一种旋转机械的EEMD和平滑迭代包络分析方法.pdf

上传人:v**** 文档编号:6123256 上传时间:2019-04-13 格式:PDF 页数:25 大小:1.74MB
返回 下载 相关 举报
摘要
申请专利号:

CN201610492465.2

申请日:

2016.06.29

公开号:

CN106198018A

公开日:

2016.12.07

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):G01M 13/04申请日:20160629|||公开

IPC分类号:

G01M13/04

主分类号:

G01M13/04

申请人:

潍坊学院

发明人:

窦春红

地址:

261061 山东省潍坊市东风东街5147号

优先权:

专利代理机构:

代理人:

PDF下载: PDF下载
内容摘要

本发明公开了一种旋转机械的EEMD和平滑迭代包络分析方法,该方法首先利用集合经验模式分解方法对原始信号进行分解,然后利用数据的重排和替代操作排除分解结果中的噪声分量和趋势项,接着再采用谱峭度方法对第一次滤波后的信号进行分析,得到最优滤波器的中心频率和带宽,然后利用该滤波器对第一次滤波后的信号再进行第二次滤波,然后采用平滑迭代包络分析方法对第二次滤波后的信号进行包络分析,最后根据包络谱确定旋转机械的故障类型。本发明适合于处理复杂的旋转机械故障信号,能够准确地判定出旋转机械的故障类型,具有良好的抗噪性和鲁棒性,便于工程应用。

权利要求书

1.一种旋转机械的EEMD和平滑迭代包络分析方法,其特征在于,包括以下步骤:
步骤1:利用加速度传感器以采样频率fs测取旋转机械的振动信号x(k), (k=1, 2,
…,N),N为采样信号的长度;
步骤2:采用集合经验模式分解(Ensemble Empirical Mode Decomposition, EEMD)算
法将信号x(k)分解成n个分量和一个趋势项之和,即 ,其中,ci(k)代表由
EEMD算法得到的第i个分量,rn(k)代表由EEMD算法得到的趋势项;
步骤3:对ci(k)执行重排操作和替代操作,经重排操作得到的数据用cishuffle(k)表示,
替代操作后得到数据用ciFTran(k)表示;
步骤4:对ci(k)、cishuffle(k)和ciFTran(k)分别执行多重分形去趋势波动分析
(Multifractal Detrended Fluctuation Analysis, MFDFA),得到广义Hurst指数曲线,ci
(k)的广义Hurst指数曲线用Hi(q)表示;cishuffle(k)的广义Hurst指数曲线用Hishuffle(q)表
示;ciFTran(k)的广义Hurst指数曲线用HiFTran(q)表示;
步骤5:如果Hi(q) 与Hishuffle(q)或Hi(q) 与HiFTran(q)之间的相对误差小于5%,或者Hi
(q) 、Hishuffle(q) 和HiFTran(q)三者都不随q而变化,则抛弃对应的ci(k)分量;
步骤6:对剩余的ci(k)分量求和,将该和记为信号经重排和替代滤波后的结果xf1(k);
步骤7:对xf1(k)执行谱峭度分析,求出信号峭度最大处所对应的中心频率f0和带宽B;
步骤8: 根据中心频率f0和带宽B对xf1(k)进行带通滤波,得到xf2(k);
步骤9:对信号xf2(k)执行平滑迭代包络分析,得到信号包络eov(k);
步骤10:对得到的信号包络eov(k)执行离散傅里叶变换得到包络谱,根据包络谱特征
频率判断机器的故障类型。
2.根据权利要求1所述的一种旋转机械的EEMD和平滑迭代包络分析方法,其特征在于,
所述步骤2中集合经验模式分解算法包括以下步骤:
(1)向数据x0(k)添加白噪声序列产生一个新数据xj(k) :

