用于提供诸如飞机票价可用性的票价可用性的方法和系统发明背景
1.发明领域
本发明领域涉及用于推断哪些票价等级可用于旅程或服务的方
法、服务器和计算机程序产品,诸如用于飞机票价、火车票价、酒店
价格、商品(事实上是价格不固定而是可变的任意类型的商品或服
务),并且因此能够提供对票价等级可用性的估计是有用的。
2.技术背景
全球分销系统(GDS)从OAG(官方航线指南:参见例如
www.oag.com)搜集时刻表,从ATPCO搜集票价,并且从航空公司搜
集票价等级可用性,并且将这个信息存储在它们自己的系统中。从这
些来源周期性地更新这种所存储信息。针对这种GDS系统运行可用
性查询可能速度慢、成本高并且需要使用能量来执行搜索并传输结
果。针对许多航空公司运行可用性查询需要访问多个服务器,这也很
慢,并且需要使用能量来执行搜索并传输结果。
存储足够长的时间范围(例如,1年)内所有可能机场之间的所有
可能路线的票价等级可用性将需要非常大的数据存储容量。
3.相关领域讨论
FR2841018(B1)公开了用于加载航班时刻表修改的方法,所述方
法包括下列步骤:接收至少一组航班修改;检索所述组内的单个修改
并且存储在寄存器内以便未来调度;通过经由预订分配服务器访问记
录和航班时刻表数据库来模拟航班时刻表修改所涉及的预定的重新
分配;以及最终更新预订清单的航班时刻表数据库。
以举例的方式,在飞机票价航班定价的情况下,按照惯例从GDS
获取航班定价(关于GDS系统如何工作,并且更一般地说,关于航班
定价如何工作的更详细解释,参见部分C)。航班对比服务(诸如
Skyscanner)以及一些航空公司付费来从GDS获取实时的、可预订价
格;这些价格是潜在乘客可以预订的真实可预订价格。然而,许多潜
在乘客通常仅浏览并且并不需要完全准确的可预订价格,而是将满足
于估计值。因此,如果可以设计出准确的价格估计方法和系统,尤其
是如果所述方法和系统消除对访问第三方来源(如同GDS)的依赖性,
那么这是非常有用的,所述第三方来源不仅耗费成本来访问,而且可
能不可用于提供所需信息。
因此期望提供一种提供对一段时间内任意两个机场之间的票价
等级可用性的估计的方式,所述方式不像多次访问一个或多个远程服
务器来提供估计那么慢,并且所述方式需要较少能量来提供票价等级
可用性的估计,并且所述方式不需要预先存储针对所有可能查询的结
果所需要的巨大数据存储容量。
发明概述
根据本发明的第一方面,提供了通过下列各项推断针对指定航班
或多个指定航班的票价等级可用性的方法:
(a)接收针对所述(多个)航班的可查看、实时可预订价格,其
中所述价格信息不伴随针对那些(多个)航班的完整票价等级信息;
(b)将所述可查看、实时可预订价格与从所存储数据(诸如有效
旅程数据、诸如FROP数据的票价数据和税费/附加费数据)计算出
的一组价格相比较;以及
(c)通过确定在最接近地匹配所述可查看实时可预订价格的所计
算价格中使用了哪个票价等级来确定在所述可查看实时可预订价格
中使用了哪个票价等级。
一个优点是,所述方法不需要多次访问一个或多个远程服务器来
真正建立票价可用性并计算票价价格以便预先存储针对所有可能查
询的结果所需要的时间或能量。另外的优点是,所述方法不需要预先
存储针对所有可能查询的结果所需要的巨大数据存储容量。实施所述
方法的计算机以新的方式操作,并且所述方法克服了所察觉到的问
题。所述方法可以是以下方法:其中所存储数据可以来自已缓存的、
先前获取的实时的、可预订价格。
所述方法可以是以下方法:其中票价等级限定应用到针对指定航
班或多个指定航班的可适用规则或限制中的一些或全部,并且包括下
列各项中的一个或多个:等级代码,诸如C(商务舱全价)或Y(经济舱
全价);票价类型,诸如头等舱或经济舱;类别,诸如合格性、最低
逗留、中途停留或罚款。
所述方法可以是以下方法:其中每个所推断票价等级可用性包括
所推断票价等级价格。
所述方法可以是以下方法:其中步骤(c)包括向服务器发送所推断
票价等级可用性。
所述方法可以是以下方法:其中服务器是航空公司服务器。
所述方法可以是以下方法:其中步骤(b)包括使用规则以便分析
从所存储数据计算出的一组价格中的模式。
所述方法可以是以下方法:其中在步骤(b)中计算从所存储数据
计算出的一组价格包括从历史价格构建统计模型,识别缺失的报价候
选,以及基于统计模型对报价候选定价。
所述方法可以是以下方法:其中用于统计模型的输入包括反向的
路线等同物。
根据本发明的第二方面,提供了服务器,所述服务器被配置来执
行本发明的第一方面的任意方面的方法。
根据本发明的第三方面,提供了在非暂时性存储介质上实施的计
算机程序产品,所述计算机程序产品在计算机上运行时被布置来推断
针对指定航班或多个指定航班的票价等级可用性,所述计算机程序产
品在计算机上运行时被布置来:
(a)接收针对所述(多个)航班的可查看、实时可预订价格,其
中所述价格信息不伴随针对那些(多个)航班的完整票价等级信息;
(b)将所述可查看、实时可预订价格与从所存储数据(诸如有效
旅程数据、诸如FROP数据的票价数据和税费/附加费数据)计算出
的一组价格相比较;以及
(c)通过确定在最接近地匹配所述可查看实时可预订价格的所计
算价格中使用了哪个票价等级来确定在所述可查看实时可预订价格
中使用了哪个票价等级。
根据本发明的第四方面,提供了推断哪些票价等级可用的方法,
所述方法包括下列步骤:
(i)计算机服务器接收针对商品或服务(诸如机票)的价格以及限
定那些商品或服务的参数的请求,
(ii)配置一个或多个处理器来在相对于上述步骤(i)的任意时间
处,通过分析不完整历史价格数据集中的模式从所述数据集确定估计
价格;
(iii)配置一个或多个处理器来计算满足所述参数的所述商品或
服务的所述所请求价格的估计值;
(iv)将所述请求发送到分销系统用于票价价格;
(v)从所述分销系统接收所述分销系统的票价价格;
(vi)将来自步骤(iii)的针对所述所请求价格的所述所计算估计值
与在步骤(v)中接收的所述分销系统的票价价格相比较,以便推断票
价等级可用性,以及
(vii)向计算装置提供所述所推断的票价等级可用性。
一个优点是,所述方法不需要多次访问一个或多个远程服务器来
真正建立票价可用性并计算票价价格以便预先存储针对所有可能查
询的结果所需要的时间或能量。另外的优点是,所述方法不需要预先
存储针对所有可能查询的结果所需要的巨大数据存储容量。实施所述
方法的计算机以新的方式操作,并且所述方法克服了所察觉到的问
题。注意,在这种方法中,步骤(ii)和(iii)不必是分开的步骤,而是可
以是同一步骤的部分。
所述方法可以是以下方法:其中限定那些商品或服务的参数包括
下列各项中的一个或多个:活动类型,诸如飞机票价、酒店预订、火
车票价;日期范围;目的地;起点;所期望的天气情况;星级;关键
词;任意其他用户限定的偏好。
所述方法可以是以下方法:其中估计价格的确定通过推断、推导
或预测估计价格来执行。
所述方法可以是以下方法:其中步骤(ii)包括:
(a)从计算机数据存储获取历史价格报价;
(b)将历史价格报价按类别分组;
(c)推导针对每个分组的统计值;
(d)在计算机上存储针对每个分组的的分类器,所述分类器包括
所推导统计值,以及
(e)识别具有所请求价格所对应的所存储分类器的分组。
所述方法可以是以下方法:其中步骤(iii)包括:使用来自对应于
所识别分组的所存储分类器的统计值来计算在指定日期范围的所请
求价格的一组估计值。
所述方法可以是以下方法:其中分销系统是全球分销系统。
所述方法可以是以下方法:其中每个所推断票价等级可用性包括
所推断票价等级价格。
所述方法可以是以下方法:其中步骤(vii)包括向服务器发送所推
断票价等级可用性。
所述方法可以是以下方法:其中服务器是航空公司服务器。
所述方法可以是以下方法:其中步骤(ii)包括使用规则以便分析
数据集中的模式。
所述方法可以是以下方法:其中步骤(ii)包括产生价格的概率模
型的简捷贝叶斯分类器机器学习方法,并且所述模型用来预测未查看
的价格。
所述方法可以是以下方法:其中使用查看到的价格和对应于它们
的多组特征来训练分类器。
所述方法可以是以下方法:其中特征与请求有关,并且包括下列
各项中的一个或多个:星期几离开、停留时间、星期六停留、航空公
司、行程时间、路线、月份。
所述方法可以是以下方法:其中分类器接着通过被给出一组特征
以及提供具有那些特征的最有可能的价格来预测未查看价格的价格。
所述方法可以是以下方法:其中可以通过训练具有不同特征的多
个模型以及比较所述不同模型的预测准确性来推导特征。
所述方法可以是以下方法:其中步骤(ii)包括从历史价格构建统
计模型,识别缺失的报价候选,以及基于统计模型对报价候选定价。
所述方法可以是以下方法:其中估计每个候选报价的价格发生在
下述步骤中:从所述报价提取类别特征值;从数据库检索针对所提取
类别训练过的分类器;从所述报价候选提取所有特征值;通过计算针
对存储在分类器中的每个价格范围的贝叶斯后验概率以及选择具有
最高贝叶斯后验概率的价格范围等级来将所述候选报价分类,以及将
价格等级附接到候选报价。
所述方法可以是以下方法:其中用于统计模型的输入包括:路线
