一种模式分类方法及模式分类系统技术领域
本申请涉及模式分类技术领域,更具体地说,涉及一种模式分类方法及模式分类
系统。
背景技术
模式分类这一学科已经发展了五十余年,由于其广泛的应用价值,受到了各领域
技术人员的广泛关注,成为了包括计算机视觉、人工智能领域在内的众多学科中心研究内
容之一,特别是在指纹识别、手写体数字识别和人脸识别技术中的应用有重大的意义。某些
模式分类方法需要一种度量方式来确定模式之间的关系。通常的度量方式是和分类任务无
关的,要想让一成不变的度量方式变成与分类任务相关的方法就是进行度量学习,以增加
模式分类的针对性,提高分类精度。
Xing等人在文献Distance Metric Learning,With Application To Clustering
With Side-Information[J],Advances in Neural Information Processing Systems,
2002,15:505--512.中提出了基于成对约束的度量学习方法。该方法提出了利用成对约束
(side information)来学习马氏距离函数中的半正定矩阵的方法,从而学习到与任务相关
的度量方式。但是该度量方法由于在度量学习过程中仅考虑了全局的约束,没有考虑全局
与局部的平衡,导致应用该度量方法的模式分类方法的分类精度较低。
发明内容
为解决上述技术问题,本发明提供了一种模式分类方法及模式分类系统,以实现
提高所述模式分类方法的分类精度的目的。
为实现上述技术目的,本发明实施例提供了如下技术方案:
一种模式分类方法,包括:
获取第一训练集其中,xi表示模式种类,yi表示模式xi的类别标签,N表示
所述第一训练集中的数据个数;
将所述第一训练集映射到核隐空间,得到映射后的第一训练集,其中,映射过程中
采用预设映射函数,所述预设映射函数为kp(xi,xj)=exp(-γp||xi-xj||2),p=1,2,3,γ1=
0.1γ0,γ2=γ0,γ3=10γ0,
利用所述映射后的第一训练集构造成对约束集合;
在核隐空间中利用所述成对约束集合计算马氏距离中的半正定矩阵;
将待测数据映射到核隐空间,得到映射后的待测数据,其中,映射过程中采用预设
映射函数;
根据所述半正定矩阵与所述映射后的待测数据,寻找所述映射后的第一训练集中
的目标样本,将所述目标样本的标签赋给所述待测样本。
优选的,所述成对约束集合包括必须连接集合和不能连接集合。
优选的,利用所述映射后的第一训练集构造成对约束集合包括:
从所述映射后的第一训练集中任意选取两个样本,判断选取的两个样本的类别标
签是否相同,如果是,则将这两个样本放入所述必须连接集合中;如果否,则将这两个样本
放入所述不能连接集合中;
重复上述步骤直至所述映射后的第一训练集为空集。
优选的,在核隐空间中利用所述成对约束集合计算马氏距离中的半正定矩阵包
括:
在核隐空间中将所述马氏距离表示为d(zi,zj)=(zi-zj)TM(zi-zj),其中,M为马氏
距离中的半正定矩阵;
通过公式(1)求解所述半正定矩阵;
其中,表示半正定,s.t.表示受约束于。
优选的,根据所述半正定矩阵与所述映射后的待测数据,寻找所述映射后的第一
训练集中的目标样本,将所述目标样本的标签赋给所述待测样本包括:
根据所述半正定矩阵计算映射后的第一训练集与所述映射后的待测数据之间的
马氏距离;
将与所述映射后的待测数据之间的马氏距离最小的第一训练集中的样本作为目
标样本;
将所述目标样本的标签赋给所述待测样本。
一种模式分类系统,包括:
训练集获取模块,用于获取第一训练集其中,xi表示模式种类,yi表示模
式xi的类别标签,N表示所述第一训练集中的数据个数;
第一映射模块,用于将所述第一训练集映射到核隐空间,得到映射后的第一训练集,
其中,映射过程中采用预设映射函数,所述预设映射函数为 p
=1,2,3,γ1=0.1γ0,γ2=γ0,γ3=10γ0,
集合生成模块,用于利用所述映射后的第一训练集构造成对约束集合;
度量学习模块,用于在核隐空间中利用所述成对约束集合计算马氏距离中的半正
定矩阵;
第二映射模块,用于将待测数据映射到核隐空间,得到映射后的待测数据,其中,
映射过程中采用预设映射函数;
分类模块,用于根据所述半正定矩阵与所述映射后的待测数据,寻找所述映射后
的第一训练集中的目标样本,将所述目标样本的标签赋给所述待测样本。
优选的,所述成对约束集合包括必须连接集合和不能连接集合。
优选的,所述集合生成模块包括:
判断单元,用于从所述映射后的第一训练集中任意选取两个样本,判断选取的两
个样本的类别标签是否相同,如果是,则将这两个样本放入所述必须连接集合中;如果否,
则将这两个样本放入所述不能连接集合中;
循环单元,用于判断所述第一训练集是否为空集,如果否,则返回判断单元;如果
是,则进入度量学习模块。
