《一种实验室设备使用寿命预测系统和方法.pdf》由会员分享,可在线阅读,更多相关《一种实验室设备使用寿命预测系统和方法.pdf(9页珍藏版)》请在专利查询网上搜索。
1、10申请公布号CN104091056A43申请公布日20141008CN104091056A21申请号201410301185X22申请日20140627G06F19/00201101G01R31/0020060171申请人上海网正信息科技有限公司地址201203上海市浦东新区张江高科技园区春晓路109弄100号1号楼1615室72发明人章文华74专利代理机构北京联瑞联丰知识产权代理事务所普通合伙11411代理人董晓慧54发明名称一种实验室设备使用寿命预测系统和方法57摘要本发明提供一种实验室设备使用寿命预测系统和方法,所述系统包括互感器组件、数据采集单元和数据处理单元,所述方法首先结合试验室。
2、设备结构、历史运行数据和环境,建立试验室设备故障树,确定能表征试验室设备性能退化的特征量以确定试验室设备寿命的失效阈值,数据采集单元实时采集互感器组件转换的电流信号,数据处理单元实现对于试验室设备使用寿命的预测,使工作人员能够及时排除故障,保证试验室设备724小时的安全运行。51INTCL权利要求书1页说明书5页附图2页19中华人民共和国国家知识产权局12发明专利申请权利要求书1页说明书5页附图2页10申请公布号CN104091056ACN104091056A1/1页21一种实验室设备使用寿命预测系统,其特征在于,包括数个互感器组件,与试验室设备相连接,将试验室设备负载的电流转成信号处理设备所。
3、能处理的小电流再将其转换为相应的电压量;数据采集单元,向互感器发送统一的同步采样信号,同时并行地接收数据采集板传送过来的采样数据,数模转换之后发送到数据处理单元;数据处理单元,处理采样数据并判断试验室设备运行情况,计算出试验室设备使用寿命。2一种实验室设备使用寿命预测方法,其特征在于,包括以下步骤步骤一根据历史运行数据建立实验室设备故障树,计算出需要进行监测的性能参数,根据性能参数确定设备的失效阈值;步骤二向互感器组件发送同步的采样信号,获取实验室设备的性能参数,并对异常值进行剔除;步骤三数据处理单元根据采样数据进行数据分析,根据失效阈值从状态数据中提取故障特征参数,获取其故障特征参数退化数列。
4、;步骤四数据处理单元采用灰色模型和支持向量机预测模型的组合预测方法建立使用寿命预测模型,将故障特征参数退化数列导入寿命预测模型得出试验设备剩余使用寿命。3如权利要求2所述的一种实验室设备使用寿命预测方法,其特征在于,对于不同故障模式下的故障特征进行定量分析,通过仿真运算获得故障性能参数,确定了起动电流峰值IST、稳态电流的均值IAV、稳态电流脉动幅度ISTD、稳态电流小波能量熵WN、波纹电压值VS,5个特征量作为试验室设备寿命预测的性能参数。4如权利要求3所述的一种实验室设备使用寿命预测方法,其特征在于,进行故障注入仿真计算,确定起动电流峰值IST、稳态电流的均值IAV、稳态电流脉动幅度IST。
5、D、稳态电流小波能量熵WN、波纹电压值VS的失效阈值范围。5如权利要求4所述的一种实验室设备使用寿命预测方法,其特征在于,所述数据处理单元采用小波变换分析对实时电流采样进行消噪和异常值剔除。6如权利要求5所述的一种实验室设备使用寿命预测方法,其特征在于,所述数据处理单元采用小波分解对实时电流采样进行故障特征参数退化数列的提取,提取起动电流峰值IST、稳态电流的均值IAV、稳态电流脉动幅度ISTD、稳态电流小波能量熵WN、波纹电压值VS的退化数列。7如权利要求6所述的一种实验室设备使用寿命预测方法,其特征在于,将所述故障特征参数退化数列分别导入灰色模型和支持向量机预测模型计算出预测值,并将两个预。
