《一种基于量子萤火虫搜索机制的天线阵稀疏构建方法.pdf》由会员分享,可在线阅读,更多相关《一种基于量子萤火虫搜索机制的天线阵稀疏构建方法.pdf(18页珍藏版)》请在专利查询网上搜索。
1、10申请公布号CN104102791A43申请公布日20141015CN104102791A21申请号201410374447522申请日20140801G06F17/5020060171申请人哈尔滨工程大学地址150001黑龙江省哈尔滨市南岗区南通大街145号哈尔滨工程大学科技处知识产权办公室72发明人高洪元杜亚男陈梦晗李晨琬刁鸣杨晗54发明名称一种基于量子萤火虫搜索机制的天线阵稀疏构建方法57摘要本发明涉及一种基于量子萤火虫搜索机制的天线阵稀疏构建方法建立天线稀疏阵模型,确定天线阵稀疏对应量子萤火虫搜索机制的关键参数;把量子萤火虫位置带入适应度函数,得到量子萤火虫所在位置的适应度值,确定局。
2、部最优位置和量子萤火虫群体中的全局最优位置;更新每只量子萤火虫的荧光素值,更新每只量子萤火虫的学习邻域;更新量子萤火虫量子位置和量子萤火虫位置;更新量子萤火虫动态决策域半径;计算量子萤火虫新位置下的适应度值,重新确定局部最优位置和量子萤火虫群体中的全局最优位置;如果达到最大迭代次数,输出全局最优位置,映射为一种稀疏天线阵的形式。51INTCL权利要求书3页说明书9页附图5页19中华人民共和国国家知识产权局12发明专利申请权利要求书3页说明书9页附图5页10申请公布号CN104102791ACN104102791A1/3页21一种基于量子萤火虫搜索机制的天线阵稀疏构建方法,其特征在于步骤1建立天。
3、线稀疏阵模型,确定天线阵稀疏对应量子萤火虫搜索机制的关键参数,产生初始的量子萤火虫量子位置和量子萤火虫位置;步骤2把量子萤火虫位置带入适应度函数,得到量子萤火虫所在位置的适应度值,根据适应度值,确定局部最优位置和量子萤火虫群体中的全局最优位置;步骤3根据量子萤火虫的适应度值,更新每只量子萤火虫的荧光素值,更新每只量子萤火虫的学习邻域;步骤4更新量子萤火虫量子位置和量子萤火虫位置;步骤5更新量子萤火虫动态决策域半径;步骤6计算量子萤火虫新位置下的适应度值,根据适应度值,重新确定局部最优位置和量子萤火虫群体中的全局最优位置;步骤7如果达到最大迭代次数,执行步骤8,否则返回步骤3;步骤8输出全局最优。
4、位置,映射为一种稀疏天线阵的形式。2根据权利要求1所述的基于量子萤火虫搜索机制的天线阵稀疏构建方法,其特征在于步骤1中,通过如下方法建立天线稀疏阵模型,对于一个D个栅格的等间距待稀疏阵列,当各阵元方向图均为同向时,阵列方向图表示为IL0,1是天线标志位,当其值为“1”时,表示在该栅格放置天线,值为“0”时,表示在该栅格不放置天线;D是栅格间距,D/2,是工作波长;K是波数,K2/;L是第L个激励的相位;方向图可以形象的描述稀疏阵列的性质,以对数形式表示,为空间扫描角,方向图可表示为BMAXMAX|F|,其中MAX为求最大值函数,S为方向图的副瓣区域,主瓣的零功率宽度为20,方向图的可见区域为0。
5、,,则S可表示为S|0900OR900。3根据权利要求2所述的基于量子萤火虫搜索机制的天线阵稀疏构建方法,其特征在于步骤1中,通过如下方法确定天线阵稀疏对应量子萤火虫搜索机制的关键参数根据约束条件,确定天线阵稀疏所对应量子萤火虫搜索机制的关键参数,天线种群规模为H和向量维数为D,生成由H只量子萤火虫组成的量子萤火虫群,对应H个量子位置和H个相应位置,每只量子萤火虫位置用D维取值0,1的数字串表示,D表示解空间维数;量子萤火虫的量子位置由D个量子位表示,第I只量子萤火虫的量子位置为其中IL2IL21,L1,2,D,将量子位IL和IL定义为0IL1,0IL1;初始时,量子萤火虫量子位置中所有的量子。