优选的,所述度量学习模块包括:
设定单元,用于在核隐空间中将所述马氏距离表示为d(zi,zj)=(zi-zj)TM(zi-
zj),其中,M为马氏距离中的半正定矩阵;
第一计算单元,用于通过公式(1)求解所述半正定矩阵;
其中,表示半正定,s.t.表示受约束于。
优选的,所述分类模块包括:
第二计算单元,用于根据所述半正定矩阵计算映射后的第一训练集与所述映射后
的待测数据之间的马氏距离;
选择单元,用于将与所述映射后的待测数据之间的马氏距离最小的第一训练集中
的样本作为目标样本;
赋值单元,用于将所述目标样本的标签赋给所述待测样本。
从上述技术方案可以看出,本发明实施例提供了一种模式分类方法及模式分类系
统,其中,所述模式分类方法在获取所述第一训练集和所述待测数据后,都将其映射到核隐
空间中,从而引入了局部特性,以实现对所述第一训练集和所述待测数据的全局和局部的
综合衡量,从而实现对所述第一训练及和所述待测数据的全面利用,进而提高所述模式分
类方法的分类精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现
有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本
发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据
提供的附图获得其他的附图。
图1为本申请的一个实施例提供的一种模式分类方法的流程示意图;
图2为本申请的另一个实施例提供的一种模式分类方法的流程示意图;
图3为本申请的又一个实施例提供的一种模式分类方法的流程示意图;
图4为本申请的一个实施例提供的一种模式分类系统的结构示意图;
图5为本申请的一个实施例提供的一种集合生成模块的结构示意图;
图6为本申请的一个实施例提供的一种度量学习模块的结构示意图;
图7为本申请的一个实施例提供的一种分类模块的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完
整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于
本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他
实施例,都属于本发明保护的范围。
本申请实施例提供了一种模式分类方法,如图1所示,包括:
S101:获取第一训练集其中,xi表示模式种类,yi表示模式xi的类别标签,
N表示所述第一训练集中的数据个数;
S102:将所述第一训练集映射到核隐空间,得到映射后的第一训练集,其中,映射
过程中采用预设映射函数,所述预设映射函数为kp(xi,xj)=exp(-γp||xi-xj||2),其中,p
=1,2,,γ1=0.1γ0,γ2=γ0,γ3=10γ0,
S103:利用所述映射后的第一训练集构造成对约束集合;
S104:在核隐空间中利用所述成对约束集合计算马氏距离中的半正定矩阵;
S105:将待测数据映射到核隐空间,得到映射后的待测数据,其中,映射过程中采
用预设映射函数;
S106:根据所述半正定矩阵与所述映射后的待测数据,寻找所述映射后的第一训
练集中的目标样本,将所述目标样本的标签赋给所述待测样本。
其中,所述第一训练集中的xi∈Rd表示模式种类,yi={1,2,…,c}表示xi的类别标
签,c表示类别数,d表示模式的特征个数。
在本实施例中,将所述第一训练集映射到核隐空间,即
xi→zi=[k1(xi,x1),…,k1(xi,xN),k2(xi,x1),…,k2(xi,xN),k3(xi,x1),…,k3(xi,
xN)]T
其中,zi∈R3N为在核隐空间的映射像,R表示实数集,在这个过程中采取的映射函
数为预设映射函数其中,p=1,2,3,γ1=0.1γ0,γ2=γ0,
γ3=10γ0,|| ||表示取范数。
在上述实施例的基础上,在本申请的另一个实施例中,如图2所示,所述模式分类
方法包括:
S201:获取第一训练集其中,xi表示模式种类,yi表示模式xi的类别标签,
N表示所述第一训练集中的数据个数;
S202:将所述第一训练集映射到核隐空间,得到映射后的第一训练集 其
中,映射过程中采用预设映射函数,所述预设映射函数为 p
=1,2,3,γ1=0.1γ0,γ2=γ0,γ3=10γ0,
S203:从所述映射后的第一训练集中任意选取两个样本,判断选取的两个样本的
类别标签是否相同,如果是,则将这两个样本放入所述必须连接集合中;如果否,则将这两
个样本放入所述不能连接集合中;
S204:重复步骤203,直至所述映射后的第一训练集为空集;
S205:在核隐空间中利用所述成对约束集合计算马氏距离中的半正定矩阵;
S206:将待测数据映射到核隐空间,得到映射后的待测数据,其中,映射过程中采