Std[x0(k)]代表数据x0(k)的标准差,wnj(k)代表wnj中的第k个数据,wnj代表第j个随机
产生的白噪声序列,wnj幅值为1,1≤j≤K;x0(k)代表权利要求1所述步骤2中x(k);
(2)对xj(k)执行经验模式分解,得到n个分量和一个趋势项

cij(k)代表对xj(k)执行经验模式分解得到的第i个分量,rnj(k)代表对xj(k)执行经验
模式分解得到的趋势项;
(3)计算K次分解结果的平均值

ci(k)表示对x0(k)进行集合经验模式分解得到的第i个分量,rn(k)表示对x0(k)进行集
合经验模式分解得到的趋势项。
3.根据权利要求1所述的一种旋转机械的EEMD和平滑迭代包络分析方法,其特征在于,
所述步骤3中数据重排操作包括以下步骤:
随机打乱分量ci(k)的排列顺序。
4.根据权利要求1所述的一种旋转机械的EEMD和平滑迭代包络分析方法,其特征在于:
所述步骤3中数据替代操作包括以下步骤:
1) 对分量ci(k)执行离散傅里叶变换,获得分量ci(k)的相位;
2) 用一组位于(-π,π)区间内的伪独立同分布数来代替分量ci(k)的原始相位;
3) 对经过相位替代后的频域数据执行离散傅里叶逆变换得到数据ciIFFT(k),求取数据
ciIFFT(k)的实部。
5.根据权利要求1所述的一种旋转机械的EEMD和平滑迭代包络分析方法,其特征在于:
所述步骤4中MFDFA方法包括以下步骤:
1)构造x(k)(k=1,2,…,N)的轮廓Y(i):

x(k)代表权利要求1所述步骤4中的ci(k)或cishuffle(k)或ciFTran(k);
2)将信号轮廓Y(i)分成不重叠的NS段长度为s的数据,由于数据长度N通常不能整除s,
所以会剩余一段数据不能利用;
为了充分利用数据的长度,再从数据的反方向以相同的长度分段,这样一共得到2NS段
数据;
3)利用最小二乘法拟合每段数据的多项式趋势,然后计算每段数据的方差:


yv(i)为拟合的第v段数据的趋势,若拟合的多项式趋势为m阶,则记该去趋势过程为
(MF-)DFAm;
4) 计算第q阶波动函数的平均值:

5)如果x(k)存在自相似特征,则第q阶波动函数的平均值Fq(s)和时间尺度s之间存在幂
律关系:

当q=0时,步骤4)中的公式发散,这时H(0)通过下式所定义的对数平均过程来确定:

6)对步骤5)中的公式两边取对数可得ln[Fq(s)]=H(q)ln(s)+c(c为常数),由此可以获
得直线的斜率H(q)。
6.根据权利要求1所述的一种旋转机械的EEMD和平滑迭代包络分析方法,其特征在于:
所述步骤7中的谱峭度方法包括以下步骤:
1)构造一个截止频率为fc=0.125+ε的低通滤波器h(n);
2)基于h(n)构造通频带为[0, 0.25]的准低通滤波器h0(n)和通频带为[0.25, 0.5]的
准高通滤波器h1(n),
;
3)信号cik(n)经 h0(n)、 h1(n)滤波并降采样后分解成低频部分c2ik+1(n)和高频部分c2i
+1k+1(n),降采样的因子为2,再经多次迭代滤波后形成滤波器树,第k层有2k个频带,其中cik
(n)表示滤波器树中第k层上的第i个滤波器的输出信号,i=0,…, 2k-1,0≤k≤K-1;
4)分解树中第k层上的第i个滤波器的中心频率fki和带宽Bk分别为
;
5)计算每一个滤波器结果cik(n)( i=0,…, 2k-1) 的峭度;
6)将所有的谱峭度汇总,得到信号总的谱峭度。
7.根据权利要求1所述的一种旋转机械的EEMD和平滑迭代包络分析方法,其特征在于,
所述步骤9中的平滑迭代包络分析方法包括以下步骤:
1)计算局部均值函数:确定信号x(k)所有的局部极值点ni,计算相邻两个极值点ni和
ni+1的平均值mi,即

将所有相邻两个极值点的平均值mi用折线连接,然后采用移动平均方法进行平滑处理,
得到局部均值函数m11(k);本例中,移动平均方法中的平滑步长设置为5;在第1次迭代中,x
(k)代表权利要求1所述步骤9中xf2(k);
2)估计信号的包络值:采用局部极值点ni计算包络估计值ai