列表,分类器分类方案,历史报价以及具有权重的一组所支持特征。
所述方法可以是以下方法:其中按年龄筛选历史报价。
所述方法可以是以下方法:其中用于统计模型的输入包括反向的
路线等同物。
所述方法可以是以下方法:其包括下列步骤:将已缓存的票价价
格包括在一组价格估计值中。
所述方法可以是以下方法:其中价格是针对为单程旅程的旅程。
所述方法可以是以下方法:其中价格是针对为往返旅程的旅程。
所述方法可以是以下方法:其中价格包括机票价格。
所述方法可以是以下方法:其中价格包括火车票价格。
所述方法可以是以下方法:其中价格包括租车价格。
所述方法可以是以下方法:其中价格包括酒店价格。
所述方法可以是以下方法:其中请求包括灵活的搜索请求。
根据本发明的第五方面,提供了服务器,所述服务器被配置来执
行本发明的第四方面的任意方面的方法。
根据本发明的第六方面,提供了在非暂时性存储介质上实施的计
算机程序产品,所述计算机程序产品在计算机上运行时被布置来推断
哪些票价等级是可用的,所述计算机程序产品在计算机上运行时被布
置来:
(i)接收针对商品或服务(诸如机票)的价格以及限定那些商品或
服务的参数的请求,
(ii)配置一个或多个处理器来在相对于上述步骤(i)的任意时间
处,通过分析不完整历史价格数据集中的模式从所述数据集确定估计
价格;
(iii)配置一个或多个处理器来计算满足所述参数的所述商品或
服务的所述所请求价格的估计值;
(iv)将所述请求发送到分销系统用于票价价格;
(v)从所述分销系统接收所述分销系统的票价价格;
(vi)将来自(iii)的针对所述所请求价格的所述所计算估计值与
在(v)中接收的所述分销系统的票价价格相比较,以便推断票价等级
可用性,以及
(vii)向计算装置提供所述所推断的票价等级可用性。
根据本发明的第七方面,提供了与本发明的第二或第五方面的服
务器连接的计算机终端,所述计算机终端被布置来发送请求,所述请
求限定针对商品或服务(诸如机票)的票价等级可用性以及限定那些
商品或服务的参数的请求,其中所述计算机还被布置来接收输出的所
推断票价等级可用性。
根据本发明的第八方面,提供了物品或服务,诸如飞机票,并且
其中使用根据本发明的第一或第四方面的方法或使用根据本发明的
第二或第五方面的服务器来提供针对所述物品或服务的票价等级可
用性。
根据本发明的第九方面,提供了基于网络的价格对比网站,终端
用户可以通过提供针对票价等级可用性的请求来与其交互,并且所述
基于网络的价格对比网站向服务器提供所述请求,所述服务器使用根
据本发明的第一或第四方面的方法来估计票价等级可用性。
附图简述
现将仅借助实例并且下述附图来描述本发明的上述和其他方面,
在附图中:
图1示出用于从其他价格估计价格的系统的实例,其中使用那些
价格的目的是增强所查看价格的高速缓存。
图2示出“不同”引擎如何能够用来从事实更新得出票价等级的可
用性的实例。
图3示出适合用于在简捷贝叶斯分类中使用的方程式的实例。
图4示出特征值由数字区域和价格范围(斗式)表示频率信息表示
的实例。
图5示出完全训练过程的实例。
图6示出简捷贝叶斯分类器可以用来定价每个候选报价占位符
的实例。
图7示出推断缺失报价的全过程的实例。
图8示出提供针对票价可用性和价格的估计服务的服务器与输
入数据源之间的连接的实例,以及针对模式和用户的输出。
图9示出用户界面的实例。
图10示出用户界面的实例。
图11示出用于执行搜索过程的系统的实例。
图12示出用户界面的实例。
图13示出用户界面输出的实例。
图14示出用户界面输出的实例。
图15示出用于浏览器搜索的架构的实例。
图16示出用于系统的总体系统架构的实例,所述系统包括针对
票价可用性和价格的估计服务的规定。
图17示出示例性GDS配置。
图18示出关于票价等级记录、票价类别和类别数据表的票价的
实例。
图19示出提供票价定价选项的过程的实例。
图20示出定价引擎、AVS/NAVS、无缝效应(轮询)、高速缓存
DB与航空系统主机之间关系的实例。
图21示出包括可用性服务器的示例性系统。
图22示出使用条形针对估计价格的置信度范围的示例性图形指
示,所述估计价格跨越从被发现的价格范围的最低价格到最高价格的
价格范围。所述条形被提供用于出发旅程日期的范围以及用于返回旅
程日期的范围。
图23示出用于得出票价等级可用性的系统中的主要部件的实例
以及所述系统中信息的流动的实例。
图24示出用于得出票价等级可用性的过程的实例。
详述
本发明的一个实现提供‘基于模型定价’。这种情况在下文部分A
中描述。
A.基于模型定价
使用基于模型的数据内插提供航班价格估计。
背景/动机
针对旅程的车票价格计算起来很复杂–这是那些可能的路线安
排、限定票价和那些票价的可用性的计算的结果。这些计算通常在全
球分销系统(GDS)中执行,并且针对这样一个系统运行查询可能很缓
慢并且还可能耗费金钱。
在GDS中提交票价的航空公司通常使用我们称之为“预定的”的
定价模型。注意这样一个模型的关键是如果存在在O1这一天出发并
且在R1这一天返回的返回行程,那么往返票P(O1,R1)的价格不等于两
个单程票P(O1)+P(R1)的总和。可替代的定价模型(我们将称为‘预算’),
定价是以下定价:其中P(O1,R1)=P(O1)+P(R1)。
预定的定价模型的两个重要后果是其施加在所查看价格的重新
使用的限制,以及存储它们所需要的空间。
在预算模型中,如果做出两个‘往返’查询,一个是日期O1R1并
且另一个是日期O2R2,那么所得出的价格P(O1)、P(R1)、P(O2)和P(R2)
可以用来计算多达四个往返票价(即P(O1,R1)、P(O1,R2)、P(O2,R1)、
P(O2,R2)),也具有用于在单程查询中使用的四个票价(P(O1)、P(R1)、
P(O2)和P(R2))。如果查询被运行用于‘预定的’模型,将仅存在两个票
价,即P(O1,R1)和P(O2,R2)。因此在预算模型中,两个查询允许我们
回答八个查询,而在预定的模型中,两个查询允许我们回答两个查询。
假设机票价格仅针对今天和即将到来的364天可用,路线上所有
可能的单程和往返票价可以通过执行365天往返查询发现。在预定的
模型的情况下,将需要存在:365*(365+1)/2=66,795个往返查询,以
及在每个方向上365个单程查询。因此为了构建针对路线的价格的完
整列表,预定的模型需要对于预算模型约185倍的查询。
如果人们具有所有那些查询的结果,将必须存在185倍的所需要
存储空间以便节省票价。
上述仅是针对两个限定机场之间路线的实例。实际上,世界上约
有5,000个商用机场。因此机场之间可能旅程的数量是约(5,000)2。考
虑到上文描述的可能的往返查询的数量365*(365+1)/2=66,795,这导
致(5,000)2*365*(365+1)/2个一年内所有机场之间可能查询的总数量,
也就是约1012。所意味的数据存储的量是相当大的。
形成预定的模型路线的‘全貌特征’所需要的查询的数量连同
GDS成本的大幅增加意味着构建这样一个高速缓存是不实际的(即,
这是不利的)。结果则是一个不完整的高速缓存,其带有票价没有被
查看的‘漏洞’。
然而,由GDS返回的价格是应用票价规则和可用性的结果。因
此,在所查看的票价中存在模式和一致性。此实例依赖于使用那些模
式来允许我们,使用反应起初生成价格的票价规则的模型,内插从高
速缓存缺失的票价。
用于根据其他价格估计价格的系统
提供用于根据其他价格估计价格的系统,其目的是使用那些价格
来增加所查看票价(例如,由请求针对实时可预订票价的价格的用户
查看)的高速缓存。在图1中示出示例性模型。
估计器使用从报价推导的统计值以便预测其他报价。一个非常简
单的估计器可以计算所有缺失的票价等于所有所查看票价的平均值。
可以通过做出更为复杂的模型以便考虑首先用来生成票价的规则类
型来改进预测的水平。
例如,限定针对旅程的票价是否有效的常规‘规则’是旅程是否涉
及在星期六晚上停留。通常,这样的规则意味着涉及不在目的地度过
星期六晚上的日期要昂贵得多–规则被设计来对通常期望仅在工作日
外出的商务旅客不利。因此一个更好的模型应被计算,所述更好的模
型包括两个平均值–涉及星期六晚上停留的所有可查看票价的平均
值,以及不涉及星期六晚上停留的所有所查看票价的平均值。通过首
先计算日期对之间是否存在星期六晚上,并且接着回复对应的平均
值,算法将接着预测针对先前查看的日期对的价格。这致使估计具有
增加的准确性。
可以对模型做出类似的改进–例如,旅行的价格取决于星期几变
化–星期一通常比星期三更昂贵,因此也考虑星期几计算并使用平均
值也将潜在地改进模型准确性。
因此统计模型可提供来,使用可能已经由例如人得出的统计值和
规则,预测票价。产生统计模型的可替代方法也是可能的–此方法使
用被称为‘简捷贝叶斯分类器’的机器学习方法来产生票价的概率模
型,并且所述模型用来预测未查看的票价。使用所查看的价格和对应
于分类器的一组‘特征’训练所述分类器。特征与生成票价的查询有
关,并且可包括:星期几离开、停留时间、星期六停留、航空公司等。
分类器接着通过被给出一组特征以及提供具有那些特征的最有可能
