高分辨分析探测台 背景技术
本发明一般涉及用于集成电路(IC)样品探测台的高分辨率显微镜检查法的使用,尤其涉及利用扫描电子显微镜(SEM)在集成电路样品上探测的方法和系统。其中,扫描电子显微镜设置在观察样品表面标记的地方,以识别导电端子并为探针定位。
目前,探测台典型地使用光学显微镜。虽然晶片直径越来越大,但是那些晶片上和内部的结构却变小。在过去的几十年中,该工业已经将这些结构的尺寸从几百分之一英寸数量级改进到今天的几分之一微米。直到最近,多数结构能够由普通高倍光学显微镜观察和探测。但是,现代结构已经达到不再允许使用标准光学显微镜来观察的尺寸。由于工业集成电路设计规则朝0.18微米和更小的特征发展,无法倚赖最先进的光学显微镜通过实验中集成电路样品表面的导电路径标记,精确地确定导电端子。另外,当在样品上观察非常小的特征时,光学显微镜的透镜常常放置地如此接近于样品,从而它可能影响测试探针。
如果这一工业继续要探测这些结构,则除了光学显微镜以外,还必须有另一个确实需要的方法。因此,希望提供一种探测台,它能够显现和探测一般不能见到的结构,并且结合电子光学而同时保持在光学显微镜探测台上能够看到的特点。
发明概述
本发明的一个目的是提供一种使用高分辨率分析探测台,并克服了现有技术中的缺点和问题的探测方法。
本发明的另一个目的是提供一种用于将电测试信号提供给集成电路样品地高分辨率探测台方法和系统。
本发明的另一个目的是提供使用用于观察样品表面的扫描电子显微镜,将电测试信号定位在集成电路样品上的探测方法。
本发明的还有一个目的是提供一种真空室,其中将来自计算机的电信号耦合到电动操纵器,并且多个探针允许计算机与电动操纵器通信,以为施加电测试信号的探针定位。
简而言之,本发明涉及使用扫描电子显微镜(SEM)或聚焦离子束(FIE)系统定位以观察样品暴露其导电端子的表面,而通过集成电路样品上的电测试信号探测的方法和系统。提供托盘为扫描电子显微镜支撑样品,同时计算机从扫描电子显微镜获得确定样品表面的传导通路标记的图像。电动操纵器由计算机遥控,或直接由操作者使用操纵杆之类的装置遥控,可操作多个可在样品表面上定位的探针,用于传送真空室内壳电测试信号,所述真空室内壳容纳扫描电子显微镜、托盘、电动操纵器和多个探针(用于在真空中分析样品)。真空室上的馈电导体将来自计算机的电信号耦合到电动操纵器和多个探针。计算机与电动操纵器通信,以定位多个探针,并使用计算机获得的图像(以通过扫描电子显微镜观察,从样品表面的传导通路标记确定导电端子),将电测试信号提供给样品上的端子。
在阅读了下面的说明书、权利要求书和附图之后,本发明的其它目的和优点对于熟悉本领域的技术人员将是显然的。
附图概述
图1示出使用本发明的高分辨率探测台;
图2示出根据本发明的真空室的截面,该真空室容纳一个扫描电子显微镜(SEM)、电动操纵器和多个放置在集成电路样品上的探针;
图3A、3B和3C是真空室的透视图,其中来自计算机的电信号耦合到电动操纵器和多个探针,允许计算机与电动操纵器通信,以对施加电测试信号的探针定位;和
图4是SEM照片,示出将电测试信号提供给集成电路样品的探针定位,示出样品表面标记,和多个探针。
较佳实施例独立的详细描述
现在参照附图,特别是图1和2,示出用于集成电路样品(例如,半导体晶片50)的高分辨率分析探测的系统10,系统10将电测试信号提供给集成电路样品50,该集成电路样品50可以包括整个晶片、封装的部分,或晶片片段。由此,除了各种类似尺寸的样品以外,系统10可以探测整体晶片。传统的扫描电子显微镜(SEM),可以使用探测过程中用于材料分析的X射线微探针或聚焦离子束(FIB)系统12,以增强性能。因此,可以将探针综合到FIB系统以及SEM系统中。这里描述的实施例使用由R.J.Lee器具有限公司提供的SEM,安置该SEM是为了观察样品50的表面(该表面上暴露有导电端子)。例如见下面将讨论的图4。系统10可以设置有电子束感生电流(EBIC)性能,以允许以非接触探测形式进行电流通路跟踪测试之类的测试。