同样,将所有相邻两个包络估计值ai用折线连接,然后采用移动平均方法进行平滑处
理,得到包络估计函数a11(k);
3)将局部均值函数m11(k)从原始信号x(k)中分离出来, 得到

4)用h11(k) 除以包络估计函数a11(k)从而对h11(k)进行解调,得到

理想地,s11(k)是一个纯调频信号,即它的包络估计函数a12(k)满足a12(k)=1;如果s11
(k)不满足该条件,则将s11(k)作为新数据重复以上迭代过程m次,直到得到一个纯调频信号
s1m(k),即s1m(k)满足-1≤s1m(k) ≤1,它的包络估计函数a1(m+1)(k)满足a1(m+1)(k)=1,因此有

式中

迭代终止的条件为

在实际应用中,可以设定一个变动量Δ,当满足1-Δ≤a1m(k) ≤1+Δ时,迭代终止;
5)把迭代过程中产生的所有包络估计函数相乘便可以得到包络信号

8.根据权利要求2所述的一种旋转机械的EEMD和平滑迭代包络分析方法,其特征在于,
所述步骤(2)中经验模式分解算法包括以下步骤:
1) 第一个筛选过程:分别找出数据x(k)的上、下局部极值点,采用三次样条曲线分别
拟合上、下局部极值点,得到信号x(k)的局部最大值包络线和局部最小值包络线,再将此两
条包络线的相应各点的值取平均,得到一条平均曲线m1;
再求信号x(k)与此平均曲线m1的差,即h10=x(k)-m1,至此第一个筛选过程结束;
x(k)代表权利要求2所述步骤(2)中xj(k);
2)第二个筛选过程:h10重新被当作新数据,重复上述步骤1),可得到h11= h10-m11,这里
参数m11代表h10的均值曲线,重复这一过程j次,直到0.2<SD<0.3时筛选过程停止,这里
,此时,h1j= h1(j-1)-m1j,这时可以认为h1j是一个内秉
模态函数(Intrinsic Mode Function, IMF),定义第1个IMF为c1= h1j;
3) 从x(k)中减去c1,可得r1=x(k)-c1,再将r1当作新的数据,并重复上述两步操作,这样
可以得到第2个IMF;
4)重复步骤3)操作可得到一系列IMF,如果rn已经变成一条单调曲线,则筛选过程停止,
最终将原始信号分解为如下形式:。

说明书

一种旋转机械的EEMD和平滑迭代包络分析方法

技术领域

本发明涉及旋转机械状态监测与故障诊断领域,具体涉及一种旋转机械的EEMD和
平滑迭代包络分析方法。

背景技术

包络分析技术广泛应用于齿轮和滚动轴承的故障诊断中。现有的包络分析技术有
下面三个缺陷:①现有的包络分析技术或者是直接对原始信号进行分析,或者是仅对原始
信号进行简单的滤波后再进行分析,因此现有的方法容易受到噪声、趋势及其它成分的干
扰,从而导致现有技术的分析精度较低;②现有的包络分析技术是以Hilbert变换为基础,
而Hilbert变换要求被分析的信号必须是单分量的窄带信号,否则信号的频率调制部分将
要污染信号的幅值包络分析结果,但是目前待分析的信号都不严格满足单分量且窄带的条
件,这样就会导致现有技术因精度不高而容易出现误判问题;③由传统方法得到的包络谱
存在端点效应。

发明内容

本发明要解决的问题是针对以上不足,提出一种旋转机械的EEMD和平滑迭代包络
分析方法,采用本发明的包络分析方法后,具有分析结果准确度和精确度高,并能准确地检
测出旋转机械故障类型的优点。

为解决以上技术问题,本发明采取的技术方案如下:一种旋转机械的EEMD和平滑
迭代包络分析方法,其特征在于,包括以下步骤:

步骤1:利用加速度传感器以采样频率fs测取旋转机械的振动信号x(k), (k=1, 2,
…,N),N为采样信号的长度;