的价格来预测未查看价格的价格。
用于预测价格的统计模型可接着被查询以便预测先前未查看的
票价,或在想要测量模型准确性的情况下所查看的票价。
关键特征和它们的计算
可用于训练分类器的特征包括:
·星期六停留
·停留时间
·星期几
·行程时间
·航空公司
·网站
·路线
·日期–以日和年-月的水平
·月份
已经通过分析列举在FROP(票价规则输出产品,来自ATPCO(航
空公司收费出版公司))中的所有票价以及确定哪些规则应用到最大
数量的票价得出这些特征。例如,票价的54%具有最小化停留规则,
并且所有票价的31%具有需要星期六晚上停留在目的地的最小化停
留规则。因此,特征很可能是针对以价格为基础的分类的有用特征。
对特征的利用的更为准确的估计可以通过训练具有不同特征的多个
模型以及比较不同模型的预测准确性得出。
益处
·缺失航班价格数据的估计
·使用预数据的生成有关的特征以产生优异的预测模型
应用的(多个)潜在市场和/或(多个)区域
模型可用在航空工业中以便估计先前未查看的价格,以便将它们
呈现给用户,或确定是否值得查询来返回价格,例如,很可能物有所
值。
模型可用在其他领域中,在所述其他领域中有优点的是获取价格
(例如,查询费用),但是其中所述价格以结构化方式(例如,定价规则)
生成。这包括诸如酒店、火车和租赁汽车的旅行产品,以及利用结构
化定价的其他产品,诸如保险。
其他应用
消费者价格对比网站试图通过将价格与那些竞争对手比较的竞
争性地定价的公司
基于模型的定价–推断缺失报价
缺失报价的推断可发生于两个阶段,训练和估计。
·训练
○根据历史价格构建统计模型
·估计
○识别缺失的报价候选
○基于统计模型定价报价候选
在一个实例中,统计模型是利用历史价格周期性(例如,每天)训
练的一组简捷贝叶斯分类器。基于路线操作员的数据推断缺失报价并
且使用分类器定价缺失报价。
统计模型的实施例
简捷贝叶斯分类基于通过一组给定特征描述的物体属于给定等
级的概率与来自此等级的物体表征为一组给定特征的概率之间的依
赖性:参见图3中的方程式(1)和方程式(2)。
方程式(1)和方程式(2)可简化为图3中的方程式(3)。在方程式
(1)-(3)中:
·C是输入物体可被分类到的等级(例如,在我们的情况下:价格
范围例如75-125欧元)
·Fi是特征值(例如,在我们的情况下:周五,法国航空公司网站
等。)
可使用图3中的方程式(4)表达分类。
对于一组给定的特征值来说,我们期望发现一个等级(价格范
围),在所述等级中它们最经常发生并且因此最大化一个等级具有输
入组特征的概率。
训练
分类器训练的意图是计算特征值针对所查看价格范围发生的频
率。在例如图4中示出的过程中,特征值通过数字区域和价格范围(斗
式)表示频率信息表示(例如,在75-125欧元、126-175欧元等范围中
的特征值量)。
下述元素被输入用于示例性训练过程:
·路线列表
·分类器分类方案
·历史报价
·具有权重的一组所支持特征
路线的列表设置针对训练的界限。类别限定给定分类器的范围并
且通过一组特征值表达。实验上选定的类别由城市级路线和航空公司
(实例:伦敦–巴黎,法国航空公司)组成,但是其他选择也是可能的(例
如,没有航空公司的城市级路线)。每个类别通常存在一个分类器。
仅利用匹配其类别的历史报价训练分类器(例如,仅报价由法国航空
公司操作的伦敦–巴黎路线)。
在训练过程的第一步骤中,从数据库中检索给定数量的带有特定
最大年龄的最近历史报价。针对每个报价评估类别。根据类别来分组
报价。每一组变成针对一个分类器的训练组。
可使用针对反向的路线等同物的报价扩展训练组。实例:对于法
国航空公司的路线伦敦斯坦斯特德机场–罗马钱皮诺机场的历史报
价,反向的路线等同物将是罗马钱皮诺机场–伦敦斯坦斯特德机场,
具有相同的航空公司和其他细节(如同价格)。针对反向路线的报价包
括在通过调整其重要性的权重缩放的训练。
接下来,对于每个组来说,具有从报价提取的下述统计信息的分
类器建立:
·多个加权的包含每个不同特征值的报价
·多个加权的包含给定间隔尺寸的每个间隔范围的每个不同特
征值的报价
·多个所查看价格范围、每个价格范围的报价和所有报价
施加到许多报价的权重在特征之间不同以便强调他们的一些的
更大影响(例如,包括工作日的旅程可能比停留时间更为重要)。
过程结束于针对包含统计信息的每个训练组的分类器(例如,针
对由法国航空公司操作的伦敦-法国的一个分类器)。模型被存储用于
将来的使用。分类器可被再次训练,例如周期性地或在多个历史报价
变化时。
分类器可以仅在匹配其类别的一定数量的报价可获得时被创建。
在图5中示出完全训练过程的实例。
除上文列举的参数之外,训练过程可通过以下内容参数化:
·每个路线的价格范围的大小(例如,1欧元、5欧元、10欧元)
·施加到反向路线的权重
·基于报价年龄施加的加权函数
估计缺失报价
在一个实例中,用于针对给定的路线和日期范围搜索单程或往返
航班。系统响应于针对来自数据库的一组最便宜报价的查询:多达每
个日期(或日期对–针对往返航班)一次。响应可以不包括针对某些日
期(日期对)的报价。可使用所训练的简捷贝叶斯分类器推断缺失报
价。
下述元素可以是用于推断过程的输入:
·路线
·带有缺失最便宜报价信息的日期(日期对)列表
分类器可仅用来定价现有报价,所以候选报价必须被首先评估。
候选是每个可应用机场对、日期(日期对)、航空公司和可用于所查询
路线的中介的组合。基于过程输入和路线操作者的数据库生成列表。
接下来,简捷贝叶斯分类器可以用来定价每个候选报价占位符。
例如参见图6。
在下述步骤中可发生针对每个候选报价的推断价格:
·从报价提取类别特征值
·从数据库检索被训练用于所提取类别的分类器
·从报价候选提取所有特征值
·通过下述分类候选报价:
○针对存储在分类器中的每个价格范围计算贝叶斯后验概率
○利用最高的贝叶斯后验概率选择价格范围等级
·将价格等级附接到候选报价
如果针对给定的候选报价不存在分类器,价格没有被推断并且日
期(日期对)槽保持空白。
过程可致使每个日期(日期对)的多个已定价报价候选。出于此原
因,下一步骤是针对每个日期(日期对)选择单一报价。可基于价格做
出选择,例如,每个日期(日期对)的最便宜报价被选择。
所述过程的最终结果最多是每个输入日期(日期对)一个报价。所
推断报价可被包括在返回到用户的响应中。在图7中示出推断缺失报
价的完全过程的实例。
除之前列举的参数之外,推断过程可通过以下内容参数化:
·接受分类结果所需要的最下贝叶斯后验概率
·包含在候选的生成中的路线操作者的最大数量
·增加到贝叶斯后验概率以避免平局的随机变化
给予价格置信度的估计方法
可提供估计方法,所述估计方法给予价格置信度,例如,我们
99%确信在$5、$1000等内。因此估计方法可提供来:
·那些置信度的计算和返回
·那些置信度的使用以便决定是否向用户显示价格,或向用户显
示价格的概率范围(例如,误差范围)。
估计价格的多种方法能够返回针对价格的置信度测量。例如,在
简捷贝叶斯分类器的情况下,所选择的等级是带有最高概率的等级,
但是所述概率可用作估计中置信度的指示器–概率越接近1,就越确
信所预测价格是正确的。
可以以多种方式使用所推导的置信度。如果在估计中存在非常低
的置信度,那么可作出以下决定:
○由于对用户来说没有用处,所以显示所述估计
○触发价格的实时检索使得可向用户显示真正的价格
可向用户显示置信度。这可以多种方式来指示:
○显示针对价格的可能价值的范围的条形(例如参见图22)
○降低所呈现价格的可见度/强度(例如利用色彩、阴影或虚线的
使用)。
针对估计价格的置信度范围横跨从范围的最低价格到最高价格
的价格范围,在所述范围中估计方法的结果导致将被发现的价格的置
信度。针对估计价格的置信度范围可使用条形以图表方式指示。可针
对日期范围内的每个日期呈现条形。可针对出发旅程和返回旅程的日
期范围内的每个日期呈现条形。条形可用颜色来编码,例如,以便指
示条形对应于相对于预定功能很可能稳定的近期价格,对应于分享出
发日期的多张票券推导的价格范围,对应于根据类似旅游活动日程估
计的价格范围。一个条形可提供用于一个给定的日期。超过一个条形
可提供用于一个给定的日期。在图22中给出实例。
B.所推导的可用性引擎
背景/动机
动机与基于模型的定价实例中的动机非常类似。
‘预定的’价格模型是指两个单一报价不能用来生成返回报价,并
且因此已经针对每个可能的日期对运行查询,并且由于获取数据的成
本和存储数据所需要的空间,大数量的日期对使做到这一点成本过
高。然而,往返价格是组合可用于出发和返回路程的可获得票价,连
同一些规则一起的结果。因此,可能的是了解可用性和规则,可能的
是讲往返查询分解为‘可重复使用的’路程,所述‘可重复使用的’路程
可以以与利用预算价格模型用于航空公司类似(但是不同)的方式用
来构建新的‘往返’价格。
所推导的可用性引擎的实施例
全球分销系统从OAG(官方航线指南:参见例如www.oag.com)
搜集时刻表,从ATPCO搜集票价,并且从航空公司搜集票价等级可
用性,并且将此信息存储在它们自己的系统中。此所存储信息从这些
来源周期性更新。当查询进入GDS以针对给定的路线和(多个)日
