高精度带隙基准源电路.pdf

上传人:e1 文档编号:6161985 上传时间:2019-05-13 格式:PDF 页数:8 大小:1.78MB
返回 下载 相关 举报
摘要
申请专利号:

CN201210391174.6

申请日:

2012.10.15

公开号:

CN103729010A

公开日:

2014.04.16

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):G05F 1/567申请日:20121015授权公告日:20150429终止日期:20151015|||授权|||实质审查的生效IPC(主分类):G05F 1/567申请日:20121015|||公开

IPC分类号:

G05F1/567

主分类号:

G05F1/567

申请人:

上海聚纳科电子有限公司

发明人:

胡佳俊; 陈后鹏; 宋志棠

地址:

201506 上海市金山区金山工业区天工路185号2幢2号

优先权:

专利代理机构:

上海光华专利事务所 31219

代理人:

李仪萍

PDF下载: PDF下载
内容摘要

本发明提供一种高精度带隙基准源电路。该电路至少包括:PTAT电流源与IPTAT电流源;用于将所述PTAT电流源输出的电流与IPTAT电流源输出的电流线性叠加的一阶补偿电路;用于在工作温度低于预定低温阈值时将IPTAT电流源输出的电流和PTAT电流源输出的电流线性相减的低温补偿电路;用于在工作温度高于预定高温阈值时将PTAT电流源输出的电流和IPTAT电流源输出的电流线性相减的高温补偿电路;用于基于所述一阶补偿电路、低温补偿电路及高温补偿电路的输出电流来输出基准电压的输出电路。优选地,该电路还包括用于供电的预调制电压源;本发明的优点包括:能实现基准源的超低温漂性能;能有效抑制电源中的噪声等。

权利要求书

权利要求书
1.  一种高精度带隙基准源电路,其特征在于,所述高精度带隙基准源电路至少包括:
PTAT电流源与IPTAT电流源;
一阶补偿电路,用于将所述PTAT电流源输出的电流与IPTAT电流源输出的电流线性叠加;
低温补偿电路,用于在工作温度低于预定低温阈值时将IPTAT电流源输出的电流和PTAT电流源输出的电流线性相减;
高温补偿电路,用于在工作温度高于预定高温阈值时将PTAT电流源输出的电流和IPTAT电流源输出的电流线性相减;
输出电路,用于基于所述一阶补偿电路、低温补偿电路及高温补偿电路的输出电流来输出基准电压。

2.  根据权利要求1所述的高精度带隙基准源电路,其特征在于还包括用于供电的预调制电压源。

3.  根据权利要求2所述的高精度带隙基准源电路,其特征在于:所述预调制电压源包括:自举基准源及包含运算放大器的电压转换电路。

4.  根据权利要求1所述的高精度带隙基准源电路,其特征在于:所述预定低温阈值基于分别与所述IPTAT电流源及PTAT电流源成镜像的电流源的IPTAT电流源及PTAT电流源的比例来确定。

5.  根据权利要求1所述的高精度带隙基准源电路,其特征在于:所述预定高温阈值基于分别与所述IPTAT电流源及PTAT电流源成镜像的电流源的IPTAT电流源及PTAT电流源的比例来确定。

6.  根据权利要求1所述的高精度带隙基准源电路,其特征在于:所述PTAT电流源与IPTAT电流源由包含两个运算放大器、两个PNP型晶体管及电阻的负反馈电路来实现。