步骤2:采用集合经验模式分解(Ensemble Empirical Mode Decomposition, EEMD)算
法将信号x(k)分解成n个分量和一个趋势项之和,即 ,其中,ci(k)代表由
EEMD算法得到的第i个分量,rn(k)代表由EEMD算法得到的趋势项;

步骤3:对ci(k)执行重排操作和替代操作,经重排操作得到的数据用cishuffle(k)表示,
替代操作后得到数据用ciFTran(k)表示;

步骤4:对ci(k)、cishuffle(k)和ciFTran(k)分别执行多重分形去趋势波动分析
(Multifractal Detrended Fluctuation Analysis, MFDFA),得到广义Hurst指数曲线,ci
(k)的广义Hurst指数曲线用Hi(q)表示;cishuffle(k)的广义Hurst指数曲线用Hishuffle(q)表
示;ciFTran(k)的广义Hurst指数曲线用HiFTran(q)表示;

步骤5:如果Hi(q) 与Hishuffle(q)或Hi(q) 与HiFTran(q)之间的相对误差小于5%,或者Hi
(q) 、Hishuffle(q) 和HiFTran(q)三者都不随q而变化,则抛弃对应的ci(k)分量;

步骤6:对剩余的ci(k)分量求和,将该和记为信号经重排和替代滤波后的结果xf1(k);

步骤7:对xf1(k)执行谱峭度分析,求出信号峭度最大处所对应的中心频率f0和带宽B;

步骤8: 根据中心频率f0和带宽B对xf1(k)进行带通滤波,得到xf2(k);

步骤9:对信号xf2(k)执行平滑迭代包络分析,得到信号包络eov(k);

步骤10:对得到的信号包络eov(k)执行离散傅里叶变换得到包络谱,根据包络谱特征
频率判断机器的故障类型。

一种优化方案,所述步骤2中集合经验模式分解算法包括以下步骤:

(1)向数据x0(k)添加白噪声序列产生一个新数据xj(k) :


Std[x0(k)]代表数据x0(k)的标准差,wnj(k)代表wnj中的第k个数据,wnj代表第j个随
机产生的白噪声序列,wnj幅值为1,1≤j≤K;x0(k)代表权利要求1所述步骤2中x(k);本例
中,K=100;

(2)对xj(k)执行经验模式分解,得到n个分量和一个趋势项


cij(k)代表对xj(k)执行经验模式分解得到的第i个分量,rnj(k)代表对xj(k)执行经验
模式分解得到的趋势项;

(3)计算K次分解结果的平均值


ci(k)表示对x0(k)进行集合经验模式分解得到的第i个分量,rn(k)表示对x0(k)进行集
合经验模式分解得到的趋势项。

进一步地,所述步骤3中数据重排操作包括以下步骤:

随机打乱分量ci(k)的排列顺序。

进一步地,所述步骤3中数据替代操作包括以下步骤:

1) 对分量ci(k)执行离散傅里叶变换,获得分量ci(k)的相位;

2) 用一组位于(-π,π)区间内的伪独立同分布数来代替分量ci(k)的原始相位;

3) 对经过相位替代后的频域数据执行离散傅里叶逆变换得到数据ciIFFT(k),求取数
据ciIFFT(k)的实部。

进一步地,所述步骤4中MFDFA方法包括以下步骤:

1)构造x(k)(k=1,2,…,N)的轮廓Y(i):


x(k)代表权利要求1所述步骤4中的ci(k)或cishuffle(k)或ciFTran(k);

2)将信号轮廓Y(i)分成不重叠的NS段长度为s的数据,由于数据长度N通常不能整除s,
所以会剩余一段数据不能利用;

为了充分利用数据的长度,再从数据的反方向以相同的长度分段,这样一共得到2NS段
数据;

3)利用最小二乘法拟合每段数据的多项式趋势,然后计算每段数据的方差:



yv(i)为拟合的第v段数据的趋势,若拟合的多项式趋势为m阶,则记该去趋势过程为
(MF-)DFAm;本例中,m=1;