6、测值进行加权融合后,得到最终预测结果。权利要求书CN104091056A1/5页3一种实验室设备使用寿命预测系统和方法技术领域0001本发明涉及实验室设备监控和管理技术领域,而且更具体的涉及一种实验室设备使用寿命预测系统和方法。背景技术0002随着技术的进步,实验室设备智能化,精密化、电气化的发展,国内各高校、科研院所对各种精密实验室设备的运行稳定性和安全性提出了更高的要求。现有技术中的实验室监控设备或采用传感器技术,对实验室设备运行温度、运行环境进行监测,监控实验室环境的停电和火灾等突发状况;或采用物联网技术和采用云计算技术,使实验室管理人员对实验室设备的使用和状态进行有效管理。但是由于实验。
7、室设备通常处于724小时的工作状态下,长时间的运行对其使用寿命和使用精度提出了非常高的要求。由于缺乏对于实验室设备的使用寿命预测,可能会导致实验室设备在运行当中出现不可预测的故障和宕机,影响实验结果。此外对于实验室设备的使用寿命进行精确的评估,也能帮助实验室管理人员对昂贵的实验室设备进行及时的维护,更换故障零部件,实验室设备的使用寿命。发明内容0003本发明的目的是为了解决现有技术中实验室设备管理系统的不足,提供一种实验室设备使用寿命预测系统和方法。0004为实现上述目的,本发明的技术方案如下0005一种实验室设备使用寿命预测系统,包括0006数个互感器组件,与试验室设备相连接,将试验室设备负。
8、载的电流转成信号处理设备所能处理的小电流再将其转换为相应的电压量;0007数据采集单元,向互感器发送统一的同步采样信号,同时并行地接收数据采集板传送过来的采样数据,数模转换之后发送到数据处理单元;0008数据处理单元,处理采样数据并判断试验室设备运行情况,计算出试验室设备使用寿命。0009一种实验室设备使用寿命预测方法,包括以下步骤0010步骤一根据历史运行数据建立实验室设备故障树,计算出需要进行监测的性能参数,根据性能参数确定设备的失效阈值;0011步骤二向互感器组件发送同步的采样信号,获取实验室设备的性能参数,并对异常值进行剔除;0012步骤三数据处理单元根据采样数据进行数据分析,根据失效。
9、阈值从状态数据中提取故障特征参数,获取其故障特征参数退化数列;0013步骤四数据处理单元采用灰色模型和支持向量机预测模型的组合预测方法建立使用寿命预测模型,将故障特征参数退化数列导入寿命预测模型得出试验设备剩余使用寿命。说明书CN104091056A2/5页40014进一步的对于不同故障模式下的故障特征进行定量分析,通过仿真运算获得故障性能参数,确定了起动电流峰值、稳态电流的均值、稳态电流脉动幅度、稳态电流小波能量熵、波纹电压值,5个特征量作为试验室设备寿命预测的性能参数。0015进一步的,进行故障注入仿真计算,确定起动电流峰值、稳态电流的均值、稳态电流脉动幅度、稳态电流小波能量熵、波纹电压值。
10、的失效阈值范围。0016进一步的,所述数据处理单元采用小波变换分析对实时电流采样进行消噪。0017进一步的,所述数据处理单元采用小波分解对实时电流采样进行故障特征参数退化数列的提取,提取起动电流峰值、稳态电流的均、稳态电流脉动幅度、稳态电流小波能量熵、波纹电压值的退化数列。0018进一步,将所述故障特征参数退化数列分别导入灰色模型和支持向量机预测模型计算出预测值,并将两个预测值进行加权融合后,得到最终预测结果。0019技术效果0020本发明首先结合试验室设备结构、历史运行数据和环境,建立试验室设备故障树,分析确定易导致试验室设备故障的关键组件和部位。然后确定能表征试验室设备性能退化的特征量,最。
11、后建立试验室设备的有限元仿真模型,实现典型故障模式的故障注入仿真,分析各特征参数在各典型故障模式下的变化情况,并据此确定试验室设备寿命的失效阈值,实现对于试验室设备使用寿命的预测,使工作人员能够及时排除故障,保证试验室设备724小时的安全运行。附图说明0021为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。0022图1为本发明的系统结构图;0023图2为互感器组件的电路图;0024图3为。