7.  根据权利要求7所述的高精度带隙基准源电路,其特征在于:所述电阻由电路所在芯片的方块电阻串并形成。

8.  根据权利要求1所述的高精度带隙基准源电路,其特征在于:所述输出电路包含的电阻由 电路所在芯片的方块电阻串并形成。

说明书

说明书高精度带隙基准源电路
技术领域
本发明涉及电路领域,特别是涉及一种高精度带隙基准源电路。
背景技术
电压基准电路是数模转换器(DAC)、模数转换器(ADC)、线性稳压器(LDO)等电路总不可缺少的基本模块。传统的带隙基准电路采用负温度系数的双极晶体管电压VBE和正温度系数电压VT相加的方式来降低输出电压的温度系数。
例如,如图1所示,其为现有CMOS标准工艺下的带隙基准源电路。MP2产生的PTAT电流被镜像到MP1和MP3,通过调节R1和R2的电阻值,便得到一阶补偿下的带隙基准源。但是由于pnp晶体管本身固有的非线性分量(随温度变化)很大程度上限制了基准源的精度。通常在一阶补偿的情况下,基准电压的仿真漂移量约为2-3mv(-40°到125°变化),但是实测结果往往远没那么理想,漂移的电压值很容易达到几十毫伏,因而难以适用于高精度的模拟系统中。
而且,上述带隙基准电路所得到的基准电压仅仅补偿了一阶温度T,VBE固有的高阶温度lnT成为限制提高基电压温度特性的关键因素。虽然近年来已有研究人员提出了一些高阶温度补偿技术,例如,Leung等提出来利用电阻的高阶温度特性进行温度补偿的方案,使基准电压在0-100℃的温度范围,温度系数降至3.3ppm/℃,然而该方法在实际工艺制作中存在电阻失配问题;又例如,Malcovati等提出了利用双极晶体管的电压差形成高阶温度电流进行温度补偿,使基准电压在0-80℃的温度范围,温度系数达到7.53ppm/℃,但该方法在电路中有电阻回路,影响了基准电压的精度。
此外,作为一个理想的基准源,电源抑制比(PSRR)性能往往也是一个非常重要的技术指标。基本的参考源,如图1所示,电压源中的噪声以交流信号形式通过MP3直接耦合到输出端,因而使得基准电压受电源变化的影响较大。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种高精度带隙基准源电路。
为实现上述目的及其他相关目的,本发明提供一种高精度带隙基准源电路,其至少包括:
PTAT电流源与IPTAT电流源;
一阶补偿电路,用于将所述PTAT电流源输出的电流与IPTAT电流源输出的电流线性叠加;
低温补偿电路,用于在工作温度低于预定低温阈值时将IPTAT电流源输出的电流和PTAT电流源输出的电流线性相减;
高温补偿电路,用于在工作温度高于预定高温阈值时将PTAT电流源输出的电流和IPTAT电流源输出的电流线性相减;
输出电路,用于基于所述一阶补偿电路、低温补偿电路及高温补偿电路的输出电流来输出基准电压。
优选地,所述高精度带隙基准源电路还包括用于供电的预调制电压源;更为优选地,所述预调制电压源包括:自举基准源及包含运算放大器的电压转换电路。
优选地,所述预定低温阈值基于分别与所述IPTAT电流源及PTAT电流源成镜像的电流源的IPTAT电流源及PTAT电流源的比例来确定。
优选地,所述预定高温阈值基于分别与所述IPTAT电流源及PTAT电流源成镜像的电流源的IPTAT电流源及PTAT电流源的比例来确定。
优选地,所述PTAT电流源与IPTAT电流源由包含两个运算放大器、两个PNP型晶体管及电阻的负反馈电路来实现。
如上所述,本发明的高精度带隙基准源电路,具有以下有益效果:实现基准源的超低温漂性能;能有效抑制电源中的噪声等。
附图说明
图1显示为现有技术中的带隙基准源电路示意图。
图2显示为本发明的高精度带隙基准源电路示意图。
图3显示为本发明的高精度带隙基准源电路中的高增益运算放大器内部电路示意图。
图4显示为本发明的高精度带隙基准源电路的预调制电压源示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