4) 计算第q阶波动函数的平均值:


5)如果x(k)存在自相似特征,则第q阶波动函数的平均值Fq(s)和时间尺度s之间存在
幂律关系:


当q=0时,步骤4)中的公式发散,这时H(0)通过下式所定义的对数平均过程来确定:


6)对步骤5)中的公式两边取对数可得ln[Fq(s)]=H(q)ln(s)+c(c为常数),由此可以获
得直线的斜率H(q)。

进一步地,所述步骤7中的谱峭度方法包括以下步骤:

1)构造一个截止频率为fc=0.125+ε的低通滤波器h(n);ε>0,本例中fc=0.3;

2)基于h(n)构造通频带为[0, 0.25]的准低通滤波器h0(n)和通频带为[0.25, 0.5]的
准高通滤波器h1(n),

;

3)信号cik(n)经 h0(n)、 h1(n)滤波并降采样后分解成低频部分c2ik+1(n)和高频部分
c2i+1k+1(n),降采样的因子为2,再经多次迭代滤波后形成滤波器树,第k层有2k个频带,其中
cik(n)表示滤波器树中第k层上的第i个滤波器的输出信号,i=0,…, 2k-1,0≤k≤K-1,本例
中K=8;c0 (n)代表权利要求1所述步骤7中xf1(k);

4)分解树中第k层上的第i个滤波器的中心频率fki和带宽Bk分别为

;

5)计算每一个滤波器结果cik(n)( i=0,…, 2k-1) 的峭度;

6)将所有的谱峭度汇总,得到信号总的谱峭度。

进一步地,所述步骤9中的平滑迭代包络分析方法包括以下步骤:

1)计算局部均值函数:确定信号x(k)所有的局部极值点ni,计算相邻两个极值点ni和
ni+1的平均值mi,即


将所有相邻两个极值点的平均值mi用折线连接,然后采用移动平均方法进行平滑处
理,得到局部均值函数m11(k);本例中,移动平均方法中的平滑步长设置为5;在第1次迭代
中,x(k)代表权利要求1所述步骤9中xf2(k);

2)估计信号的包络值:采用局部极值点ni计算包络估计值ai


同样,将所有相邻两个包络估计值ai用折线连接,然后采用移动平均方法进行平滑处
理,得到包络估计函数a11(k);

3)将局部均值函数m11(k)从原始信号x(k)中分离出来, 得到


4)用h11(k) 除以包络估计函数a11(k)从而对h11(k)进行解调,得到


理想地,s11(k)是一个纯调频信号,即它的包络估计函数a12(k)满足a12(k)=1;如果s11
(k)不满足该条件,则将s11(k)作为新数据重复以上迭代过程m次,直到得到一个纯调频信号
s1m(k),即s1m(k)满足-1≤s1m(k) ≤1,它的包络估计函数a1(m+1)(k)满足a1(m+1)(k)=1,因此有


式中


迭代终止的条件为


在实际应用中,可以设定一个变动量Δ,当满足1-Δ≤a1m(k) ≤1+Δ时,迭代终止;本
例中变动量Δ=0.01;

5)把迭代过程中产生的所有包络估计函数相乘便可以得到包络信号


进一步地,所述步骤(2)中经验模式分解算法包括以下步骤:

1) 第一个筛选过程:分别找出数据x(k)的上、下局部极值点,采用三次样条曲线分别
拟合上、下局部极值点,得到信号x(k)的局部最大值包络线和局部最小值包络线,再将此两
条包络线的相应各点的值取平均,得到一条平均曲线m1;

再求信号x(k)与此平均曲线m1的差,即h10=x(k)-m1,至此第一个筛选过程结束;

x(k)代表权利要求2所述步骤(2)中xj(k);

2)第二个筛选过程:h10重新被当作新数据,重复上述步骤1),可得到h11= h10-m11,这里
参数m11代表h10的均值曲线,重复这一过程j次,直到0.2<SD<0.3时筛选过程停止,这里
,此时,h1j= h1(j-1)-m1j,这时可以认为h1j是一个内秉
模态函数(Intrinsic Mode Function, IMF),定义第1个IMF为c1= h1j;