如图2所示,设置托盘14,用于为扫描电子显微镜12支撑样品50。将扫描电子显微镜12安置在样品50充分上方的位置,以便允许将几个测试探针定位在样品50上,这对于使用光学显微镜来观察非常小的电路特征是可能的。将计算机系统16耦合到图1中的托盘/运动控制14,并且计算机系统16还提供如图4的高分辨率图像的取得,该图像通过扫描电子显微镜12识别了样品50上的导电路径标记。也可将计算机系统16提供作为一个处理器,诸如传统的微处理器为基础的系统,或者电子控制器,或者微控制器,它们适合于下面描述的信息处理。由标号18、20和22表示的多个电动操纵器也由计算机系统16遥控。由此将多个探针24用于传送电测试信号,这种电测试信号能够通过电动操纵器18、20和22在样品50的表面上定位。
图3A、3B和3C中以透视图说明的真空室26说明系统的操作,其中内壳27适合于容纳扫描电子显微镜12、托盘14、多个电动操纵器18、20和22,以及多个探针24,用于在由真空室26产生的为使用扫描电子显微镜12的真空中来分析样品50。从45度到90度的安装角,以及不同款式可掉换的探针尖端的调节性能(45度到90度的攻角)有助于关于扫描电子显微镜12的探针定位。
内壳27的真空室尺寸依赖于所需探测的类型。对于小的样品的探测,需要相对小的真空室。小的样品可能是封装部件或晶片片段。对于晶片级别探测,真空室尺寸必须大得多,以容纳晶片分级平移(300mm或更大)。真空室接近于23″内径×10″深。这允许6″的晶片卡盘(卡盘),它在X和Y上的移动小于1英寸。也允许六个(6)可编程操纵器,它具有至少50nm分辨率,在所有轴向上移动0.5英寸。系统的轨迹接近于3′×3′×5′,这包括了所需的所有电子和泵的便利。
将系统10建立在由动力系统提供的隔振桌上,动体系统可以由各种厂商提供。桌系统的设计定制为容纳位于桌面上方或下方的真空室。使这一安排允许容易地使用探针,而不必在高出普通桌面高度许多出工作。对于这一框结构,使用由气动或液压式驱动的升力控制机构29,以升高或降低真空室顶端28。另外,将系统工作需要的所有硬件服务集合到桌腿区域。
真空室壁27具有焊接在其上的馈电导体,这为所需的敷设提供了带凸缘的口,以使系统的可编程功能运作,并且提供卡盘表面14的信号路径、各个探针触点24和探针板信号(图中未示)。可以在系统真空室中使用热卡盘14。真空室底盘13也直通焊接的,具有有凸缘的口安装将真空引入真空室的装置,并且为了相互连接需要还有另外的馈电导体端口,这将在下面讨论。由此,当装配了所述的互联硬件和工具时,系统10非常适合于低噪声和低电流测试。
设计一种900VM型操纵器(微操纵器公司,Carson城,内华达州)满足“放手”操作和可编程探针应用。操纵器18、19、20、21、22和23在X、Y和Z轴上是电动的。通过手来帮助Z轴的定位,粗定位允许补偿各种探针夹和探测台系统,它可能依赖控制器系统的选择,以全编程或仅电动(例如操纵杆控制)模式工作。900VM型操纵器可安装所有标准的一次性型或综合型探针尖端的探针夹。
900VM型操纵器以0.05微米提供非常高的操纵器分辨率。通过电动(操纵杆)或可编程控制,这样的分辨率是可以达到的。900VM特点还在于探针夹″Z″定位设置的广大范围、分度的旋转显微镜接头、对于快速探针尖端掉换的快速手动″Z″提升,以及快速释放的稳定真空基础。900VM型可与单一操纵杆控制(REM版)或外部计算机控制(使用pcProbeTM软件)一起使用,这将在下面讨论。
在真空室26上设置馈电导体,将电信号通过例如计算机总线28从计算机系统16耦合到电动操纵器18、19、20、21、22和23,台阶14,以及多个探针24。通过PAVE技术公司提供所使用的馈电导体,其它的包括信号、定位器、和探针板连接,它们属于两种类别中的一种。第一种类别为DUT测试信号操作性能提供的。这些可以是,但是不限于信号针形插孔、同轴电缆、三轴、SMA和UNC连接。另外,通过固定的位置探针板使用,所有提到的馈电导体可以一起使用,加上许多其它装置以处理大量引线。第二种专注于将控制信号提供给所有所需的探针功能。典型的控制轴对于电动机距和方向以及限制的控制可能需要七个引线。
