指出,虽然按照本发明有可能以不同方式生成各滚轮与各圆盘之间的端部载荷-比如通过把这种载荷直接和沿轴向施加于各圆盘而不是各滚轮,或者通过以不同方式把此载荷施加于各滚轮-但最好是,如图所示,将它向内施加在各滚轮上。在腔室44中生成此载荷是很方便的,腔室44位于滚轮与围绕进动轴线10转动的轴承(13)之间。这一点与例如US-A-4484487的先前提议相反,那里不存在倾角,液压生成的向内端部载荷的反作用力是由无级变速器的固定结构承受的。