6、位置均被设置为第T代第I只量子萤火虫的量子位置为T表示迭代次数,量子位置的测量态为量子萤火虫位置,相应的第I只量子萤火虫位置可表示为权利要求书CN104102791A2/3页34根据权利要求3所述的基于量子萤火虫搜索机制的天线阵稀疏构建方法,其特征在于步骤2中,适应度函数通过如下方法获得,基于量子萤火虫搜索机制的天线阵稀疏构建的适应度函数,应满足稀疏阵列的布满率要求,根据方向图,计算其最大相对副瓣电平,以最小的最大相对副瓣电平作为优化目标,第I只萤火虫当前位置的适应度函数为,其中,是构建稀疏阵的最大相对副瓣电平;1;CRAT是计算出的阵列布满率;ERAT是期望的阵列布满率。5根据权利要求4所述。
7、的基于量子萤火虫搜索机制的天线阵稀疏构建方法,其特征在于步骤3中,根据把量子萤火虫II1,2,H在T次迭代的位置对应的适应度值转化为荧光素值LIT,其中0,1是荧光素消失率,会随着距离的增加和传播媒介的吸收逐渐减弱,是荧光素更新率;量子萤火虫I根据特定的规则获取学习邻域,邻域量子萤火虫选取由荧光素值的大小和位置相似度所决定,NIT为第I只量子萤火虫学习邻域的标号集合,对于第QQ1,2,H只量子萤火虫,若且LITLQT,则标号Q属于第I只量子萤火虫的学习邻域标号,放入量子萤火虫学习邻域标号集合NIT,SUM为求和符号,在此次迭代中学习邻域标号集合有几个标号,其学习邻域就有几个相应的量子萤火虫。6。
8、根据权利要求5所述的基于量子萤火虫搜索机制的天线阵稀疏构建方法,其特征在于步骤4中,通过如下方法更新量子萤火虫量子位置和量子萤火虫位置,在每次迭代中,若第I只量子萤火虫的学习邻域为空,则第I只量子萤火虫的第L维量子位的量子演进表示为其中,量子旋转角E1和E2是两个影响因子分别代表局部最优位置和全局最优位置对量子旋转角的影响程度,为0,1之间均匀分布的随机数;C1是量子萤火虫在量子旋转角为0时的量子位的变异概率,取值为0,1/D之间的一个常数,ABS是取绝对值使量子位限定在0,1之间;为量子旋转门,为量子非门;若第I只量子萤火虫的学习邻域为非空,在确定的学习邻域内,第I只量子萤火虫根据其局部最优。
9、位置、量子萤火虫的学习邻域最佳移动位置方向以及全局最优位置进行位置更新;在每次循环中第I只量子萤火虫第L维量子位演进方式为权利要求书CN104102791A3/3页4其中是第I个学习邻域最佳移动位置即该邻域荧光素值最大位置的局部最优位置的第L维,E3、E4和E5是影响因子,分别代表第I只量子萤火虫的局部最优位置、第I只量子萤火虫的学习邻域最佳移动方向和全局最优位置对量子旋转角的影响程度;C2是量子萤火虫在量子旋转角为0时的量子位的变异概率,取值为0,1/D之间的常数;第I只量子萤火虫的位置可以通过对量子位置各量子位的测量得到其中是满足均匀分布的随机数,描述量子位出现“0”状态的概率。7根据权利。
10、要求6所述的基于量子萤火虫搜索机制的天线阵稀疏构建方法,其特征在于步骤5中,更新第II1,2,H只量子萤火虫第LL1,2,D维动态决策域半径,决策域半径更新公式为其中是一个常数为动态决策域的更新率,RS为感知域,是一个常量并且MIN和MAX分别表示最小值和最大值函数,NT是控制学习邻域范围量子萤火虫个数的参数,SIZENIT代表第I只量子萤火虫的学习邻域内的量子萤火虫个数。权利要求书CN104102791A1/9页5一种基于量子萤火虫搜索机制的天线阵稀疏构建方法技术领域0001本发明涉及一种基于量子萤火虫搜索机制的天线阵稀疏构建方法。背景技术0002智能天线技术是通信和雷达领域的关键技术,可根。