另外,在使用位置反馈的地方可以使用附加的引线。Kelvin探针和探针夹配置,它们适合于这种应用。这些将需要双倍数量的信号引线。计算机系统16与电动操纵器18、20和22同心,以放置多个探针24,以使用计算机系统16所需的图像,将电测试信号提供给样品50上的端子,通过扫描电子显微镜12观察,由样品50的表面的导电通路标记确定导电端子。
如上所述,探测台系统10安置扫描电子显微镜12,以观察样品12的把表面来安置探针24。系统10提供用于支持样品50的装置,它包括托盘/运动控制14、和用于支撑样品50的卡盘。全部配置的探针,有卡盘、探针板适配器、六个或更多可编程操纵器、台阶和台板25平移以及测量信号路径为了系统需要,可需要126或更多的馈电导体连接。至少5个信号路径用于台阶表面和探针,探针板为基础的连接也需要如此多路径。Kelvin探针和探针夹配置则能使交互连接的数据加倍。
参照图2和图3A,一旦真空室顶部28升高,它会转出,从而光学显微镜70可通过在显微镜桥71上滑动而移动到晶片卡盘14上的位置,以有助于探针在DUT50上初步定位(在关系到使用者的区域中)。这样做是为了在系统处于真空条件下时减少给在DUT上进行探测区域的定位的时间消耗。完成这一点以后,可以将光学显微镜70放置得不挡道,从而可以将真空室顶部28下降到适当位置。可能有两个锥形针(图中未示),它们将套在套管内,适当地放置,从而真空室顶部28与SEM柱12可与真空室臂27适当排列,完成密封。通过上述系统10的SEM实施例,可能使用热阴极电子发射技术,但是系统10的另外一个实施例可使用场发射,如上所述。场发射以小得多的破坏样品50的潜在可能性来提供改进的图像质量。另外,真空室顶部27(通过定位销)应该确保SEM柱12将适当放置在探针24和操纵器18-23当中。
在真空室26中,有电动X-Y探测台46,它将支撑所有标准探测功能,如下所述。除了支撑结构以外,该平台46的目的是与今天的大多数探测台上发现的典型显微镜平移一致地平移所有探测器功能。由平台46提供的X/Y平移有助于大面积DUT观察,而不需要打扰探针24。由于柱无法不依赖台阶、压盘和操纵器容易地移动,移动平台允许使用者扫描DUT确定探针位置,或检查每一个探针的位置,或所有由探针板提供的探针,其中探针板是此功能位移方法。压盘25可用于同时上升操纵器和移动可使用的固定位置探针板。由此,压盘25的电动的斜轴将允许它垂直运动,从而可以观察样品50上探针24的另一面和位置。
在平台46下方,并且平台和真空室26底部之间有一个运行,用于使平台沿“Z”方向(垂直于电动斜轴15)倾斜。这一运行允许平台46沿“X”或“Y”轴翻转或倾斜,以允许使用者观察探针24,它以直角以外的角度与DUT50接触。电动翻转或倾斜功能改进了探测观察角度。这有助于使用者在非常小的DUT结构上“看”着陆。
安装到平台的是X-Y台阶17,它具有为晶片卡盘14的台阶17设置的Theta调节。将DUT安装到晶片卡盘是通过机械方法,由此弹簧卡子将晶片固定到卡盘。在真空室中,真空作为压制的方法显然不行。晶片被套准用的定位销放置到一个小凹陷内,具有如今大多数晶片上发现的凹口和平面。
还安装到平台46上的是“Z”压盘25,它同时支持固定的探针板和微操纵器。压盘沿着“Z”轴方向电动机驱动,从而固定位置探针板和/或单个探针可以同时升高和降低。这种控制运动探针和探针板的“Z”定位。
多个电动/可编程微操纵器18-23设置在压盘25上。提供的附图表示这些装置中的六个。六个是可能的实际限制,如果需要,任何数量可用于将探针引入与DUT接触。
扫描电子显微镜12通过扫描电子显微镜接口30与计算机系统16耦合,可与CAD导航软件一起使用。计算机系统16因此通过总线28与扫描电子显微镜12通信(通过SEM接口30),它包括获得图像的装置,包含第一计算机。
计算机系统16可包括第一计算机32,诸如一般的个人计算机(PC),配置作为数字图像处理器,用于从扫描电子显微镜12获得图像。计算机系统16还可以包括第二个人计算机34,用于通过电动操纵器18、20、22遥控多个探针24,所述电动操纵器18、20、22是由计算机34遥控的。或者,计算机系统16可以是单个PC或服务器,它对探针功能和显微镜功能都执行控制工作计算机系统16还可包括六个计算机和三个监视器(以原型机型)它们都可以由单个计算机和监视器完成。但是,发现在所述实施例中有两个监视器是有利的,其中一个用于高分辨率观察,另一个用于所有系统控制和导航功能。