请参阅图1至图4。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等 的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
图2为本发明提供的高精度带隙基准源电路的优选电路图。其中,该高精度带隙基准源电路包括:PTAT电流源与IPTAT电流源、一阶补偿电路、低温补偿电路、高温补偿电路、及输出电路。
所述PTAT电流源与IPTAT电流源包括:运放opamp1、opamp2、场效应管MP1、MP2、MP3、电阻R1、R2、PNP晶体管Q1、Q2及电容Cm1。
所述一阶补偿电路包括场效应管MP11、MP12、电阻R3及电容Cm2。
所述低温补偿电路包括:场效应管MP4、MP5、MN1、MN2、MP7、MP8。
所述输出电路包括:电阻R4。
所述高温补偿电路包括:场效应管MP4、MP6、MN1、MN3、MN4、MN5、MP9、MP10。
上述各器件的连接关系、及比例关系如图2所示,在此不再详述。
在该高精度带隙基准源电路中,运放opamp1、opamp2通过各自的负反馈通路迫使点A、B、C的电位相等,因而电阻R2上的IPTAT电流电阻R1上的PTAT电流该PTAT电流和IPTAT电流镜像到场效应管MP11、MP12后得到一次补偿效果,通过简单的调试R1,R2的比例值,可得到对称的抛物线波形状。当该电路所在芯片的工作环境低于预定低温阈值时,则IMN2>IMP5,则低温补偿电流c(IMN2-IMP5)实现对基准电压Vref的第二次补偿,通过调节系数α1、α2、β1可控制低温补偿电流的截止温度点(即预定低温阈值);当芯片的工作环境温度高于预定高温阈值时,则IMP6>IMN3,则高温补偿电流分量d(IMP6-IMN3)对基准电压Vref进行第三次补偿,通过调节比例系数α1、α3、β2来控制高温补偿电流分量的起始温度点(即预定高温阈值)。
为了达到更好的匹配效果,电阻R1-R4均由电路所在芯片的单位方块电阻串并联构成,匹配精度要求和面积可相互折中转换,可实现不到0.1%的误差效果;此外,基于通过中心对称来提高匹配度的考虑,两个PNP管Q1、Q2的面积比为1:8。
由于本发明中的PTAT电流和IPTAT电流是通过运放的两条独立的负反馈环路而得到,因此稳定性又是不得不考虑的问题。以opamp2,MP1,R2为例,与普通的两级放大器构成区别的是,MP1的源极存在着随频率变化而变化的等效负载,这个等效负载不但削弱了MP1的等效跨导,而且大大提高了a点的输出电阻,因此米勒电容在这种情况下就被限制使用,本发明采用把主极点往低频处推的办法获得较为理想的相位裕度。
例如,如图3所示,其为本发明采用的高增益运算放大器结构,该结构采用了增益提高技术,使得输出电阻达到几十兆欧。把主极点往低频处推的同时也大大提高了基准电压的精度值。
作为一种优选,前述高精度带隙基准源电路还包括用于向整个电路提供电源Vnivs的预调制电压源。
例如,如图4所示,其为一种优选的预调制电压源电路图。
场效应管M1-M3以极小的静态功耗为代价,使得场效应管M4-M7和电阻R0组成的自举基准源脱离其潜在的简并偏置点。场效应管M6和电阻R0构成的电压负反馈提高了场效应管M7栅端的电源抑制比(PSRR)性能。跨导型放大器(OTA)、场效应管MPW和电阻Rf1-Rf2形成了一个简单的DC-DC转换器,经过转化后的输出电压Vnivs为带隙基准源电路供电,通过调节Rf1和Rf2的比值可以得到所需的电压值。
综上所述,本发明的高精度带隙基准源电路的预调制电压源为整个电路提供了一个不受理想电压源变化的参考电压,能很好地抑制电源中的噪声,而且本发明通过高阶补偿技术合理的调控PTAT和IPTAT电流分量来实现基准源Vref的超低温漂性能通过高阶补偿技术合理的调控PTAT和IPTAT电流分量来实现基准源Vref的超低温漂性能,可用于对参考源要求较高的系统,如:高精度的A/D,D/A转换器,PLL,LDO等。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