期报价时,GDS执行下述步骤:
1.根据日程安排确定有效路线
2.针对路线计算有效票价(一些GDS不具有定价引擎并且使用
第三方引擎,诸如由SITA(参见,例如http://www.sita.aero/)提供的引
擎,以确保正确的价格应用于所旅行的每个路线)
3.发现那些票价的可用性
4.增加正确的税费和附加费
可在路线服务中实现步骤1。具体地,这可通过使用关于可出售
的时间表和规则来实现;考虑到用户查询,我们可以识别票券可被购
买用于的有效路线。
航空公司将票价提交给ATPCO,并且ATPCO对这些数据提供
订阅,但是将这些原始票价和规则转换到用于确定给定查询将是巨大
努力的正确票价的系统。幸运地是,ATPCO在被称为FROP(票价规
则输出产品)的数据供给中提供合并的票价和规则数据。FROP数据以
包含票价信息和针对关键类别的总结规则条件的记录的固定长度文
件来传输。因此步骤2可使用FROP数据来完成。这还可通过使用定
价引擎结合来自航空公司的票价规则和价格实现。
ATPCO还提供路线和服务费税费的供给。税费和附加费引擎可
以被构建,所述税费和附加费引擎可从这些附加费中推导数据并且使
用这些数据来计算消费者将支付给定票价的整体价格,由此仿效步骤
4。
针对GDS票价的低成本计算的仅剩余项目是可用性–步骤3。可
能的是通过将实时更新的结果(步骤1-4的净结果)与上文概述的步骤
1、2和4的计算相比较,即通过组合路线服务、来自FROP的票价
以及税费和附加费引擎得出可用性,可能的是计算所有可能的票价,
并且来自实时更新的所查看票价可用来推断哪些可能的票价被使用,
以及因此哪些所计算票价可用。图2中的图示出“差异”引擎如何能够
用来从事实更新得出票价等级的可用性。
如果对于往返航班的出发和返回路程的可用票价是可用的,那么
往返价格可被计算,即使往返中的一对指定日期还没有被查看。建模
报价的此方式已知为可组合单一路程(SLC)。SLC类似于‘预算’价格
模型,除了在预算的情况下,往返的出发和返回路程也与单张票一样
有效。在预算的情况下,构建往返简单地是增加返回和出发旅程价格
的问题(SLC结构由于其需要发现针对日期对的有效票价以及接下来
应用可用性略微更复杂)。
如果票价的价格增加,尽管可用性保持不变,所推导的可用性引
擎可用来计算新的价格,而不需要其已经被查看。
存在与使用GDS相比产生所推导可用性的此供应的附加益处。
GDS中的纯计算不保证票价在航空公司或OTA网站上‘可找到’,然
而所查看的票价–根据定义–可找到。此外,纯计算还不考虑附加费用、
加价、折扣以及可嵌入到所查看票价中的专门费用。
需注意,票价价格不是必须变化,但是针对指定的航班存在许多
不同的票价,并且每个票价的可用性可以变化:产出管理软件可连续
地改变什么票价可用,所以更便宜的票可仅随着产出管理软件将它们
撤回以增加产出而消失。
所推导的可用性引擎的另外实施例
所推导的可用性引擎可使用来自集中注册表的票价,诸如
ATPCO FROP,以及税费和附加费数据,以评价针对一组给定所查看
报价的可用性信息(服务等级)。
在图23中示出系统中主要部件的实例和信息的流动的实例。
所查看报价可从OTA、航空公司网站、API和其他服务项目获
取。每个报价可包含机场级路线、航空公司、航班号码、价格(票价
和/或含税价格)以及其他细节。
权威来源的实例是被称为FROP的ATPCO产品。FROP可用于
订阅费用并且包含以平面表格格式的票价。每个FROP记录包含如同
城市级路线、航空公司、服务等级、价格和在票价可被应用时描述的
约束条件(例如,提前购买说明)的信息。FROP由航空公司公布的数
据构建。
税费和附加费数据可从公共来源(例如,机场或政府网站)获取。
数据还被ATPCO提供为付费产品,所述数据涵盖政府税费、机场费、
燃油费和叠加在票价上的大部分其他组成部分。乘客所支付的最终价
格是票价价格和税费与附加费总额的总和。
利用所列举的组成部分,我们可以尝试通过应用如下文所描述的
过程推导每个所产看报价的可用性(服务等级)。
所述过程的第一步骤是评价我们感兴趣的一组所查看报价(例
如,通过如同路线、旅行日期、乘客信息等的给定搜索条件)。接下
来,我们需要找到匹配搜索查询(针对被查看的报价)的FROP记录。
在两组价格的情况下,我们必须使它们处于可比较格式。下一步
骤取决于查看是否包括不含税价格或仅含税价格。在第一中情况下,
我们可以直接将所查看票价与FROP相比较。此外,我们需要考虑查
询条件(例如,乘客类型的数量、销售点等)计算税费和附加费并且将
税费和附加费增加到所有FROP票价。
在相同格式的所查看报价和FROP(含税或不含税)的情况下,我
们可以比较报价以找出相匹配的一对。我们假设报价和FROP是等效
量(如果它们具有相同的价格)。
取决于来自权威机构(在此情况下-FROP)的票价的格式,匹配过
程可能需要附加步骤,如同根据多个单程记录构建往返票价以匹配所
查看的往返报价。
在这一点上,FROP记录与所查看报价之间的连接已经被建立。
现在针对每个所查看报价,我们可以通过应用服务等级从等同物
FROP记录推导票价等级可用性。
在图24中示出用于推导票价等级可用性的过程的实例。
益处
·推断可用性,而不是需要向GDS或航空公司预定系统查询来
找到可用性。
·在所建立可用性而不是真正可用性的基础上计算新的价格。
·在不具有新价格的所查看实例的情况下,基于可用性和票价规
则估计新价格。
潜在其他应用
由于航空公司现在还花高价根据GDS定价,向航空公司提供他
们自己产品的定价。
对以显著降低的成本找到航班数据价格感兴趣的公司。
架构概述实施例
提供服务器(其可以是真实的或虚拟的),从所述服务器提供针对
票价可用性和价格的估计服务。可提供与传统航空公司(例如,英国
航空公司、澳洲航空、荷兰皇家航空公司等)关联,与廉价航空公司(例
如,瑞安航空公司、易捷航空、德国之翼等)以及旅行预订网站(例如,
lastminute.com、opodo、Thomson等)关联的相关网站、智能手机应用、
商业-至-商业服务。
旅行预订网站和航空公司可向服务器提供输入数据,从所述服务
器提供针对票价可用性和价格的估计服务。可通过服务器向公共应用
程序接口(API)(例如,向合作伙伴公司)提供输出。可通过服务器向用
于搜索的网站,向用于搜索的移动网站,以及向针对用户的智能手机
上的应用程序提供输出。在图8中示出服务器与输入数据源以及用于
合作伙伴和用户的输出之间的示例性连接配置。
在服务器上的搜索中,用户可指定起点位置(这可以是,例如,
单个机场、包括多个机场的城市或包括多个机场的国家)。在服务器
上的搜索中,用户可指定目标位置(这可以是,例如,单个机场、包
括多个机场的城市或包括多个机场的国家)。在服务器上的搜索中,
用户可指定出发日期或出发日期的范围(这可以是,例如,日期范围、
或公历月份、或可以暗示诸如未来一年中任意日期的日期范围的未指
明的日期)。在服务器上的搜索中,用户可指定返回日期或返回日期
的范围(这可以是,例如,日期范围、或公历月份、或可以暗示诸如
未来一年中任意日期的日期范围的未指明的日期)。在服务器上的搜
索中,用户可指定单程票或往返票。用户可指定在特定年龄范围内乘
客的数量。用户可指定票的等级(例如,经济舱、优质经济舱、商务
舱或头等舱)。可执行针对酒店的平行搜索。可执行针对汽车出租的
平行搜索。可指示针对直达航班的优选。在图9中示出示例性用户接
口。在图12中示出另外的示例性用户接口,这是灵活搜索的实例,
因为离开指示在伦敦(英国)使用的机场可以是任意一个,并且目的地
指示澳大利亚的任意机场都被允许。
输出搜索结果可包括满足搜索条件的航班的列表。图像指示器
(例如,滑动条)可提供来限制出站航班离开时间范围。图像指示器(例
如,滑动条)可提供来限制返回航班离开时间范围。可提供可选择标
签,使得航班可以以价格增加的顺序布置。可提供可选择标签,使得
航班可以以行程时间增加的顺序布置。可提供可选择标签,使得航班
可以以航空公司名称按照字母顺序排列的顺序布置。在图10中示出
示例性用户接口。
在通过用户的示例性搜索中,针对出站航班日期以及往返航班日
期(如果有关),起点与目的地之间的航班被请求(这可以是单程航班或
往返航班)。在搜索过程的实例中,在第一步骤中,选择显示输出的
合作伙伴搜索网站。在第二步骤中,识别已经缓存的相关价格。在第
三步骤中,识别并更新不可用的相关价格。在第四步骤中,新的数据
被清除并且保存(例如,税费和费用可被去除,并且可识别谁是真正
的航班操作者)。在第五步骤中,价格返回到用户。在图11中示出用
于执行搜索过程的系统的实例。
在灵活的搜索中,输出数据可提供满足灵活搜索条件(例如,目
的地是澳大利亚的任意机场,从英国伦敦的任意机场出发)的目的地
机场的列表,所述列表可以以价格的升序排列列出。在图13中示出
用户接口输出的实例。根据特定机场的选择,针对所选择的起点和目
的地城市或机场,用于旅程的出发里程的最低价格可表示为出发离开
日期的函数,例如可选择公历月份,并且用于旅程的返回里程的最低
价格可表示为返回离开日期的函数,例如可选择公历月份。在图14
中示出用户接口输出的实例。