11、据多个天线组合进行自动调整发射和接收的方向图,根据不同的应用需要实现参数选择的最优化,在雷达、无线通信和电子对抗领域等现代系统中发挥着重要的作用。在实际工程中,天线阵列由成千上万个天线组成,而且为改善天线方向性还需采用幅度和相位加权的方法,这样一来天线的馈电网络将非常复杂,这就使得系统投入成本加大,同时也影响了系统的处理速度,有时甚至难以实现。稀疏阵可以说是解决这一系列问题的有效措施,它具有天线孔径大、阵列单元数量少的优点,这不仅降低了成本,也降低了设备的复杂度和故障率。0003天线阵稀疏构建是指按照规定的方向图要求,用一种或多种优化方法进行天线系统的设计,设计阵元的分布形式,使该系统与所要求。
12、的方向图性能有良好逼近。它实际上是天线分析的反设计,即在给定天线的方向图,设计满足需要的稀疏天线阵。阵列天线的相关参数包括阵列单元数目、阵元分布形式、阵元间距、各阵元激励幅度和相位。在阵元分布形式和阵元数目都给定的情况下,控制阵元间距以及激励的幅度和相位就可以改变辐射特性,例如,主瓣形状、副瓣电平等。0004现有技术中,张浩斌等在微波学报2006,VOL22,NO6,PP4851,上发表的“稀疏阵列天线综合的遗传算法优化”中详细分析了稀疏阵的单元布局,布满率及单元激励对优化阵列特性的影响,但是收敛速度慢且容易陷入局部极值。胡凤阁等在现代雷达2012,VOL34,NO5上发表的“基于遗传算法的反。
13、向天线阵稀疏优化”对自适应遗传算法中交叉概率和变异概率动态调整规则进行改进,并结合基于适应度值的截断选择法提出了改进的自适应遗传算法。性能虽然相较于传统遗传算法的稀疏阵列构建有所提高,但收敛速度和收敛精度都不理想,依旧不能解决有约束情况下的天线阵列稀疏构建问题的全局收敛问题。0005上述两篇文献表明,现有天线阵稀疏构建方法的目标函数多为多个目标的权重之和,权重的选取对性能影响较大,天线阵稀疏问题所使用优化方法的全局收敛性能差,有待改进。为了解决该问题,先把天线稀疏构建设计成有约束优化问题,然后利用量子计算与萤火虫搜索的优势将二者结合起来用于天线阵稀疏构建问题,可以改善传统萤火虫方法在解决离散优。
14、化问题全局收敛问题是收敛速度和收敛精度不高的缺点,同时克服了传统优化方法容易陷入局部最优值的缺点,在处理稀疏问题时与传统稀疏阵构建方法相比较好的抑制了最大相对副瓣电平。发明内容0006本发明目的在于提供一种基于量子萤火虫搜索机制的天线阵稀疏构建方法,收敛速度快,全局搜索性能好。说明书CN104102791A2/9页60007实现本发明目的技术方案0008一种基于量子萤火虫搜索机制的天线阵稀疏构建方法,其特征在于0009步骤1建立天线稀疏阵模型,确定天线阵稀疏对应量子萤火虫搜索机制的关键参数,产生初始的量子萤火虫量子位置和量子萤火虫位置;0010步骤2把量子萤火虫位置带入适应度函数,得到量子萤火。
15、虫所在位置的适应度值,根据适应度值,确定局部最优位置和量子萤火虫群体中的全局最优位置;0011步骤3根据量子萤火虫的适应度值,更新每只量子萤火虫的荧光素值,更新每只量子萤火虫的学习邻域;0012步骤4更新量子萤火虫量子位置和量子萤火虫位置;0013步骤5更新量子萤火虫动态决策域半径;0014步骤6计算量子萤火虫新位置下的适应度值,根据适应度值,重新确定局部最优位置和量子萤火虫群体中的全局最优位置;0015步骤7如果达到最大迭代次数,执行步骤8,否则返回步骤3;0016步骤8输出全局最优位置,映射为一种稀疏天线阵的形式。0017步骤1中,通过如下方法建立天线稀疏阵模型,0018对于一个D个栅格的。