高精度带隙基准源电路.pdf_第1页
第1页 / 共8页
高精度带隙基准源电路.pdf_第2页
第2页 / 共8页
高精度带隙基准源电路.pdf_第3页
第3页 / 共8页
点击查看更多>>
资源描述

《高精度带隙基准源电路.pdf》由会员分享,可在线阅读,更多相关《高精度带隙基准源电路.pdf(8页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 103729010 A (43)申请公布日 2014.04.16 CN 103729010 A (21)申请号 201210391174.6 (22)申请日 2012.10.15 G05F 1/567(2006.01) (71)申请人 上海聚纳科电子有限公司 地址 201506 上海市金山区金山工业区天工 路 185 号 2 幢 2 号 (72)发明人 胡佳俊 陈后鹏 宋志棠 (74)专利代理机构 上海光华专利事务所 31219 代理人 李仪萍 (54) 发明名称 高精度带隙基准源电路 (57) 摘要 本发明提供一种高精度带隙基准源电路。该 电路至少包括 : PTAT。

2、 电流源与 IPTAT 电流源 ; 用 于将所述PTAT电流源输出的电流与IPTAT电流源 输出的电流线性叠加的一阶补偿电路 ; 用于在工 作温度低于预定低温阈值时将 IPTAT 电流源输出 的电流和 PTAT 电流源输出的电流线性相减的低 温补偿电路 ; 用于在工作温度高于预定高温阈值 时将PTAT电流源输出的电流和IPTAT电流源输出 的电流线性相减的高温补偿电路 ; 用于基于所述 一阶补偿电路、 低温补偿电路及高温补偿电路的 输出电流来输出基准电压的输出电路。 优选地, 该 电路还包括用于供电的预调制电压源 ; 本发明的 优点包括 : 能实现基准源的超低温漂性能 ; 能有 效抑制电源中的。

3、噪声等。 (51)Int.Cl. 权利要求书 1 页 说明书 4 页 附图 2 页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书1页 说明书4页 附图2页 (10)申请公布号 CN 103729010 A CN 103729010 A 1/1 页 2 1. 一种高精度带隙基准源电路, 其特征在于, 所述高精度带隙基准源电路至少包括 : PTAT 电流源与 IPTAT 电流源 ; 一阶补偿电路, 用于将所述PTAT电流源输出的电流与IPTAT电流源输出的电流线性叠 加 ; 低温补偿电路, 用于在工作温度低于预定低温阈值时将 IPTAT 电流源输出的电流和 PTAT 电流。

4、源输出的电流线性相减 ; 高温补偿电路, 用于在工作温度高于预定高温阈值时将 PTAT 电流源输出的电流和 IPTAT 电流源输出的电流线性相减 ; 输出电路, 用于基于所述一阶补偿电路、 低温补偿电路及高温补偿电路的输出电流来 输出基准电压。 2. 根据权利要求 1 所述的高精度带隙基准源电路, 其特征在于还包括用于供电的预调 制电压源。 3. 根据权利要求 2 所述的高精度带隙基准源电路, 其特征在于 : 所述预调制电压源包 括 : 自举基准源及包含运算放大器的电压转换电路。 4. 根据权利要求 1 所述的高精度带隙基准源电路, 其特征在于 : 所述预定低温阈值基 于分别与所述 IPTAT。

5、 电流源及 PTAT 电流源成镜像的电流源的 IPTAT 电流源及 PTAT 电流源 的比例来确定。 5. 根据权利要求 1 所述的高精度带隙基准源电路, 其特征在于 : 所述预定高温阈值基 于分别与所述 IPTAT 电流源及 PTAT 电流源成镜像的电流源的 IPTAT 电流源及 PTAT 电流源 的比例来确定。 6. 根据权利要求 1 所述的高精度带隙基准源电路, 其特征在于 : 所述 PTAT 电流源与 IPTAT 电流源由包含两个运算放大器、 两个 PNP 型晶体管及电阻的负反馈电路来实现。 7. 根据权利要求 7 所述的高精度带隙基准源电路, 其特征在于 : 所述电阻由电路所在 芯片。