可提供浏览器搜索。可向智能手机应用程序的用户或搜索网站的
用户提供浏览器搜索。浏览器服务可访问所浏览的价格数据。所浏览
价格数据可包括已经从网站内容去除的数据。浏览器服务可连接到公
共应用程序接口(API)。浏览器服务可不连接到航空公司服务器或其
他旅行信息服务提供者的服务器。在图15中示出用于浏览器搜索的
架构的实例。
图16中示出用于系统的总体系统架构的实例,所述系统包括针
对票价可用性和价格的估计服务的规定。
下述部分提供关于飞机票价如何计算以及GDS的作用的背景信
息。
C.全球分销系统介绍
全球分销系统(GDS)可被限定为一个系统,所述系统包含可用
性、价格以及用于航空公司并且通过其可做出预定和发行票的相关服
务。GDS使这些功能可用于预订旅行社、登记引擎、航空公司并且
可用于其他订阅者。在图17中示出示例性GDS配置。更为通用的术
语是“分销系统”,所述分销系统可包括,例如,针对除了航空运输之
外的运输模式(例如,火车)做出预订的能力。
路线探测器
从历史观点上说,随着航空公司网络增长,GDS已经增加了开
发路线。由于潜在和可能连接的数量以指数方式增加(SOF–NYC具有
大数量的连接点,例如SOF–IST–NYC、SOF–FRA-NYC、
SOF–MOW–CPH–NYC等),GDS增加构建来降低不同有价格路线的
数量的‘连接’的该层,使得他们不必须处理那么多票价和规则。他们
以非常迟钝的方式那样做–静态路线和连接表格,这些将告诉他们在
区域之间飞行(出于简化论证的目的由ATPCO–US–EUR、
EUR–APAC限定),本质上包括在SOF–NYC之间的路线探测器城市
中,潜在地沿着错误的方向(诸如IST)一对城市,但是取消作为可能
连接–例如,航班SOF–PRG–CPH–NYC的城市的可能连接可能被认
为过于复杂并且潜在地过于昂贵,所以在路线探测器阶段被撤销。
连接构建
在航线建立之后,连接构建开始调查承运人、航班号和连接限制,
这些被包括在最小连接时间(MCT)表格中。由OAG分布的MCT是
复杂的文件,所述MCT指定航班/承运人如何可根据时间连接的一般
规则,例如,施加120分钟MCT,在LHR将IF长途US–EU连接到
EU–EU。一般规则很容易解释,但是很重要–如果有人想要在MCT
参数之外做出预订则需要手动操作。
感兴趣的地方是MCT免责条款–约200,000条左右,这可以下降
到IF DL航班#003连接到AF航班#004,接着需要55分钟。然而,
如果DL航班#003在CDG登机口19到达并且连接航班AF009从登
机口49离开,接着施加65分钟的MCT等。所有免责条款的约70,000
条是用于法国航空公司(AF)和巴黎夏尔戴高乐机场(CDG)–这是为什
么许多乘客认为飞行经过它是最糟糕的。
票价
票价的实例是定价合同,所述定价合同指定针对服务的价格(基
本票价),所述服务由承运人提供、由服务等级、等级类型(Y、Q、J、
M、H等)和旅程类型(单程、双程、多城市、环球(RTW))来限定。
在一个实例中,每个票价带有施加到它的附接数量的规则和限制
–将票价想成20-30页长的合同,而不仅是未加工excel(电子数据表或
CSV文件)。所以与其将票价想成带有指示票价具有的哪个特征的兰
的大excel电子数据表中的行,相反人们应将票价想成其本身是带有
许多参数和限制的复杂事物,并且因此而更像是合同。票价限定何人、
何时以及如何可以使用票价–乘客类型、票价何时可用(NVB、NVA–
之前无效、之后无效)以及许多其他限制。票价可以是公共票价(每个
中间商可用)或私人票价(指定的中间商/卖方可用)。
票价由承运人提供;所述票价以用于市场的一般水平限定,并且
由行程和售票日期限制。自然地,票价表示价格点。
票价上传和分布
ATPCO是处理票价和产业中票价分布的产业主体。存在小数量
仅分布到SITA的承运人(保加利亚航空就是一个实例)。
调度
先前,ATPCO将在指定的时间表释放票价,但是每次承运人请
求,组织开始每小时释放票价。这允许航空公司确保对不适合仅用于
可用性控制的市场变化的快速反应。
SITA在工作日每天释放票价4次并且在周末释放3次。还存在
在GDS中实时更新的票价(GDS-指定票价,或negos)–这些票价完全
在GDS的控制之下并且不遵循一般分布时间表。
票价规则和限制以及类别
提供票价日期、票价等级日期和票价限制日期。
定价如何起作用(非常高的水平)?
通过以规则记录、表格和子表格的非常严格的顺序的定价引擎计
算规则。如果没有发现指定的规则记录,那么存在管理所有这些的一
般规则。
限制数据:
-票价等级告诉引擎存在针对指定票价的规则
-类别控制告诉引擎存在什么类型的限制
-当引擎读取以获得相关信息时,类别数据表格在最后
例如,票价等级告诉引擎存在附接的规则,所述规则为类别15(销
售限制),所述规则在钻研类别数据表格之后抽出其上面的附加信息–
什么类型、什么是规则和限制。
在图18中示出关于票价等级记录、票价类别和类别数据表格的
票价的实例。
票价显示对比票价报价以及过程
许多业内专业人士可交换地使用术语票价显示和票价报价,这对
于专家来说是不可接受的。解释如下:
票价显示:
市场票价和相关规则的全面的、统一的描述。这允许代理商:
-比较票价规则(注意!不是价格)
-将合同条款(票价规则)传达给乘客
票价报价:
在合同条款已经施加之后的最终价格。它充分体现相当于我们想
要提供给乘客的内容:
-所有税费
-所有附加费
-所有与其相关的规定
-最终价格
在图19中示出提供票价定价选项的过程的实例。
可用性
可用性知识在本产业中是非常重要的。可用性允许航空公司控制
他们的库存(座位)并且其增加另一种方式来通过打开或关闭可用性
段管理路线的利润,这通过收益管理系统(RM)来管理。
尽管某些RM具有很好的功能性来管理复杂的规则,但是可用性
规则的大多数由统计学家和数学家的内部部门来创建,所以复杂性很
高。
如果你想要检查某些座位/服务等级是否可用,存在三种主要方
式来接收可用性。
i)NAVS/AVS
NAVS=每个座位等级的简单、数值可用性。
实例:Y9H3M0L8….
AVS=可用性状态–为航班开放/关闭、开放等待列表等。
ii)轮询
如果更好的连接中断,CXR(承运人)可使用NAVS/AVS仅作为
指示。这些CXR使用收入管理规则并且他们需要针对真实可用性和
所有可用性信息进行轮询。
一些航空公司和/或航班需要被轮询并且用于其的结构是MR(市
场限制)。当GDS请求AVA时,如果标签是MR,那么GDS需要针
对正确的可用性进行轮询。遗憾的是,NAVS/AVS不显示这些标签,
所以如果GDS针对所标记航班使用NAVS/AVS,他们可能显示错误
的可用性。
iii)高速缓存DB
为了减少轮询和NAVS/AVS,定价引擎已经研发复杂的高速缓
存DB。这些不是准确的,即使在它们存储信息时,它们差不多实现
可它们减少访问的目标。
在图20中示出定价引擎、AVS/NAVS、无接缝效应(轮询)、高
速缓存DB与航空系统主机之间关系的实例。
可用性服务器实施例
高速缓存机构可通过离线通信供给,但是通过在线通道使用。可
用性服务器可具有基于规则(交互式轮询)更新高速缓存数据以及标
记针对预订的任意矛盾的能力。在图21中示出包括可用性服务器的
示例性系统。
注意事项
上述步骤可使用标准已知编程技术实现。上述实施方案的新颖性
不在于具体编程技术中,但是包括所描述步骤的使用以实现所描述规
则。体现或形成本发明的部分的软件编程代码通常存储在永久性、非
暂态存储器中。在客户端/服务器环境中,此类软件编程代码可利用
于服务器相关的存储器存储。软件编程代码可在与数据处理系统一起
使用的多种已知介质的任意上实现,诸如磁盘、硬盘驱动器或CD
ROM。代码可分布在此类介质上,或可经由一些类型的网络从一个
计算机系统的内存或存储器到用于与此类其他系统的用户使用的其
他计算机系统分配给用户。用于在物理介质上体现软件编程代码和/
或经由网络分布软件代码的技术和方法是已知的并且本文将不再进
一步讨论。
将理解,图解的每个元素和图解中元素的组个可通过执行指定功
能或步骤的基于硬件的通用和/或专用系统来实现,或者通过通用和/
或专用硬件和计算机指令的组合来实现。
这些程序指令可提供到处理器以便产生机器,使得在处理器上执
行的指令创建用于实现图解中指定的功能的方式。计算机程序指令可
由处理器执行来产生由处理器执行的一系列可操作步骤以便产生计
算机实现的过程,使得在处理器上执行的指令提供用于实现图解中指
定的功能的步骤。因此,附图支持用于执行指定功能的方法的组合,
用于执行指定功能的步骤的组合以及用于执行指定功能的程序指令
方法。
应理解上文提及的布置只是本发明原理应用的说明。可在不脱离
本发明的精神和范围下设计多种修改和可替代布置。尽管本发明已经
在附图中示出并且结合目前认为是本发明的最实用和优选(多个)实
例以特征和细节在上文完全描述,但是本领域吧技术人员将会清楚可
在不脱离如本文所阐述的原理和概念下做出多种修改。
概念
存在多个概念,在下文被描述为概念‘A-J’,本公开中包括所述概
念。下述内容可有助于限定这些概念。可组合概念的各方面。