12、本发明的方法流程图;0025图4为本发明方法建立的故障树图。具体实施方式0026下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。0027如图1所示,本发明的一种实验室设备使用寿命预测系统,包括互感器组件1、数据采集单元2和数据处理单元3。互感器组件1与试验室设备相连接,将试验室设备负载的电流转成信号处理设备所能处理的小电流再将其转换为相应的电压量。数据采集单元2向互感器3发送统一的同步。
13、采样信号,同时并行地接收数据采集单元2传送过来的采样数据,数模转换之后发送到数据处理单元3。数据处理单元3处理采样数据并判断试验室设备运说明书CN104091056A3/5页5行情况,计算出试验室设备使用寿命。0028互感器组件1的电路如图2所示,采用的低功率互感器的绕组匝数为2000,用绕线机均匀绕制,经测量,该级变换准确度能达到005级,且线性度良好。其中绕组T1对一次大电流I1作两级变换,第一级变换将一次电流变换为A级,然后绕组T2进行第二级变换再将A级电流变换为MA级电流,采用零磁通平衡测量技术,并加入电容C2进行相位补偿“同时运放U1实现电流/电压转换,由电位器R2进行幅度调节后输出。
14、测量通道电压信号VT。上述互感器组保证在同一个一次电流H的激励下,由互感器组件输出的电压信号VT的幅值为输入值幅值的25倍,以保证在25倍保护范围内信号的幅值都在数据采集单元2的有效窗口内。0029数据采集单元2的作用是接收互感器组件1发送的采样数据,将输出电压的幅度和相位进行调节。并将采样信号送到A/D转换器件,实现用模拟电压量表示电流信号还原成用数字量表示电流信号,判断量程范围。0030数据处理单元3为安装有PCI数据总线的主机,通过PCI控制器对数据总线上的数据采集单元3进行控制。完成数据采集工作之后,主机通过软件平台实现实验设备的使用寿命预测。0031如图3所示,为发明的一种实验室设备。
15、使用寿命预测方法,包括0032步骤一根据历史运行数据建立实验室设备故障树,计算出需要进行监测的性能参数,根据性能参数确定设备的失效阈值;0033步骤二向互感器组件发送同步的采样信号,获取实验室设备的性能参数,并对异常值进行剔除;0034步骤三数据处理单元根据采样数据进行数据分析,根据失效阈值从状态数据中提取故障特征参数,获取其故障特征参数退化数列;0035步骤四数据处理单元采用灰色模型和支持向量机预测模型的组合预测方法建立使用寿命预测模型,将故障特征参数退化数列导入寿命预测模型得出试验设备剩余使用寿命。0036优选的,步骤一为了更直观的对试验室设备发生故障的原因和故障模式进行分析,建立了试验室。
16、设备的故障树。所述故障树根据产品历史运行数据统计的故障部件特征或外界事件或者它们的组合产生一种给定故障的逻辑图。运用故障树对试验室设备进行可靠性分析,可以更清楚的分析各种故障模式与试验室设备故障的逻辑关系,以及各种故障模式之间的相互关系。根据实验设备个组件的故障原因和厂家的故障分类方法,建立的故障树如图4所示。0037为了进行寿命预测,就需对不同故障模式下特征参数的变化量作定量分析,建立试验室设备的故障模式库,结合试验室设备的相关标准,确定试验室设备的失效阈值。常用的失效阈值的定义方式主要有两种绝对标准和相对标准。由于样本的差异性,国内外在电机的失效阈值方面大都采用相对标准的定义方式。本发明确。
17、定了起动电流峰值IST、稳态电流的均值IAV、稳态电流脉动幅度ISTD、稳态电流小波能量熵WN、波纹电压值VS,5个特征量作为试验室设备寿命预测的特征参数,根据下表的模拟仿真结果,计算出各特征量与正常情况下的相对变化量做为失效阈值。0038说明书CN104091056A4/5页60039优选的,步骤二在信号的采集、传输等过程中,有用信息不可避免的会受到噪声污染。为了提高数据的可靠度和可信度,有必要对试验室设备状态数据进行消噪预处理。正确合理的消噪方法不仅降低特征提取的处理时间,还可提高后续建模预测的精度。本发明采用小波阈值消噪方法对于试验设备采样信号进行消噪,以去除噪声干扰。0040小波变换是。