6、的方块电阻串并形成。 8. 根据权利要求 1 所述的高精度带隙基准源电路, 其特征在于 : 所述输出电路包含的 电阻由电路所在芯片的方块电阻串并形成。 权 利 要 求 书 CN 103729010 A 2 1/4 页 3 高精度带隙基准源电路 技术领域 0001 本发明涉及电路领域, 特别是涉及一种高精度带隙基准源电路。 背景技术 0002 电压基准电路是数模转换器 (DAC) 、 模数转换器 (ADC) 、 线性稳压器 (LDO) 等电路 总不可缺少的基本模块。传统的带隙基准电路采用负温度系数的双极晶体管电压 VBE和正 温度系数电压 VT相加的方式来降低输出电压的温度系数。 0003 例如。

7、, 如图1所示, 其为现有CMOS标准工艺下的带隙基准源电路。 MP2产生的PTAT 电流被镜像到 MP1 和 MP3, 通过调节 R1 和 R2 的电阻值, 便得到一阶补偿下的带隙基准源。 但是由于 pnp 晶体管本身固有的非线性分量 (随温度变化) 很大程度上限制了基准源的精 度。通常在一阶补偿的情况下, 基准电压的仿真漂移量约为 2-3mv(-40到 125变化) , 但是实测结果往往远没那么理想, 漂移的电压值很容易达到几十毫伏, 因而难以适用于高 精度的模拟系统中。 0004 而且, 上述带隙基准电路所得到的基准电压仅仅补偿了一阶温度 T, VBE固有的高 阶温度 lnT 成为限制提。

8、高基电压温度特性的关键因素。虽然近年来已有研究人员提出了 一些高阶温度补偿技术, 例如, Leung 等提出来利用电阻的高阶温度特性进行温度补偿的方 案, 使基准电压在 0-100的温度范围, 温度系数降至 3.3ppm/, 然而该方法在实际工艺 制作中存在电阻失配问题 ; 又例如, Malcovati 等提出了利用双极晶体管的电压差形成高 阶温度电流进行温度补偿, 使基准电压在 0-80的温度范围, 温度系数达到 7.53ppm/, 但该方法在电路中有电阻回路, 影响了基准电压的精度。 0005 此外, 作为一个理想的基准源, 电源抑制比 (PSRR) 性能往往也是一个非常重要的 技术指标。。

9、基本的参考源, 如图 1 所示, 电压源中的噪声以交流信号形式通过 MP3 直接耦合 到输出端, 因而使得基准电压受电源变化的影响较大。 发明内容 0006 鉴于以上所述现有技术的缺点, 本发明的目的在于提供一种高精度带隙基准源电 路。 0007 为实现上述目的及其他相关目的, 本发明提供一种高精度带隙基准源电路, 其至 少包括 : 0008 PTAT 电流源与 IPTAT 电流源 ; 0009 一阶补偿电路, 用于将所述PTAT电流源输出的电流与IPTAT电流源输出的电流线 性叠加 ; 0010 低温补偿电路, 用于在工作温度低于预定低温阈值时将 IPTAT 电流源输出的电流 和 PTAT 。

10、电流源输出的电流线性相减 ; 0011 高温补偿电路, 用于在工作温度高于预定高温阈值时将 PTAT 电流源输出的电流 和 IPTAT 电流源输出的电流线性相减 ; 说 明 书 CN 103729010 A 3 2/4 页 4 0012 输出电路, 用于基于所述一阶补偿电路、 低温补偿电路及高温补偿电路的输出电 流来输出基准电压。 0013 优选地, 所述高精度带隙基准源电路还包括用于供电的预调制电压源 ; 更为优选 地, 所述预调制电压源包括 : 自举基准源及包含运算放大器的电压转换电路。 0014 优选地, 所述预定低温阈值基于分别与所述IPTAT电流源及PTAT电流源成镜像的 电流源的 。