16、等间距待稀疏阵列,当各阵元方向图均为同向时,阵列方向图表示为IL0,1是天线标志位,当其值为“1”时,表示在该栅格放置天线,值为“0”时,表示在该栅格不放置天线;D是栅格间距,D/2,是工作波长;K是波数,K2/;L是第L个激励的相位;方向图可以形象的描述稀疏阵列的性质,以对数形式表示,为空间扫描角,方向图可表示为BMAXMAX|F|,其中MAX为求最大值函数,S为方向图的副瓣区域,主瓣的零功率宽度为20,方向图的可见区域为0,,则S可表示为S|0900OR900。0019步骤1中,通过如下方法确定天线阵稀疏对应量子萤火虫搜索机制的关键参数,0020根据约束条件,确定天线阵稀疏所对应量子萤火虫。
17、搜索机制的关键参数,天线种群规模为H和向量维数为D,生成由H只量子萤火虫组成的量子萤火虫群,对应H个量子位置和H个相应位置,每只量子萤火虫位置用D维取值0,1的数字串表示,D表示解空间维数;量子萤火虫的量子位置由D个量子位表示,第I只量子萤火虫的量子位置为其中IL2IL21,L1,2,D,将量子位IL和IL定义为0IL1,0IL1;初始时,量子萤火虫量子位置中所有的量子位置均被设置为第T代第I只量子萤火虫的量子位置为T表示迭代次数,量子位置的测量态为量子萤火虫位置,相应的第I只量子萤火虫位置可表示为0021步骤2中,适应度函数通过如下方法获得,说明书CN104102791A3/9页70022基。
18、于量子萤火虫搜索机制的天线阵稀疏构建的适应度函数,应满足稀疏阵列的布满率要求,根据方向图,计算其最大相对副瓣电平,以最小的最大相对副瓣电平作为优化目标,第I只萤火虫当前位置的适应度函数为,00230024其中,是构建稀疏阵的最大相对副瓣电平;1;CRAT是计算出的阵列布满率;ERAT是期望的阵列布满率。0025步骤3中,根据把量子萤火虫II1,2,H在T次迭代的位置对应的适应度值转化为荧光素值LIT,其中0,1是荧光素消失率,会随着距离的增加和传播媒介的吸收逐渐减弱,是荧光素更新率;量子萤火虫I根据特定的规则获取学习邻域,邻域量子萤火虫选取由荧光素值的大小和位置相似度所决定,NIT为第I只量子。
19、萤火虫学习邻域的标号集合,对于第QQ1,2,H只量子萤火虫,若且LITLQT,则标号Q属于第I只量子萤火虫的学习邻域标号,放入量子萤火虫学习邻域标号集合NIT,SUM为求和符号,在此次迭代中学习邻域标号集合有几个标号,其学习邻域就有几个相应的量子萤火虫。0026步骤4中,通过如下方法更新量子萤火虫量子位置和量子萤火虫位置,0027在每次迭代中,若第I只量子萤火虫的学习邻域为空,则第I只量子萤火虫的第L维量子位的量子演进表示为其中,量子旋转角E1和E2是两个影响因子分别代表局部最优位置和全局最优位置对量子旋转角的影响程度,为0,1之间均匀分布的随机数;C1是量子萤火虫在量子旋转角为0时的量子位的。
20、变异概率,取值为0,1/D之间的一个常数,ABS是取绝对值使量子位限定在0,1之间;为量子旋转门,为量子非门;0028若第I只量子萤火虫的学习邻域为非空,在确定的学习邻域内,第I只量子萤火虫根据其局部最优位置、量子萤火虫的学习邻域最佳移动位置方向以及全局最优位置进行位置更新;在每次循环中第I只量子萤火虫第L维量子位演进方式为其中是第I个学习邻域最佳移动位置即该邻域荧光素值最大位置的局部最优位置的第L维,E3、E4和E5是影响因子,分别代表第I只量子萤火虫的局部最优位置、第I只量子萤火虫的学习邻域最佳移动方向和全局最优位置对量子旋转角的影响程度;C2说明书CN104102791A4/9页8是量子。