用预设映射函数;
S207:根据所述半正定矩阵与所述映射后的待测数据,寻找所述映射后的第一训
练集中的目标样本,将所述目标样本的标签赋给所述待测样本。
在本实施例中,所述成对约束集合包括必须连接集合S和不能连接集合D。利用所
述映射后的第一训练集构造成对约束集合包括:
从所述映射后的第一训练集中任意选取两个样本zi和zj,判断选取的两个
样本的类别标签是否相同(yi是否等于yj),如果是,则将这两个样本放入所述必须连接集合
S中;如果否,则将这两个样本放入所述不能连接集合D中;
重复上述步骤直至所述映射后的第一训练集为空集。
在上述实施例的基础上,在本申请的又一个实施例中,如图3所示,所述模式分类
方法包括:
S301:获取第一训练集其中,xi表示模式种类,yi表示模式xi的类别标签,
N表示所述第一训练集中的数据个数;
S302:将所述第一训练集映射到核隐空间,得到映射后的第一训练集 其
中,映射过程中采用预设映射函数,所述预设映射函数为 p
=1,2,3,γ1=0.1γ0,γ2=γ0,γ3=10γ0,
S303:从所述映射后的第一训练集中任意选取两个样本,判断选取的两个样本的
类别标签是否相同,如果是,则将这两个样本放入所述必须连接集合中;如果否,则将这两
个样本放入所述不能连接集合中;
S304:重复步骤303,直至所述映射后的第一训练集为空集;
S305:在核隐空间中将所述马氏距离表示为d(zi,zj)=(zi-zj)TM(zi-zj),其中,M
为马氏距离中的半正定矩阵;
S306:通过公式(1)求解所述半正定矩阵;
其中,表示半正定,s.t.表示受约束于;
S307:将待测数据映射到核隐空间,得到映射后的待测数据,其中,映射过程中采
用预设映射函数;
S308:根据所述半正定矩阵计算映射后的第一训练集与所述映射后的待测数据之
间的马氏距离;
S309:将与所述映射后的待测数据之间的马氏距离最小的第一训练集中的样本作
为目标样本;
S310:将所述目标样本的标签赋给所述待测样本。
其中,|| ||M表示取范数,下标M表示范数类型为M范数。
在本实施例中,将所述待测数据x∈Rd映射到所述核隐空间,得到映射后的待测数
据z∈R3N,具体映射过程与将所述第一训练集映射到所述核隐空间的过程相同。根据所述半
正定矩阵M计算映射后的第一训练集与所述映射后的待测数据z之间的马氏距离,即d(zi,
z)=(zi-z)TM(zi-z),i=1,…,N,获得N个不同的马氏距离,每个马氏距离对应一个第一训
练集中的样本;将与所述映射后的待测数据之间的马氏距离最小的第一训练集中的样本作
为目标样本,并将所述目标样本的标签赋给所述待测样本(即如果则把
x判定为ym类,其中表示当d(zi,z)最小时zi和z的取值)。
相应的,本申请实施例还提供了一种模式分类系统,如图4所示,包括:
训练集获取模块A100,用于获取第一训练集其中,xi表示模式种类,yi表
示模式xi的类别标签,N表示所述第一训练集中的数据个数;
第一映射模块A200,用于将所述第一训练集映射到核隐空间,得到映射后的第一
训练集,其中,映射过程中采用预设映射函数,所述预设映射函数为kp(xi,xj)=exp(-γp||
xi-xj||2),p=1,2,3,γ1=0.1γ0,γ2=γ0,γ3=10γ0,
集合生成模块A300,用于利用所述映射后的第一训练集构造成对约束集合;
度量学习模块A400,用于在核隐空间中利用所述成对约束集合计算马氏距离中的
半正定矩阵;
第二映射模块A500,用于将待测数据映射到核隐空间,得到映射后的待测数据,其
中,映射过程中采用预设映射函数;
分类模块A600,用于根据所述半正定矩阵与所述映射后的待测数据,寻找所述映
射后的第一训练集中的目标样本,将所述目标样本的标签赋给所述待测样本。
其中,所述第一训练集中的xi∈Rd表示模式种类,yi={1,2,…,c}表示xi的类别标
签,c表示类别数,d表示模式的特征个数。
在本实施例中,将所述第一训练集映射到核隐空间,即
xi→zi=[k1(xi,x1),…,k1(xi,xN),k2(xi,x1),…,k2(xi,xN),k3(xi,x1),…,k3(xi,
xN)]T
其中,zi∈R3N为在核隐空间的映射像,R表示实数集,在这个过程中采取的映射函
数为预设映射函数kp(xi,xj)=exp(-γp||xi-xj||2),其中,p=1,2,3,γ1=0.1γ0,γ2=
γ0,γ3=10γ0,|| ||表示取范数。
在本申请的一个具体实施例中,所述训练集获取模块A100、第一映射模块A200、集
合生成模块A300集成于一个数据预处理模块中;所述第二映射模块A500、分类模块A600集
成于一个分类决策模块中。本申请对此并不做限定,具体视实际情况而定。
在上述实施例的基础上,在本申请的另一个实施例中,所述成对约束集合包括必