A.提供价格估计值的方法
提供了一种提供价格估计值的方法,所述方法包括下列步骤:
(i)接收针对商品或服务(诸如机票)的价格以及限定那些商品或
服务的参数的请求,
(ii)配置一个或多个处理器来:在相对于上述步骤(i)的任意时间
处,通过分析不完整历史价格数据集中的模式从所述数据库确定估计
价格;
(iii)配置一个或多个处理器来:计算满足所述参数的商品或服务
的所请求价格的估计值;以及
(iv)向诸如个人计算机、智能手机或平板电脑的终端用户计算装
置提供价格估计值。
以上可另外包括任何以下单独各项或者其组合:
·所述方法,其中限定那些商品或服务的参数包括下列各项中的
一个或多个:活动类型,诸如飞机票价、酒店预订、火车票价;日期
范围;目的地;起点;所期望的天气情况;星级;关键词;任意其他
用户限定的偏好。
·估计价格的确定通过推断、推导或预测估计价格来执行。
·步骤(ii)包括:(a)从计算机数据存储获取历史价格报价;(b)将
历史价格报价按类别分组;(c)推导针对每个分组的统计值;(d)在计
算机上存储针对每个分组的分类器,所述分类器包括所推导统计值,
以及(e)识别具有所请求价格所对应的所存储分类器的分组。
·步骤(iii)包括:使用来自对应于所识别分组的所存储分类器的
统计值来计算在指定日期范围内的所请求价格的一组估计值。
·步骤(ii)包括使用规则以便分析数据库中的模式。
·步骤(ii)包括产生价格的概率模型的简捷贝叶斯分类器机器学
习方法,并且所述模型用来预测未查看到的价格。
·使用查看到的价格和对应于它们的多组特征来训练所述分类
器。
·特征与请求有关,并且包括下列各项中的一个或多个:星期几
离开、停留时间、星期六停留、航空公司、行程时间、路线、月份。
·分类器接着通过被给出一组特征以及提供具有那些特征的最
有可能的价格来预测未查看价格的价格。
·可以通过训练具有不同特征的多个模型以及比较所述不同模
型的预测准确性来推导特征。
·步骤(ii)包括从历史价格构建统计模型,识别缺失的报价候选,
以及基于统计模型对报价候选定价。
·估计每个候选报价的价格发生在下述步骤中:从所述报价提取
类别特征值;从数据库检索针对所提取类别训练过的分类器;从所述
报价候选提取所有特征值;通过计算针对存储在分类器中的每个价格
范围的贝叶斯后验概率以及选择具有最高贝叶斯后验概率的价格范
围等级来将所述候选报价分类,以及将价格等级附接到候选报价。
·用于统计模型的输入包括:路线列表,分类器分类方案,历史
报价以及具有权重的一组所支持特征。
·按年龄筛选历史报价。
·用于统计模型的输入包括反向的路线等同物。
·所述方法包括下列步骤:将已缓存的票价价格包括在一组价格
估计值中。
·所述一组价格估计值是在步骤(i)之后在不查询分销系统的情
况下构建的。
·价格是针对为单程旅程的旅程。
·价格是针对为往返旅程的旅程。
·价格包括飞机票价价格。
·价格包括火车票价价格。
·价格包括汽车租赁价格。
·价格包括酒店价格。
·请求包括灵活搜索请求。
·所述方法的最终结果最多是每个输入日期或日期对一个报价。
·所述方法包括下列步骤:(A)配置一个或多个处理器来在相对
于上述步骤(i)的任意时间处,通过分析不完整历史价格数据集中的模
式确定来自所述数据集的估计价格的置信度范围,以及(B)配置一个
或多个处理器来计算针对满足参数的商品或服务的所请求价格的估
计价格的置信度范围。
·所述方法还包括下列步骤:(C)向诸如个人计算机、智能手机
或平板电脑的终端用户计算装置提供置信度范围以及票价价格估计
值。
·所述方法还包括下列步骤:使用置信度范围来决定是向用户显
示价格还是向用户提供价格的可能范围。
·价格的可能范围被显示为误差条。
·日期范围包括仅一个出发日期。
·日期范围包括仅一个返回日期。
·所述方法包括提供针对出发日期的指定范围和返回日期的指
定范围的一组最佳往返票价价格估计值的方法,其中:步骤(i)包括接
收针对用于从起点位置到目的地位置的旅程的出发日期的指定范围
和返回日期的指定范围的往返票价价格的请求,并且步骤(iv)包括提
供针对出发日期的指定范围和针对返回日期的指定范围的所述一组
最佳往返票价价格估计值。
·所述一组最佳往返票价价格估计值是以条形图格式提供。
·通过下列各项中的一个或多个将估计过程参数化:接受分类结
果所需要的最小贝叶斯后验概率;候选的生成中涉及的路线操作者的
最大数量,或增加到贝叶斯后验概率中以避免平局的随机变化。
·所述方法在服务器上执行,针对票价可用性和价格的估计服务
是从所述服务器提供。
提供了一种被配置来提供价格估计值的服务器,所述服务器被布
置来:
(i)接收针对商品或服务(诸如机票)的价格以及限定那些商品或
服务的参数的请求,所述参数包括下列各项中的一个或多个:活动类
型,诸如飞机票价、酒店预订、火车票价;日期范围;目的地;起点;
所期望的天气情况;星级;关键词;任意其他用户限定的偏好;
(ii)在相对于上述步骤(i)的任意时间处,通过分析不完整历史价
格数据集中的模式从所述数据库确定估计价格;
(iii)计算满足所述参数的商品或服务的所请求价格的估计值;以
及
(iv)提供价格估计值。
服务器可另外包括任何以下单独各项或者其组合:
·(ii)从计算机数据存储获取历史价格;根据类别将历史价格分
组;推导针对每个分组的统计值;存储针对每个分组的分类器,所述
分类器包括所推导统计值,以及识别具有所请求价格所对应的所存储
分类器的分组。
·所述服务器被布置来:使用来自对应于所识别分组的所存储分
类器的统计值来计算在指定日期范围内的所请求价格的一组估计值。
·所述服务器还被布置来执行概念A的任意方面的方法。
提供了一种在非暂时性存储介质上实施的计算机程序产品,所述
计算机程序产品在计算机上运行时被布置来提供价格估计值,所述计
算机程序产品在计算机上运行时被布置来:
(i)接收针对商品或服务(诸如机票)的价格以及限定那些商品或
服务的参数的请求,所述参数包括下列各项中的一个或多个:活动类
型,诸如飞机票价、酒店预订、火车票价;日期范围;目的地;起点;
所期望的天气情况;星级;关键词;任意其他用户限定的偏好;
(ii)在相对于上述步骤(i)的任意时间处,通过分析不完整历史价
格数据集中的模式从所述数据库确定估计价格;
(iii)计算满足所述参数的商品或服务的所请求价格的估计值;以
及
(iv)提供价格估计值。
计算机程序产品可被布置来执行概念A的任意方面的方法。
提供了一种与概念A的任意服务器的服务器连接的计算机终端,
所述计算机终端被布置来发送对于针对从起点位置到目的地位置的
旅程的指定日期范围的价格估计值的请求,其中所述计算机终端还被
布置来接收价格估计值。
提供了一种物品或服务,诸如飞机票,并且其中针对所述物品或
服务的价格估计值是使用在概念A的任意方面中限定的方法、或在
概念A的任意方面中限定的服务器来提供的。
提供了一种基于网络的价格对比网站,终端用户可以通过提供针
对商品或服务的价格的请求来与其交互,并且所述基于网络的价格对
比网站向服务器提供所述请求,所述服务器使用概念A的任意方面
的方法来估计所述(多个)价格。
B.推断哪些票价等级可用于旅程的方法
推断哪些票价等级可用于在特定日期从起点位置到目的地位置
的旅程的方法,所述方法包括下列步骤:
(i)限定对于针对在特定日期从起点位置到目的地位置的旅程的
票价价格的请求;
(ii)通过分析不完整历史价格数据集中的模式从所述数据集推
断、估计或预测估计票价价格;
(iii)使用步骤(ii)的结果来计算所请求票价价格的估计值,
(iv)向分销系统发送对于针对在特定日期从起点位置到目的地
位置的旅程的票价价格的请求;
(v)从分销系统接收对于针对在特定日期从起点位置到目的地
位置的旅程的分销系统票价价格;
(vi)将来自步骤(iii)的针对所请求票价价格的所计算估计值与在
步骤(v)中接收的分销系统票价价格相比较,以便推断哪些票价等级
可用于在特定日期从起点位置到目的地位置的旅程,以及
(vii)输出针对在特定日期从起点位置到目的地位置的旅程的所
推断票价等级可用性。
以上可另外包括任何以下单独各项或者其组合:
·所述方法,其中步骤(ii)包括:
从计算机数据存储获取历史票价报价;
将历史价格报价按类别分组;
推断针对每个分组的统计值;
在计算机上存储针对每个分组的分类器,所述分类器包括所推断
统计值,以及
识别具有所请求票价价格所对应的所存储分类器的分组。
·所述方法,其中步骤(iii)包括:使用来自对应于所识别分组的
所存储分类器的统计值来计算在指定日期范围内的所请求价格的一
组估计值。
·分销系统是全球分销系统。
·每个所推断票价等级可用性包括所推断票价等级价格。
·包括将输出发送到服务器的步骤。
·所述服务器是航空公司服务器。
·步骤(ii)包括使用规则以便分析数据集中的模式。
·步骤(ii)包括产生票价的概率模型的简捷贝叶斯分类器机器学
习方法,并且所述模型用来预测未查看票价。
·使用所查看的价格和对应于它们的多组特征来训练所述分类
器。
·特征与请求有关,并且包括下列各项中的一个或多个:星期几
离开、停留时间、星期六停留、航空公司、行程时间、路线、月份。