3) 从x(k)中减去c1,可得r1=x(k)-c1,再将r1当作新的数据,并重复上述两步操作,这
样可以得到第2个IMF;

4)重复步骤3)操作可得到一系列IMF,如果rn已经变成一条单调曲线,则筛选过程停
止,最终将原始信号分解为如下形式:。

本发明采用以上技术方案,与现有技术相比,本发明具有以下优点:

1)利用集合经验模式分解(EEMD)对原始信号进行分解,然后利用数据的重排和替代操
作排除其中的噪声和趋势分量,仅仅保留信号分量中的有用成分,从而避免了噪声和趋势
分量对包络分析结果的影响,分析结果准确度和精确度高。

2)利用平滑迭代包络分析方法将信号包络与频率调制部分完全分离,能够避免频
率调制部分对信号包络分析结果的影响,从而提高包络分析的精度。

3) 能够准确地检测出旋转机械的故障类型。

4) 由传统方法得到的包络谱存在端点效应,而由本发明得到的包络谱能够避免
端点效应。

下面结合附图和实施例对本发明做进一步说明。

附图说明

图1为本发明实施例中包络分析方法的流程图;

图2为本发明实施例中采用低通和高通滤波器对信号进行初步分解的示意图;

图3为本发明实施例中采用树状滤波器结构快速计算谱峭度的示意图;

图4为本发明实施例中具有内圈故障的滚动轴承振动信号;

图5为本发明实施例中采用传统包络分析方法对内圈故障滚动轴承振动信号的分析结
果;

图6为本发明实施例中采用本发明包络分析方法对内圈故障滚动轴承振动信号的分析
结果;

图7为本发明实施例中具有外圈故障的滚动轴承振动信号;

图8为本发明实施例中采用传统包络分析方法对外圈故障滚动轴承振动信号的分析结
果;

图9为本发明实施例中采用本发明包络分析方法对外圈故障滚动轴承振动信号的分析
结果。

具体实施方式

实施例,如图1、图2、图3所示,一种旋转机械的EEMD和平滑迭代包络分析方法,包
括以下步骤:

步骤1:利用加速度传感器以采样频率fs测取旋转机械的振动信号x(k), (k=1, 2,
…,N),N为采样信号的长度;

步骤2:采用集合经验模式分解(Ensemble Empirical Mode Decomposition, EEMD)算
法将信号x(k)分解成n个分量和一个趋势项之和,即 ,其中,ci(k)代表由
EEMD算法得到的第i个分量,rn(k)代表由EEMD算法得到的趋势项;

步骤3:对ci(k)执行重排操作和替代操作,经重排操作得到的数据用cishuffle(k)表示,
替代操作后得到数据用ciFTran(k)表示;

步骤4:对ci(k)、cishuffle(k)和ciFTran(k)分别执行多重分形去趋势波动分析
(Multifractal Detrended Fluctuation Analysis, MFDFA),得到广义Hurst指数曲线,ci
(k)的广义Hurst指数曲线用Hi(q)表示;cishuffle(k)的广义Hurst指数曲线用Hishuffle(q)表
示;ciFTran(k)的广义Hurst指数曲线用HiFTran(q)表示;

步骤5:如果Hi(q) 与Hishuffle(q)或Hi(q) 与HiFTran(q)之间的相对误差小于5%,或者Hi
(q) 、Hishuffle(q) 和HiFTran(q)三者都不随q而变化,则抛弃对应的ci(k)分量;

步骤6:对剩余的ci(k)分量求和,将该和记为信号经重排和替代滤波后的结果xf1(k);

步骤7:对xf1(k)执行谱峭度分析,求出信号峭度最大处所对应的中心频率f0和带宽B;

步骤8: 根据中心频率f0和带宽B对xf1(k)进行带通滤波,得到xf2(k);

步骤9:对信号xf2(k)执行平滑迭代包络分析,得到信号包络eov(k);