21、萤火虫在量子旋转角为0时的量子位的变异概率,取值为0,1/D之间的常数;第I只量子萤火虫的位置可以通过对量子位置各量子位的测量得到其中是满足均匀分布的随机数,描述量子位出现“0”状态的概率。0029步骤5中,更新第II1,2,H只量子萤火虫第LL1,2,D维动态决策域半径,决策域半径更新公式为其中是一个常数为动态决策域的更新率,RS为感知域,是一个常量并且MIN和MAX分别表示最小值和最大值函数,NT是控制学习邻域范围量子萤火虫个数的参数,SIZENIT代表第I只量子萤火虫的学习邻域内的量子萤火虫个数。0030本发明具有的有益效果0031本发明先把天线稀疏构建设计成有约束优化问题,然后利用量子。
22、计算与萤火虫搜索的优势将二者结合起来用于天线阵稀疏构建问题,可以改善传统萤火虫方法在解决离散优化问题全局收敛问题时收敛速度和收敛精度不高的缺点,同时克服了传统遗传方法容易陷入局部最优值的缺点,在处理稀疏问题时与传统稀疏阵构建方法相比较好的抑制了最大相对副瓣电平。0032本发明能更好的应用到现有天线阵稀疏构建方法所不能有效使用的一些应用环境,满足快速高性能的要求,不仅降低了成本,也降低了设备的复杂度。0033与现有天线阵列稀疏方法相比,本发明充分考虑了在约束条件下对天线阵的稀疏构建时其收敛速度和收敛精度之间的矛盾,以及通过稀疏阵的改变来改变阵列天线的辐射特性,具有以下优点00341本发明改善了传。
23、统天线阵稀疏的智能优化构建方法收敛速度与收敛精度之间的矛盾,同时提高了智能优化构建方法的收敛速度和收敛精度。00352相对于传统阵列稀疏构建方法,本发明可以同时利用量子理论和萤火虫搜索机制的优势避免天线位置构建过程中难于获得满足约束条件的最优稀疏阵列形式,说明本方法的适用性更广。00363仿真结果表明,本发明所提出的量子萤火虫搜索机制在得到最优稀疏阵列的同时提高了收敛精度和收敛速度,并得到了较低的最大相对副瓣电平和要求的布满率,说明了基于所提量子萤火虫搜索机制的天线阵稀疏构建方法的有效性。附图说明0037图1是基于量子萤火虫搜索机制的天线阵稀疏构建方法流程框图;0038图2是量子萤火虫搜索机制。
24、的流程图;0039图3是栅格数目为40的迭代次数与适应度函数曲线图;0040图4是栅格数目为60的迭代次数与适应度函数曲线图;0041图5是栅格数目为80的迭代次数与适应度函数曲线图;0042图6是栅格数目为40的方位角与幅度的稀疏阵列方向图;0043图7是栅格数目为60的方位角与幅度的稀疏阵列方向图;0044图8是栅格数目为80的方位角与幅度的稀疏阵列方向图。说明书CN104102791A5/9页9具体实施方式0045如图1所示,本发明基于量子萤火虫搜索机制的天线阵稀疏构建方法包括以下步骤0046步骤1建立天线稀疏阵模型,确定天线阵稀疏对应量子萤火虫搜索机制的关键参数,产生初始的量子萤火虫量。
25、子位置和量子萤火虫位置;0047通过如下方法建立天线稀疏阵模型,0048对于一个D个栅格的等间距待稀疏阵列,当各阵元方向图均为同向时,阵列方向图表示为IL0,1是天线标志位,当其值为“1”时,表示在该栅格放置天线,值为“0”时,表示在该栅格不放置天线。由于各单元激励幅度相等,即归一化幅度都是1,所以IL也可是稀疏阵各天线的幅度值;D是栅格间距,D/2,是工作波长;K是波数,K2/;L是第L个激励的相位。方向图可以形象的描述稀疏阵列的性质,以对数形式表示,为空间扫描角,方向图可表示为BMAXMAX|F|,其中MAX为求最大值函数,S为方向图的副瓣区域,主瓣的零功率宽度为20,方向图的可见区域为0。