·分类器接着通过被给出一组特征以及提供具有那些特征的最
有可能的价格来预测未查看价格的价格。
·可以通过训练具有不同特征的多个模型以及比较所述不同模
型的预测准确性来推导特征。
·步骤(ii)包括从历史价格构建统计模型,识别缺失的报价候选,
以及基于统计模型对报价候选定价。
·估计每个候选报价的价格发生在下述步骤中:从报价提取类别
特征值;从数据库检索针对所提取类别训练过的分类器;从所述报价
候选提取所有特征值;通过计算针对存储在分类器中的每个价格范围
的贝叶斯后验概率以及选择具有最高贝叶斯后验概率的价格范围等
级来将所述候选报价分类,以及将价格等级附接到候选报价。
·用于统计模型的输入包括:路线列表,分类器分类方案,历史
报价以及具有权重的一组所支持特征。
·按年龄筛选历史报价。
·用于统计模型的输入包括反向的路线等同物。
·所述方法包括下列步骤:将已缓存的票价价格包括在一组票价
价格估计值中。
·旅程是单程旅程。
·旅程是往返旅程。
·票价是飞机票价。
·请求包括灵活搜索请求。
·通过下列各项中的一个或多个将估计过程参数化:接受分类结
果所需要的最小贝叶斯后验概率;候选的生成中涉及的路线操作者的
最大数量,或增加到贝叶斯后验概率中以避免平局的随机变化。
·所述方法是在服务器上执行,针对票价可用性和价格的估计服
务是从所述服务器提供的。
还提供了一种被配置来推断哪些票价等级可用于在特定日期从
起点位置到目的地位置的旅程的服务器,所述服务器被布置来:
(i)限定对于针对在特定日期从起点位置到目的地位置的旅程的
票价价格的请求;
(ii)通过分析不完整历史价格数据集中的模式从所述数据集推
断、估计或预测估计票价价格;
(iii)使用(ii)的所估计票价的结果从所请求票价价格计算估计
值,
(iv)向分销系统发送对于针对在特定日期从起点位置到目的地
位置的旅程的票价价格的请求;
(v)从分销系统接收对于针对在特定日期从起点位置到目的地
位置的旅程的分销系统票价价格;
(vi)将来自(iii)的所计算估计值的针对所请求票价价格的所计算
估计值与在步骤(v)中接收的分销系统票价价格相比较,以便推断哪
些票价等级可用于在特定日期从起点位置到目的地位置的旅程,以及
(vii)输出针对在特定日期从起点位置到目的地位置的旅程的所
推断票价等级可用性。
所述服务器,其中对于(ii)来说,所述服务器被布置来:
(a)从计算机数据存储获取历史票价报价;
(b)将历史价格报价按类别分组;
(c)推断针对每个分组的统计值;
(d)存储针对每个分组的分类器,所述分类器包括所推断统计
值,以及
(e)识别具有所请求价格所对应的所存储分类器的分组。
所述服务器,其中对于(iii)来说,所述服务器被布置来:使用来
自对应于所识别分组的所存储分类器的统计值来计算在指定日期范
围内的所请求价格的一组估计值。
所述服务器还被布置来执行包括上述方法限制的中的任一个的
方法。
还提供了一种在非暂时性存储介质上实施的计算机程序产品,所
述计算机程序产品在计算机上运行时被布置来推断哪些票价等级可
用于在特定日期从起点位置到目的地位置的旅程,所述计算机程序产
品在计算机上运行时被布置来:
(i)限定对于针对在特定日期从起点位置到目的地位置的旅程的
票价价格的请求;
(ii)通过分析不完整历史价格数据集中的模式从所述数据集推
断、估计或预测估计票价价格;
(iii)使用(ii)的所估计票价的结果从所请求票价价格计算估计
值,
(iv)向分销系统发送对于针对在特定日期从起点位置到目的地
位置的旅程的票价价格的请求;
(v)从分销系统接收对于针对在特定日期从起点位置到目的地
位置的旅程的分销系统的票价价格;
(vi)将来自(iii)的所计算估计值的针对所请求票价价格的所计算
估计值与在步骤(v)中接收的分销系统票价价格相比较,以便推断哪
些票价等级可用于在特定日期从起点位置到目的地位置的旅程,以及
(vii)输出针对在特定日期从起点位置到目的地位置的旅程的所
推断票价等级可用性。
计算机程序产品被布置来执行根据上述方法限制中的任一个的
方法。
提供了一种与概念B的上述服务器概念中的任一个的服务器连
接的计算机,所述计算机被布置来发送限定在特定日期从起点位置到
目的地位置的旅程的请求,其中所述计算机还被布置来接收针对在特
定日期从起点位置到目的地位置的旅程的所输出的所推断票价等级
可用性。
C.估计票价价格的方法
一种估计票价价格的方法,所述方法包括下列步骤:
(i)从计算机数据存储获取历史票价报价;
(ii)将历史价格报价按类别分组;
(iii)推断针对每个分组的统计值;
(iv)在计算机上存储针对每个分组的分类器,所述分类器包括所
推断统计值;
(v)接收针对在特定日期从起点位置到目的地位置的旅程的票
价价格的请求;
(vi)识别具有所请求票价价格所对应的所存储分类器的分组,
(vii)使用来自对应于所识别分组的所存储分类器的统计值来计
算所请求票价价格的估计值,以及
(viii)提供所请求票价价格估计值。
D.估计票价价格的方法
一种估计票价价格的方法,所述方法包括下列步骤:
(i)接收针对在特定日期从起点位置到目的地位置的旅程的票价
价格的请求;
(ii)通过分析不完整历史价格数据集中的模式从所述数据集推
断、估计或预测估计票价;
(iii)使用步骤(ii)的结果来计算所请求票价价格的估计值,以及
(iv)提供所请求票价价格估计值。
E.提供一组往返票价价格估计值的方法
一种提供一组往返票价价格估计值的方法,所述方法包括下列步
骤:
(i)从计算机数据存储获取历史票价报价;
(ii)将历史价格报价按类别分组;
(iii)推断针对每个分组的统计值;
(iv)在计算机上存储针对每个分组的分类器,所述分类器包括所
推断统计值;
(v)接收对于针对指定出发日期和指定返回日期的从起点位置
到目的地位置的旅程的往返票价价格的请求;
(vi)识别具有所请求往返票价价格所对应的所存储分类器的分
组,
(vii)使用来自对应于所识别分组的所存储分类器的统计值来计
算针对指定出发日期和返回日期的所请求往返票价价格的一组估计
值,以及
(viii)提供所述一组票价价格估计值。
F.提供一组最佳往返票价价格估计值的方法
一种提供针对出发日期的指定范围和返回日期的指定范围的一
组最佳往返票价价格估计值的方法,所述方法包括下列步骤:
(i)从计算机数据存储获取历史票价报价;
(ii)将历史价格报价按类别分组;
(iii)推断针对每个分组的统计值;
(iv)在计算机上存储针对每个分组的分类器,所述分类器包括所
推断统计值;
(v)接收对于针对出发日期的指定范围和返回日期的指定日期
从起点位置到目的地位置的旅程的往返票价价格的请求;
(vi)识别具有所请求往返票价价格所对应的所存储分类器的分
组,
(vii)使用来自对应于所识别分组的所存储分类器的统计值来计
算针对多对出发和返回日期的所请求往返票价价格的一组估计值,
(viii)选择针对每一对出发和返回日期的最佳票价价格估计值,
以及
(ix)提供针对每一对出发和返回日期的一组最佳往返票价价格
估计值。
G.提供一组往返票价价格估计值的方法
一种提供一组往返票价价格估计值的方法,所述方法包括下列步
骤:
(i)接收对于针对指定出发日期和指定返回日期的从起点位置到
目的地位置的旅程的往返票价价格的请求;
(ii)通过分析不完整历史价格数据集中的模式从所述数据集推
断、估计或预测估计票价;
(iii)使用步骤(ii)的结果来计算对于针对指定出发和返回日期的
所请求往返票价价格的一组估计值,以及
(iv)提供所述一组票价价格估计值。
H.提供一组最佳往返票价价格估计值的方法
一种提供针对出发日期的指定范围和返回日期的指定范围的一
组最佳往返票价价格估计值的方法,所述方法包括下列步骤:
(i)接收对于针对出发日期的指定范围和返回日期的指定日期从
起点位置到目的地位置的旅程的往返票价价格的请求;
(ii)通过分析不完整历史价格数据集中的模式从所述数据集推
断、估计或预测估计票价;
(iii)使用步骤(ii)的结果来计算针对多对出发和返回日期的所请
求往返票价价格的一组估计值,以及
(iv)提供针对每一对出发和返回日期的一组最佳往返票价价格
估计值。
I.推断哪些票价等级可用的方法
提供了一种推断哪些票价等级可用的方法,所述方法包括下列步
骤:
(i)计算机服务器接收针对商品或服务(诸如机票)的价格以及限
定那些商品或服务的参数的请求,
(ii)配置一个或多个处理器来:在相对于上述步骤(i)的任意时间
处,通过分析不完整历史价格数据集中的模式从所述数据库确定估计
价格;
(iii)配置一个或多个处理器来:计算满足所述参数的商品或服务
的所请求价格的估计值;
(iv)将所述请求发送到分销系统用于票价价格;
(v)从分销系统接收所述分销系统的票价价格;
(vi)将来自步骤(iii)的针对所请求价格的所计算估计值与在步骤
(v)中接收的所述分销系统的票价价格相比较,以便推断票价等级可
用性,以及
(vii)向计算装置提供所推断的票价等级可用性。
以上可另外包括任何以下单独各项或者其组合:
·限定那些商品或服务的参数包括下列各项中的一个或多个:活
动类型,诸如飞机票价、酒店预订、火车票价;日期范围;目的地;