将分离电视显示器单元(VDUS)36和38(它们可以提供作为传统PC计算机监视器)用于显示高分辨率显微镜图像和计算机图形(分别关于SEM12和探针24)。VDU36和38用于通过获得将有关对应于样品50的暴露的导电端子的具体集成电路表面标记的信息传送给使用者的图像,可视地帮助使用者遥控多个探针24在压盘50上的安置。微操纵器公司(Carson城,内华达州),与WindowsTM基础的个人计算机一起使用的pcProbeⅡTM软件(PCPⅡ)提供这种功能,诸如自动平面补偿、自动排列和设置,这些功能自动导航临时使用者通过准备探测的处理。手动控制40,例如鼠标和/或操纵杆也由使用者来使用,以控制多个放置在样品50上的探针24电测试信号探针界面42耦合到探计24,以将电测试信号施加给样品50。或者,可以将多个探针24提供为定位探针板,以将电测试信号提供给样品50。
由计算机系统16一起使用的PCPⅡ软件提供探针定位系统,它具有建点化的直觉图标基础的工具箱形式的控制性能。
PCPⅡ探针软件以模块格式设计,允许晶片成象、冲模和内冲模步骤、多个装置导航项和着陆感受。PCPⅡ探针特点包括一个具有实际导航控制的屏幕电视,改善的排列和屏幕功能和通过晶片图像编程,交互式学习和矩阵模式。PCPⅡ探针导航软件支持Window,DDE,RS-232和GPIB界面。PCPⅡ探针导航模块提供交互式装置设置,以控制四个或更多操纵器、样品托盘台阶、压盘和显微镜。当使用探针分析压盘50时,导航显示器示出实际样品装置的位置和控制信息导航模块还提供系统操作数据和探针着陆参数。晶片成象模块提供选择的冲压的连续的视觉指示,并显示冲压样品精确的坐标。PCPⅡ探测软件还包括电视模块,以由个人计算机实时对样品50成象。每一个PC/探针Ⅱ模块使用分立的应用窗口,这允许使用者通过定义每一个模块的位置和使每一个窗口各自最小化或最大化来制作观察屏幕。
在其它装置中,提供环境控制44,以控制温度,并在真空室探针壳的内壳27中产生真空,以使扫描电子显微镜12工作,并在受到控制的环境条件下在真空中分析样品50。环境控制44可包含例如象大多数电子束光学系统包含的磁屏蔽,没有磁屏蔽,电子束将无法为适当的分辨率进行准直。第二,由于晶片探针区域完全由金属围绕,使用者将经历显著电磁屏蔽特性,这是在目前传统探测台上的改进。将带有金属化表面的绝缘体的另外一层用于屏蔽卡盘表面使卡盘表面14屏蔽,并提供低噪声环境。另外,当真空室接地时,使用绝缘的同轴连接将允许三轴的测量。然后,由于探针运行在真空室中,在低温探测应用中可能不形成冰冻。由于有极少空气,探针在周围和上升的温度应用中将不会氧化。最后,与系统10一起使用的热卡盘使得DUT可在周围温度以上和以下测试。
将长椅型桌用于支撑VDU监视器、键盘、鼠标和操纵杆。用于200mm系统的真空室是大约2′×2′×1′+/-对于300mm系统接近于3′×5′×1′。更大的真空室的泵元件可能需要额外的空间。
现在看图4,通过多个视图52,54和56示出一SEM照片,位于样品50上暴露的导电电路路径54上的探针24,作为提供集成电路处的电测试信号的方法。分析集成电路样品50的方法需要图像从扫描电子显微镜12确定样品表面的传导通路标记,该扫描电子显微镜12由pcProbeⅡ软件界面驱动。pcProbeⅡ导航软件有助于将探针24安置在样品50的高分辨率图像中的处理。因此,图像取得步骤用于从通过扫描电子显微镜12观察的样品50表面上的导电路径标记54确定导电端子,以通过遥控多个探针来安置这多个探针,如上所述。最低的放大视图是56项,中间放大视图是58项,最高放大视图是52项。三个视图的原因是帮助操作者保持他们工作处有良好的观察点。
虽然已经说明和描述了本发明的较佳实施例独立,显然对于熟悉本领域的技术人员可以有修改,送入权利要求覆盖了所有这些落入本发明的主旨和范围内的变化和修改。