步骤10:对得到的信号包络eov(k)执行离散傅里叶变换得到包络谱,根据包络谱特征
频率判断机器的故障类型。

步骤2中集合经验模式分解算法包括以下步骤:

(1)向数据x0(k)添加白噪声序列产生一个新数据xj(k) :


Std[x0(k)]代表数据x0(k)的标准差,wnj(k)代表wnj中的第k个数据,wnj代表第j个随
机产生的白噪声序列,wnj幅值为1,1≤j≤K;x0(k)代表权利要求1所述步骤2中x(k);本例
中,K=100;

(2)对xj(k)执行经验模式分解,得到n个分量和一个趋势项


cij(k)代表对xj(k)执行经验模式分解得到的第i个分量,rnj(k)代表对xj(k)执行经验
模式分解得到的趋势项;

(3)计算K次分解结果的平均值


ci(k)表示对x0(k)进行集合经验模式分解得到的第i个分量,rn(k)表示对x0(k)进行集
合经验模式分解得到的趋势项。

步骤3中数据重排操作包括以下步骤:

随机打乱分量ci(k)的排列顺序。

步骤3中数据替代操作包括以下步骤:

1) 对分量ci(k)执行离散傅里叶变换,获得分量ci(k)的相位;

2) 用一组位于(-π,π)区间内的伪独立同分布数来代替分量ci(k)的原始相位;

3) 对经过相位替代后的频域数据执行离散傅里叶逆变换得到数据ciIFFT(k),求取数
据ciIFFT(k)的实部。

步骤4中MFDFA方法包括以下步骤:

1)构造x(k)(k=1,2,…,N)的轮廓Y(i):


x(k)代表权利要求1所述步骤4中的ci(k)或cishuffle(k)或ciFTran(k);

2)将信号轮廓Y(i)分成不重叠的NS段长度为s的数据,由于数据长度N通常不能整除s,
所以会剩余一段数据不能利用;

为了充分利用数据的长度,再从数据的反方向以相同的长度分段,这样一共得到2NS段
数据;

3)利用最小二乘法拟合每段数据的多项式趋势,然后计算每段数据的方差:



yv(i)为拟合的第v段数据的趋势,若拟合的多项式趋势为m阶,则记该去趋势过程为
(MF-)DFAm;本例中,m=1;

4) 计算第q阶波动函数的平均值:


5)如果x(k)存在自相似特征,则第q阶波动函数的平均值Fq(s)和时间尺度s之间存在
幂律关系:


当q=0时,步骤4)中的公式发散,这时H(0)通过下式所定义的对数平均过程来确定:


6)对步骤5)中的公式两边取对数可得ln[Fq(s)]=H(q)ln(s)+c(c为常数),由此可以获
得直线的斜率H(q)。

步骤7中的谱峭度方法包括以下步骤:

1)构造一个截止频率为fc=0.125+ε的低通滤波器h(n);ε>0,本例中fc=0.3;

2)基于h(n)构造通频带为[0, 0.25]的准低通滤波器h0(n)和通频带为[0.25, 0.5]的
准高通滤波器h1(n),

;

3)信号cik(n)经 h0(n)、 h1(n)滤波并降采样后分解成低频部分c2ik+1(n)和高频部分
c2i+1k+1(n),降采样的因子为2,再经多次迭代滤波后形成滤波器树,第k层有2k个频带,其中
cik(n)表示滤波器树中第k层上的第i个滤波器的输出信号,i=0,…, 2k-1,0≤k≤K-1,本例
中K=8;c0 (n)代表权利要求1所述步骤7中xf1(k);

4)分解树中第k层上的第i个滤波器的中心频率fki和带宽Bk分别为

;

5)计算每一个滤波器结果cik(n)( i=0,…, 2k-1) 的峭度;

6)将所有的谱峭度汇总,得到信号总的谱峭度。

步骤9中的平滑迭代包络分析方法包括以下步骤:

1)计算局部均值函数:确定信号x(k)所有的局部极值点ni,计算相邻两个极值点ni和
ni+1的平均值mi,即


将所有相邻两个极值点的平均值mi用折线连接,然后采用移动平均方法进行平滑处
理,得到局部均值函数m11(k);本例中,移动平均方法中的平滑步长设置为5;在第1次迭代
中,x(k)代表权利要求1所述步骤9中xf2(k);