起点;所期望的天气情况;星级;关键词;任意其他用户限定的偏好。
·估计价格的确定通过推断、推导或预测估计价格来执行。
·步骤(ii)包括:
a)从计算机数据存储获取历史价格报价;
b)将历史价格报价按类别分组;
c)推断针对每个分组的统计值;
d)在计算机上存储针对每个分组的分类器,所述分类器包括所
推断统计值,以及
e)识别具有所请求价格所对应的所存储分类器的分组。
·步骤(iii)包括:使用来自对应于所识别分组的所存储分类器的
统计值来计算在指定日期范围内的所请求价格的一组估计值。
·分销系统是全球分销系统。
·每个所推断票价等级可用性包括所推断票价等级价格。
·步骤(vii)包括向服务器发送所推断的票价等级可用性。
·所述服务器是航空公司服务器。
·步骤(ii)包括使用规则以便分析数据集中的模式。
·步骤(ii)包括产生价格的概率模型的简捷贝叶斯分类器机器学
习方法,并且所述模型用来预测未查看价格。
·使用所查看的价格和对应于它们的多组特征来训练所述分类
器。
·特征与请求有关,并且包括下列各项中的一个或多个:星期几
离开、停留时间、星期六停留、航空公司、行程时间、路线、月份。
·分类器接着通过被给出一组特征以及提供具有那些特征的最
有可能的价格来预测未查看价格的价格。
·可以通过训练具有不同特征的多个模型以及比较所述不同模
型的预测准确性来推导特征。
·步骤(ii)包括从历史价格构建统计模型,识别缺失的报价候选,
以及基于统计模型对报价候选定价。
·估计每个候选报价的价格发生在下述步骤中:从报价提取类别
特征值;从数据库检索针对所提取类别训练过的分类器;从所述报价
候选提取所有特征值;通过计算针对存储在分类器中的每个价格范围
的贝叶斯后验概率以及选择具有最高贝叶斯后验概率的价格范围等
级来将所述候选报价分类,以及将价格等级附接到候选报价。
·用于统计模型的输入包括:路线列表,分类器分类方案,历史
报价以及具有权重的一组所支持特征。
·按年龄筛选历史报价。
·用于统计模型的输入包括反向的路线等同物。
·所述方法包括下列步骤:将已缓存的票价价格包括在一组价格
估计值中。
·价格是针对为单程旅程的旅程。
·价格是针对为往返旅程的旅程。
·价格包括飞机票价价格。
·价格包括火车票价价格。
·价格包括汽车租赁价格。
·价格包括酒店价格。
·请求包括灵活搜索请求。
·通过下列各项中的一个或多个将估计过程参数化:接受分类结
果所需要的最小贝叶斯后验概率;候选的生成中涉及的路线操作者的
最大数量,或增加到贝叶斯后验概率中以避免平局的随机变化。
·所述方法是在服务器上执行,针对票价可用性和价格的估计服
务是从所述服务器提供的。
还提供了一种被配置来执行以上陈述中的任一个的方法的服务
器。
还提供了一种被配置来推断哪些票价等级可用的服务器,所述服
务器被布置来:
(i)接收针对商品或服务(诸如机票)的价格以及限定那些商品或
服务的参数的请求,
(ii)配置一个或多个处理器来:在相对于上述步骤(i)的任意时间
处,通过分析不完整历史价格数据集中的模式从所述数据库确定估计
价格;
(iii)配置一个或多个处理器来:计算满足所述参数的商品或服务
的所请求价格的估计值;
(iv)将所述请求发送到分销系统用于票价价格;
(v)从分销系统接收所述分销系统的票价价格;
(vi)将来自步骤(iii)的针对所请求价格的所计算估计值与在步骤
(v)中接收的所述分销系统的票价价格相比较,以便推断票价等级可
用性,以及
(vii)向计算装置提供所推断的票价等级可用性。
以上可另外包括任何以下单独各项或者其组合:
·限定那些商品或服务的参数包括下列各项中的一个或多个:活
动类型,诸如飞机票价、酒店预订、火车票价;日期范围;目的地;
起点;所期望的天气情况;星级;关键词;任意其他用户限定的偏好。
·估计价格的确定通过推断、推导或预测估计价格来执行。
·对于(ii)来说,所述服务器被布置来:
○从计算机数据存储获取历史价格报价;
○将历史价格报价按类别分组;
○推断针对每个分组的统计值;
○存储针对每个分组的分类器,所述分类器包括所推断统计值,
以及
○识别具有所请求价格所对应的所存储分类器的分组。
·对于(iii)来说,所述服务器被布置来:使用来自对应于所识别
分组的所存储分类器的统计值来计算在指定日期范围内的所述所请
求价格的一组估计值。
·所述服务器还被布置来执行上述方法的任意方面的方法。
提供了一种在非暂时性存储介质上实施的计算机程序产品,所述
计算机程序产品在计算机上运行时被布置来推断哪些票价等级可用,
所述计算机程序产品在计算机上运行时被布置来:
(i)接收针对商品或服务(诸如机票)的价格以及限定那些商品或
服务的参数的请求,
(ii)配置一个或多个处理器来:在相对于上述步骤(i)的任意时间
处,通过分析不完整历史价格数据集中的模式从所述数据库确定估计
价格;
(iii)配置一个或多个处理器来:计算满足所述参数的商品或服务
的所请求价格的估计值;
(iv)将所述请求发送到分销系统用于票价价格;
(v)从分销系统接收所述分销系统的票价价格;
(vi)将来自步骤(iii)的针对所请求价格的所计算估计值与在步骤
(v)中接收的所述分销系统的票价价格相比较,以便推断票价等级可
用性,以及
(vii)向计算装置提供所推断的票价等级可用性。
计算机程序产品可被布置来执行根据上述方法的任意方面的方
法。
提供了一种与上述服务器的任意方面的服务器连接的计算机终
端,所述计算机终端被布置来发送请求,所述请求限定针对商品或服
务(诸如机票)的票价等级可用性以及限定那些商品或服务的参数的
请求,其中所述计算机还被布置来接收输出的所推断票价等级可用
性。
提供了一种物品或服务,诸如飞机票,并且其中针对所述物品或
服务的价格等级可用性是使用在上述方法的任意方面中限定的方法
或者在上述服务器的任意方面中限定的服务器来提供的。
提供了一种基于网络的价格对比网站,终端用户可以通过提供针
对票价等级可用性的请求来与其交互,并且所述基于网络的价格对比
网站向服务器提供所述请求,所述服务器使用上述方法的任意方面的
方法来估计票价等级可用性。
J.推断针对指定航班或多个指定航班的票价等级可用性的方法
提供了一种通过下列各项推断针对指定航班或多个指定航班的
票价等级可用性的方法:
(a)接收针对所述(多个)航班的可查看、实时可预订价格,其
中所述价格信息不伴随针对那些(多个)航班的完整票价等级信息;
(b)将所述可查看、实时可预订价格与从所存储数据(诸如有效
旅程数据、诸如FROP数据的票价数据和税费/附加费数据)计算出
的一组价格相比较;以及
(c)通过确定在最接近地匹配所述可查看实时可预订价格的所计
算价格中使用了哪个票价等级来确定在所述可查看实时可预订价格
中使用了哪个票价等级。
以上可另外包括任何以下单独各项或者其组合:
·所存储数据可以来自已缓存的、先前获取的实时的、可预订价
格。
·票价等级限定应用到针对指定航班或多个指定航班的可适用
规则或限制中的一些或全部,并且包括下列各项中的一个或多个:等
级代码,诸如C(商务舱全价)或Y(经济舱全价);票价类型,诸如头
等舱或经济舱;类别,诸如合格性、最低逗留、中途停留或罚款。
·每个所推断票价等级可用性包括所推断票价等级价格。
·步骤(c)包括向服务器发送所推断的票价等级可用性。
·所述服务器是航空公司服务器。
·步骤(b)包括使用规则以便分析从所存储数据计算出的一组价
格中的模式。
·在步骤(b)中计算从所存储数据计算出的一组价格包括从历史
价格构建统计模型,识别缺失的报价候选,以及基于统计模型对报价
候选定价。
·用于统计模型的输入包括反向的路线等同物。
还提供了一种被配置来执行以上陈述中的任一个的方法的服务
器。
还提供了一种在非暂时性存储介质上实施的计算机程序产品,所
述计算机程序产品在计算机上运行时被布置来推断针对指定航班或
多个指定航班的票价等级可用性,所述计算机程序产品在计算机上运
行时被布置来:
(a)接收针对所述(多个)航班的可查看、实时可预订价格,其
中所述价格信息不伴随针对那些(多个)航班的完整票价等级信息;
(b)将所述可查看、实时可预订价格与从所存储数据计算出的一
组价格相比较,所述所存储数据诸如有效旅程数据、诸如FROP数据
的票价数据和税费/附加费数据;以及
(c)通过确定在最接近地匹配所述可查看实时可预订价格的所计
算价格中使用哪个票价等级来确定在所述可查看实时可预订价格中
使用哪个票价等级。
提供了一种与上述服务器的任意方面的服务器连接的计算机终
端,所述计算机终端被布置来发送请求,所述请求限定针对商品或服
务(诸如机票)的票价等级可用性以及限定那些商品或服务的参数的
请求,其中所述计算机还被布置来接收输出的所推断票价等级可用
性。
提供了一种物品或服务,诸如飞机票,并且其中针对所述物品或
服务的价格等级可用性所述使用在上述方法的任意方面中限定的方
法或者在上述服务器的任意方面中限定的服务器来提供的。
提供了一种基于网络的价格对比网站,终端用户可以通过提供针
对票价等级可用性的请求来与其交互,并且所述基于网络的价格对比
网站向服务器提供所述请求,所述服务器使用上述方法的任意方面的
方法来估计票价等级可用性。