11、IPTAT 电流源及 PTAT 电流源的比例来确定。 0015 优选地, 所述预定高温阈值基于分别与所述IPTAT电流源及PTAT电流源成镜像的 电流源的 IPTAT 电流源及 PTAT 电流源的比例来确定。 0016 优选地, 所述 PTAT 电流源与 IPTAT 电流源由包含两个运算放大器、 两个 PNP 型晶 体管及电阻的负反馈电路来实现。 0017 如上所述, 本发明的高精度带隙基准源电路, 具有以下有益效果 : 实现基准源的超 低温漂性能 ; 能有效抑制电源中的噪声等。 附图说明 0018 图 1 显示为现有技术中的带隙基准源电路示意图。 0019 图 2 显示为本发明的高精度带隙基。

12、准源电路示意图。 0020 图 3 显示为本发明的高精度带隙基准源电路中的高增益运算放大器内部电路示 意图。 0021 图 4 显示为本发明的高精度带隙基准源电路的预调制电压源示意图。 具体实施方式 0022 以下由特定的具体实施例说明本发明的实施方式, 熟悉此技术的人士可由本说明 书所揭露的内容轻易地了解本发明的其他优点及功效。 0023 请参阅图 1 至图 4。须知, 本说明书所附图式所绘示的结构、 比例、 大小等, 均仅用 以配合说明书所揭示的内容, 以供熟悉此技术的人士了解与阅读, 并非用以限定本发明可 实施的限定条件, 故不具技术上的实质意义, 任何结构的修饰、 比例关系的改变或大小。

13、的调 整, 在不影响本发明所能产生的功效及所能达成的目的下, 均应仍落在本发明所揭示的技 术内容得能涵盖的范围内。同时, 本说明书中所引用的如 “上” 、“下” 、“左” 、“右” 、“中间” 及 “一” 等的用语, 亦仅为便于叙述的明了, 而非用以限定本发明可实施的范围, 其相对关系的 改变或调整, 在无实质变更技术内容下, 当亦视为本发明可实施的范畴。 0024 图 2 为本发明提供的高精度带隙基准源电路的优选电路图。其中, 该高精度带隙 基准源电路包括 : PTAT 电流源与 IPTAT 电流源、 一阶补偿电路、 低温补偿电路、 高温补偿电 路、 及输出电路。 0025 所述 PTAT 。

14、电流源与 IPTAT 电流源包括 : 运放 opamp1、 opamp2、 场效应管 MP1、 MP2、 MP3、 电阻 R1、 R2、 PNP 晶体管 Q1、 Q2 及电容 Cm1。 0026 所述一阶补偿电路包括场效应管 MP11、 MP12、 电阻 R3 及电容 Cm2。 0027 所述低温补偿电路包括 : 场效应管 MP4、 MP5、 MN1、 MN2、 MP7、 MP8。 0028 所述输出电路包括 : 电阻 R4。 0029 所述高温补偿电路包括 : 场效应管 MP4、 MP6、 MN1、 MN3、 MN4、 MN5、 MP9、 MP10。 说 明 书 CN 103729010 A。

15、 4 3/4 页 5 0030 上述各器件的连接关系、 及比例关系如图 2 所示, 在此不再详述。 0031 在该高精度带隙基准源电路中, 运放 opamp1、 opamp2 通过各自的负反馈通路迫 使点 A、 B、 C 的电位相等, 因而电阻 R2 上的 IPTAT 电流电阻 R1 上的 PTAT 电流 该 PTAT 电流和 IPTAT 电流镜像到场效应管 MP11、 MP12 后得到一次补偿效果, 通过简单的调试 R1, R2 的比例值, 可得到对称的抛物线波形状。当该电路所在芯片的工 作环境低于预定低温阈值时, 则 IMN2IMP5, 则低温补偿电流 c(IMN2-IMP5) 实现对基准。