26、,,则S可表示为S|0900OR900。0049通过如下方法确定天线阵稀疏对应量子萤火虫搜索机制的关键参数,0050根据约束条件,确定天线阵稀疏所对应量子萤火虫搜索机制的关键参数,如种群规模为H和向量维数为D。生成由H只量子萤火虫组成的量子萤火虫群,对应H个量子位置和H个相应位置,每只量子萤火虫位置用D维取值0,1的数字串表示,D表示解空间维数。量子萤火虫的量子位置由D个量子位表示,第I只量子萤火虫的量子位置为其中IL2IL21,L1,2,D,将量子位IL和IL定义为0IL1,0IL1。初始时,量子萤火虫量子位置中所有的量子位均被设置为第T代第I只量子萤火虫的量子位置为T表示迭代次数。量子位置。
27、的测量态为量子萤火虫位置,则相应的第I只量子萤火虫位置可表示为根据约束条件某些位置必须或不许放置天线,对其强制置1或0。0051步骤2把量子萤火虫位置带入适应度函数,得到量子萤火虫所在位置的适应度值,根据适应度值,确定局部最优位置和量子萤火虫群体中的全局最优位置;0052对于第II1,2,H只量子萤火虫通过设置ILXILL1,2,D,第I只萤火虫位置就对应一种稀疏阵,基于量子萤火虫搜索机制的天线阵稀疏构建的适应度函数,应满足稀疏阵列的布满率要求,根据方向图,计算其最大相对副瓣电平,以最小的最大相对副瓣电平作为优化目标,第I只萤火虫当前位置的适应度说明书CN104102791A6/9页10函数为。
28、其中,是构建稀疏阵的最大相对副瓣电平;1;CRAT是计算出的阵列布满率;ERAT是期望的阵列布满率。把量子萤火虫位置带入适应度函数,得到量子萤火虫所在位置的适应度值,也是其所对应稀疏阵的适应度。量子萤火虫的适应度函数设为天线阵的约束优化目标函数,通过其计算量子萤火虫位置的适应度,在所有可能阵列形式中所搜索到的最优位置是适应度值最大的位置。确定局部最优位置和量子萤火虫群体中的全局最优位置,到第T代为止第I只量子萤火虫搜索到适应度的最好位置即局部最优位置可以表示为到第T代为止整个量子萤火虫群体搜索到的全局最优位置所有局部最优位置中的最优适应度位置为0053步骤3根据量子萤火虫的适应度值,更新每只量。
29、子萤火虫的荧光素值,更新每只量子萤火虫的学习邻域;0054根据把量子萤火虫II1,2,H在T次迭代的位置对应的适应度值转化为荧光素值LIT,其中0,1是荧光素消失率,会随着距离的增加和传播媒介的吸收逐渐减弱,是荧光素更新率;量子萤火虫I根据特定的规则获取学习邻域,邻域量子萤火虫选取由荧光素值的大小和位置相似度所决定,NIT为第I只量子萤火虫学习邻域的标号集合,对于第QQ1,2,H只量子萤火虫,若且LITLQT,则标号Q属于第I只量子萤火虫的学习邻域标号,放入量子萤火虫学习邻域标号集合NIT,SUM为求和符号,在此次迭代中学习邻域标号集合有几个标号,其学习邻域就有几个相应的量子萤火虫。0055步。
30、骤4更新量子萤火虫量子位置和量子萤火虫位置;0056在每次迭代中,若第I只量子萤火虫的学习邻域为空,则第I只量子萤火虫的第L维量子位的量子演进表示为其中,量子旋转角E1和E2是两个影响因子分别代表局部最优位置和全局最优位置对量子旋转角的影响程度,为0,1之间均匀分布的随机数;C1是量子萤火虫在量子旋转角为0时的量子位的变异概率,取值为0,1/D之间的一个常数,ABS是取绝对值使量子位限定在0,1之间;为量子旋转门,为量子非门。0057若第I只量子萤火虫的学习邻域为非空,在确定的学习邻域内,第I只量子萤火虫根据其局部最优位置、量子萤火虫的学习邻域最佳移动位置方向以及全局最优位置进行位置更新。在每。