18、一种对信号具有自适应的时频分析方法,它继承并发展了短时傅里叶变换的局部化思想,巧妙地利用尺度参数使时间窗和频率窗自适应的符合对复杂频率成分信号分析的要求。按照小波阈值消噪的步骤,选用DB5小波,进行3层小波分解,给定HEURSURE阈值规则、选用软阈值的方法对信号采集过程中采集的电流、电压等信号进行消噪,消噪后信号噪声明显减小。稳态电流信号通常在低频段和以本征脉动频率3122HZ附近的频段含有有效的特征信息,而电压信号的有用特征信号通常在120HZ附近的低频段,利用该消噪方法不仅滤除掉信号中的干扰分量,并且保留了信号中全部的有用信息。0041优选的,步骤三实验设备的电流、电压信号均为非稳定信号。
19、,从状态数据中提取故障特征参数,需要经过小波分解提取电流时域特征、能量熵WN和波纹电压值VS。0042经过步骤二小波消噪后的电流电流信号中能反应试验室设备性能的时域特征有起动电流峰值IST、稳态电流的均值IAV、稳态电流脉动幅度ISTD。利用小波分解可获得电流各时域特征量的整体变化趋势。其中实验设备的退化过程包括两个阶段,一是在初始正常值附近由微小波动的稳态阶段;二是迅速偏离正常值并接近失效阈值的劣化阶段。所提取的电流信号的三个时域特征可以有效地反应实验室设备性能状态退化趋势,可以利用这些特征对实验室设备性能退化进行分析和预测。0043在不同的故障状态下,小波能量的分布有较大的差别,因此,可以。
20、通过小波能量表征设备故障。为了表征当前时段内设备的状态,提出能量熵WN作为系统状态不确定性的定量评价指标。根据信号的小波能量熵,可以估计信号的能量分布的紊乱程度。当各层小波能量分布越均匀,小波能量熵值越大。从而可以反应稳态电流的能量分布和频率特征。0044波纹电压值VS可通过仿真软件进行提取,根据互感器组件输出的电压信号VT,采用劣化设备注入的方法,通过改变设备电容量和电阻量,得出波纹电压VS在直流电压VT中所占的百分比的变化规律,得出变压器组件在试验设备占使用寿命中的百分比。0045优选的,步骤四采用灰色模型与支持向量机预测模型进行加权融合,提出一种基于灰色预测模型GM和支持向量机SVM预测。
21、模型的组合预测方法灰色支持向量机GMSVM预测模型。0046该预测模型采用并联结构,分别利用灰色预测模型和支持向量机SVM预测模型对在退化时间序列中的故障特征参数进行单点预测,并将两个预测值进行加权融合后,作为该点的最终预测结果。灰色支持向量机GMSVM预测模型的建模过程如下00471给定原始数据序列XNX1,X2,XN,并进行归一化处理;00482根据XN的灰色模型,求解模型参数,获得数据的预测模型说明书CN104091056A5/5页700490050其中,A为发展系数,U为灰作用量,并利用该预测模型计算数据序列XN的第N1个数据的预测值00513将数据序列XN进行相空间重构,选定核函数为。
22、RBF数,利用网格寻优,寻找支持向量机模型的最佳参数和C;00524根据矩阵样板,求解出拉格朗日乘子和偏置B;00535构造支持向量机但不预测模型,即00540055并根据该预测模型,计算原始数据序列的预测序列和第N1个数据的预测值00566将两个第N1个数据预测值进行加权融合,即00570058则表示原始时间序列的第N1个数据的最后预测值;00597构造新的数据样本重复步骤2到6直至完成要求的预测任务。0060在实际预测过程中,将测定的起动电流峰值IST、稳态电流的均值IAV、稳态电流脉动幅度ISTD、稳态电流小波能量熵WN、波纹电压值VS,5个特征量的退化序列代入到数据模型中,即可计算出设备的剩余使用寿命,测量精确度达到84以上。0061以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。说明书CN104091056A1/2页8图1图2说明书附图CN104091056A2/2页9图3图4说明书附图CN104091056A。