须连接集合S和不能连接集合D。
在上述实施例的基础上,在本申请的又一个实施例中,如图5所示,所述集合生成
模块A300包括:
判断单元A310,用于从所述映射后的第一训练集中任意选取两个样本,判断选取
的两个样本的类别标签是否相同,如果是,则将这两个样本放入所述必须连接集合中;如果
否,则将这两个样本放入所述不能连接集合中;
循环单元A320,用于判断所述第一训练集是否为空集,如果否,则返回判断单元
A310;如果是,则进入度量学习模块A400。
在本实施例中,所述判断单元A310从所述映射后的第一训练集中任意选
取两个样本zi和zj,判断选取的两个样本的类别标签是否相同(yi是否等于yj),如果是,则
将这两个样本放入所述必须连接集合S中;如果否,则将这两个样本放入所述不能连接集合
D中;
所述循环单元A320用于判断所述第一训练集是否为空集,如果否,则返回
判断单元A310;如果是,则进入度量学习模块A400。
在上述实施例的基础上,在本申请的又一个实施例中,如图6所示,所述度量学习
模块A400包括:
设定单元A410,用于在核隐空间中将所述马氏距离表示为d(zi,zj)=(zi-zj)TM
(zi-zj),其中,M为马氏距离中的半正定矩阵;
第一计算单元A420,用于通过公式(1)求解所述半正定矩阵;
其中,表示半正定,s.t.表示受约束于。
在本实施例中,|| ||M表示取范数,下标M表示范数类型为M范数。
在上述实施例的基础上,在本申请的又一个实施例中,如图7所示,所述分类模块
A600包括:
第二计算单元A610,用于根据所述半正定矩阵计算映射后的第一训练集与所述映
射后的待测数据之间的马氏距离;
选择单元A620,用于将与所述映射后的待测数据之间的马氏距离最小的第一训练
集中的样本作为目标样本;
赋值单元A630,用于将所述目标样本的标签赋给所述待测样本。
在本实施例中,将所述待测数据x∈Rd映射到所述核隐空间,得到映射后的待测数
据z∈R3N,具体映射过程与将所述第一训练集映射到所述核隐空间的过程相同。根据所述半
正定矩阵M计算映射后的第一训练集与所述映射后的待测数据z之间的马氏距离,即d(zi,
z)=(zi-z)TM(zi-z),i=1,…,N,获得N个不同的马氏距离,每个马氏距离对应一个第一训
练集中的样本;将与所述映射后的待测数据之间的马氏距离最小的第一训练集中的样本作
为目标样本,并将所述目标样本的标签赋给所述待测样本(即如果则把
x判定为ym类,其中表示当d(zi,z)最小时zi和z的取值)。
下面将利用本申请提供的所述模式分类方法对电离层(Ionoshpere)数据集进行
模式分类的识别率与基于成对约束度量学习方法进行模式分类的识别率进行比对,在本实
施例中,所述待测数据中共有116个样本,因此要重复执行所述分类决策模块116次,统计出
被正确识别的样本个数,计算出识别率,详见表1。可以发现,本申请实施例提供的所述模式
分类方法在电离层数据上的识别率明显优于基于成对约束度量学习方法,具有一定的优
势。
表1在电离层数据上的识别率(%)
所述电离层数据集是来自UCI标准数据库中测试分类系统的一个数据集。每条数
据反映的是来自UCI标准数据库中测试分类系统的一个数据集。每条数据反映的是电离层
中自由电子的雷达回波信号。该数据集共有351个样本,总共分为两类,其中第一类有127组
数据,第二类有224组数据,特征个数为34.为了验证所述模式分类方法的可行性,把所述电
离层数据集分为所述第一训练集和所述待测数据。所述第一训练集中的样本个数占整个电
离 层数据集的2/3,其余的1/3作为所述待测数据。所述第一训练集和所述待测数据的划分
重复10次,表1的结果为10次划分后分别进行测试的平均结果。
综上所述,本申请实施例提供了一种模式分类方法及模式分类系统,其中,所述模
式分类方法在获取所述第一训练集和所述待测数据后,都将其映射到核隐空间中,从而引
入了局部特性,以实现对所述第一训练集和所述待测数据的全局和局部的综合衡量,从而
实现对所述第一训练及和所述待测数据的全面利用,进而提高所述模式分类方法的分类精
度。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他
实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。
对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的
一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明
将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一
致的最宽的范围。