31、次循环中第I只量子萤火虫第L维量子位演进方式说明书CN104102791A107/9页11为其中是第I个学习邻域最佳移动位置该邻域荧光素值最大位置的局部最优位置的第L维,E3、E4和E5是影响因子,分别代表第I只量子萤火虫的局部最优位置、第I只量子萤火虫的学习邻域最佳移动方向和全局最优位置对量子旋转角的影响程度;C2是量子萤火虫在量子旋转角为0时的量子位的变异概率,取值为0,1/D之间的常数。第I只量子萤火虫的位置可以通过对量子位置各量子位的测量得到其中是满足均匀分布的随机数,描述量子位出现“0”状态的概率。根据约束条件某些位置必须或不许放置天线,对其强制置1或0。0058步骤5更新量子萤火虫。
32、动态决策域半径;0059更新第II1,2,H只量子萤火虫第LL1,2,D维动态决策域半径,决策域半径更新公式为其中是一个常数为动态决策域的更新率,RS为感知域,是一个常量并且MIN和MAX分别表示最小值和最大值函数,NT是控制学习邻域范围量子萤火虫个数的参数,SIZENIT代表第I只量子萤火虫的学习邻域内的量子萤火虫个数。0060步骤6计算量子萤火虫新位置下的适应度值,根据适应度值,重新确定局部最优位置和量子萤火虫群体中的全局最优位置;0061每只量子萤火虫新位置映射成一种稀疏阵,根据其方向图计算最大相对副瓣电平,计算每只量子萤火虫新位置的适应度值,也就是其所对应稀疏天线阵的适应度,确定每只量。
33、子萤火虫的局部最优位置同时找到迄今为止整个群体所找到的全局最优位置0062步骤7如果达到最大迭代次数,执行步骤8,否则返回步骤3;0063步骤8输出全局最优位置,映射为一种稀疏天线阵的形式。0064以天线阵稀疏问题的布满率受到约束的线阵为例,面阵的稀疏天线构建问题可以以此类推。当CRATERAT时,即计算出的阵列布满率要小于等于期望的阵列布满率,对天线阵进行稀疏构建。量子萤火虫量子位置所有量子位初始化为它的位置通过对量子位测量得到。根据实际应用中某些位置必须或不许放置天线,对其强制置1或0。通过计算适应度函数找到量子萤火虫群的局部最优位置和全局最优位置然后,更新荧光素值把量子萤火虫II1,2,。
34、H在T次迭代的位置对应的适应度值转化为荧光素值LIT。求每只量子萤火虫的邻域集合NIT,第I只量子萤火虫根据量子旋转们和量子非门进行量子萤火虫量子位置和位置的更新为和更新动态决策域半径根据适应度函数计算适应度值,更新局部最优位置和全说明书CN104102791A118/9页12局最优位置,迭代搜索直至迭代终止条件满足。运用本发明所提出的量子萤火虫搜索机制,使用两种量子行为即量子旋转门和量子非门来更新量子位置。0065对于一个D个栅格的等间距的待稀疏阵列,当各阵元方向图均为同向时,天线标志位和每只量子萤火虫的位置存在对应关系,每只萤火虫位置对应一种稀疏阵,通过其计算对应方向图,计算出适应度。00。
35、66量子萤火虫群体的演进通过量子位置的更新来实现,第T1次迭代第II1,2,H只量子萤火虫的第LL1,2,D维量子位的量子旋转角为量子旋转角根据其学习邻域量子萤火虫的有和无,可使用两种方法进行确定,其值由量子萤火虫根据其当前位置、局部最优位置、量子萤火虫的学习邻域最佳移动位置方向以及全局最优位置进行位置所决定。量子旋转门定义为量子比特用量子旋转门更新,按公式更新。如果量子旋转角量子比特用量子非门以某种较小的概率进行更新,即0067若第I只萤火虫新产生位置优于局部最优位置则局部最优位置被新位置替代,局部最优位置通过如下式进行更新全局最优位置更新公式为0068通过仿真对比实验进一步说明本发明的有益。