16、电压 Vref 的第二次补偿, 通过调节系数 1、 2、 1可控制低温补偿电流的截止温度点 (即预定低 温阈值) ; 当芯片的工作环境温度高于预定高温阈值时, 则 IMP6IMN3, 则高温补偿电流分量 d (IMP6-IMN3) 对基准电压 Vref进行第三次补偿, 通过调节比例系数 1、 3、 2来控制高温补 偿电流分量的起始温度点 (即预定高温阈值) 。 0032 为了达到更好的匹配效果, 电阻 R1-R4 均由电路所在芯片的单位方块电阻串并联 构成, 匹配精度要求和面积可相互折中转换, 可实现不到 0.1% 的误差效果 ; 此外, 基于通过 中心对称来提高匹配度的考虑, 两个 PNP 。

17、管 Q1、 Q2 的面积比为 1:8。 0033 由于本发明中的 PTAT 电流和 IPTAT 电流是通过运放的两条独立的负反馈环路而 得到, 因此稳定性又是不得不考虑的问题。以 opamp2, MP1, R2 为例, 与普通的两级放大器 构成区别的是, MP1 的源极存在着随频率变化而变化的等效负载, 这个等效负载不但削弱了 MP1 的等效跨导, 而且大大提高了 a 点的输出电阻, 因此米勒电容在这种情况下就被限制使 用, 本发明采用把主极点往低频处推的办法获得较为理想的相位裕度。 0034 例如, 如图 3 所示, 其为本发明采用的高增益运算放大器结构, 该结构采用了增益 提高技术, 使得。

18、输出电阻达到几十兆欧。把主极点往低频处推的同时也大大提高了基准电 压的精度值。 0035 作为一种优选, 前述高精度带隙基准源电路还包括用于向整个电路提供电源 Vnivs 的预调制电压源。 0036 例如, 如图 4 所示, 其为一种优选的预调制电压源电路图。 0037 场效应管 M1-M3 以极小的静态功耗为代价, 使得场效应管 M4-M7 和电阻 R0 组成的 自举基准源脱离其潜在的简并偏置点。场效应管 M6 和电阻 R0 构成的电压负反馈提高了 场效应管 M7 栅端的电源抑制比 (PSRR) 性能。跨导型放大器 (OTA)、 场效应管 MPW 和电阻 Rf1-Rf2 形成了一个简单的 D。

19、C-DC 转换器, 经过转化后的输出电压 Vnivs为带隙基准源电路 供电, 通过调节 Rf1 和 Rf2 的比值可以得到所需的电压值。 0038 综上所述, 本发明的高精度带隙基准源电路的预调制电压源为整个电路提供了一 个不受理想电压源变化的参考电压, 能很好地抑制电源中的噪声, 而且本发明通过高阶补 偿技术合理的调控 PTAT 和 IPTAT 电流分量来实现基准源 Vref 的超低温漂性能通过高阶补 偿技术合理的调控 PTAT 和 IPTAT 电流分量来实现基准源 Vref 的超低温漂性能, 可用于对 参考源要求较高的系统, 如 : 高精度的 A/D,D/A 转换器, PLL, LDO 等。

20、。所以, 本发明有效克服 了现有技术中的种种缺点而具高度产业利用价值。 0039 上述实施例仅例示性说明本发明的原理及其功效, 而非用于限制本发明。任何熟 悉此技术的人士皆可在不违背本发明的精神及范畴下, 对上述实施例进行修饰或改变。因 此, 举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完 说 明 书 CN 103729010 A 5 4/4 页 6 成的一切等效修饰或改变, 仍应由本发明的权利要求所涵盖。 说 明 书 CN 103729010 A 6 1/2 页 7 图 1 图 2 说 明 书 附 图 CN 103729010 A 7 2/2 页 8 图 3 图 4 说 明 书 附 图 CN 103729010 A 8 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 控制;调节


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1