36、效果。0069一个线阵系统,为实现天线的稀疏构建,天线栅格约束规定天线阵的第一个栅格与最后一个栅格始终放置天线。在稀疏阵构建过程中,群体中个体数为50;最大迭代次数为1000,00001。仿真过程中天线阵稀疏模型使用的方法有基于粒子群算法PSO的天线阵稀疏构建方法、基于遗传算法GA的天线阵稀疏构建方法和本发明量子萤火虫搜索机制QGSO的天线阵稀疏构建方法。PSO的参数设置同PATTERNSYNTHESISOFANTENNAARRAYUSINGANOVELQUASIPSOALGORITHM,JOURNALOFELECTRONICINFORMATIONTECHNOLOGY2007,VOL29,NO。
37、12,PP30153019上发表的“PATTERNSYNTHESISOFANTENNAARRAYUSINGANOVELQUASIPSOALGORITHM”。GA的参数设置同IEEEANTENNASANDPROPAGATIONSOCIETY1994,VOL42,NO7,PP993999上发表的“THINNEDARRAYSUSINGGENETICALGORITHMS”。0070基于量子萤火虫搜索机制的天线阵稀疏构建方法的参数设置如下动态决策域更新率08;荧光素初值为5;荧光素更新率06;荧光素消失率04;感知域RS5;控制邻域NT5;E1006,E2003,E3006,E4003,E5001,C1。
38、C201/D。0071图3栅格数目为40,图3给出了三种方法PSO、GA和所提的QGSO的迭代次数与适应度函数曲线,仿真结果为50次的均值。0072图4栅格数目为60,为图4给出了三种方法PSO、GA和所提的QGSO的迭代次数说明书CN104102791A129/9页13与适应度函数曲线,仿真结果为50次的均值。0073图5栅格数目为80,为图5给出了三种方法PSO、GA和所提的QGSO的迭代次数与适应度函数曲线,仿真结果为50的均值。0074从图35可以看出所设计的量子萤火虫搜索方法与传统方法相比,提高了收敛精度,在1000次迭代时,目标函数仍有继续上升的趋势,克服了传统稀疏阵构建方法容易陷。
39、入局部最优值的缺点。0075图6栅格数目为40,图6给出了三种方法PSO、GA和所提的QGSO的方位角与幅度的稀疏阵列方向图。0076图7栅格数目为60,图7给出了三种方法的方位角与幅度的稀疏阵列方向图。0077图8栅格数目为80,图8给出了三种方法的方位角与幅度的稀疏阵列方向图。0078从图68可以看出所发明的量子萤火虫搜索机制的天线阵稀疏构建方法获得的最大副瓣电平比粒子群算法和遗传算法得到的最大副瓣电平都要低。量子萤火虫搜索机制的优化性能强于粒子群算法和遗传算法,具有更优异的全局收敛特性,克服了传统的天线阵稀疏构建方法容易陷入局部最优的缺点,获得了更低的最大相对副瓣电平,节省成本同时保证了天线阵的性能。说明书CN104102791A131/5页14图1说明书附图CN104102791A142/5页15图2说明书附图CN104102791A153/5页16图3图4说明书附图CN104102791A164/5页17图5图6说明书附图CN104102791A175/5页18图7图8说明书附图CN104102791A18。