2)估计信号的包络值:采用局部极值点ni计算包络估计值ai


同样,将所有相邻两个包络估计值ai用折线连接,然后采用移动平均方法进行平滑处
理,得到包络估计函数a11(k);

3)将局部均值函数m11(k)从原始信号x(k)中分离出来, 得到


4)用h11(k) 除以包络估计函数a11(k)从而对h11(k)进行解调,得到


理想地,s11(k)是一个纯调频信号,即它的包络估计函数a12(k)满足a12(k)=1;如果s11
(k)不满足该条件,则将s11(k)作为新数据重复以上迭代过程m次,直到得到一个纯调频信号
s1m(k),即s1m(k)满足-1≤s1m(k) ≤1,它的包络估计函数a1(m+1)(k)满足a1(m+1)(k)=1,因此有


式中


迭代终止的条件为


在实际应用中,可以设定一个变动量Δ,当满足1-Δ≤a1m(k) ≤1+Δ时,迭代终止;本
例中变动量Δ=0.01;

5)把迭代过程中产生的所有包络估计函数相乘便可以得到包络信号


步骤(2)中经验模式分解算法包括以下步骤:

1) 第一个筛选过程:分别找出数据x(k)的上、下局部极值点,采用三次样条曲线分别
拟合上、下局部极值点,得到信号x(k)的局部最大值包络线和局部最小值包络线,再将此两
条包络线的相应各点的值取平均,得到一条平均曲线m1;

再求信号x(k)与此平均曲线m1的差,即h10=x(k)-m1,至此第一个筛选过程结束;

x(k)代表权利要求2所述步骤(2)中xj(k);

2)第二个筛选过程:h10重新被当作新数据,重复上述步骤1),可得到h11= h10-m11,这里
参数m11代表h10的均值曲线,重复这一过程j次,直到0.2<SD<0.3时筛选过程停止,这里
,此时,h1j= h1(j-1)-m1j,这时可以认为h1j是一个内秉
模态函数(Intrinsic Mode Function, IMF),定义第1个IMF为c1= h1j;

3) 从x(k)中减去c1,可得r1=x(k)-c1,再将r1当作新的数据,并重复上述两步操作,这
样可以得到第2个IMF;

4)重复步骤3)操作可得到一系列IMF,如果rn已经变成一条单调曲线,则筛选过程停
止,最终将原始信号分解为如下形式:。

试验1,利用具有内圈故障的滚动轴承振动数据对本发明所述算法的性能进行验
证。

实验所用轴承为6205-2RS JEM SKF,利用电火花加工方法在轴承内圈上加工深度
为0.2794mm、宽度为0.3556mm的凹槽来模拟轴承内圈故障,本实验负载约为0.7457kW,驱动
电机转频约为29.5Hz,轴承内圈故障特征频率约为160Hz,采样频率为4.8KHz,信号采样时
长为1s。

采集到的内圈故障信号如图4所示。

首先采用传统的包络分析方法对图4所示的信号进行分析,得到的分析结果如图5
所示。从图5可以看出,轴承的故障特征完全被掩盖,因此传统的包络分析方法不能有效地
提取轴承的故障特征;此外,从图5可以看出,包络谱的左端点存在异常高值,这说明由传统
方法得到的包络谱存在端点效应。

采用本发明所提出的方法对图4所示的信号进行分析,得到的分析结果如图6所
示。从图6可以看出,160Hz和320Hz所对应的谱线明显高于其它谱线,这两个频率分别对应
轴承内圈故障特征频率的1倍频和2倍频,据此可以判断轴承具有内圈故障;从图6可以看
出,由本发明得到的包络谱没有端点效应。

经多次实验表明,在负载和故障尺寸深度不变的情况下,本发明能够可靠识别的
最小内圈故障尺寸宽度约为0.21mm,而传统方法能够可靠识别的最小内圈故障尺寸宽度约
为0.53mm,精度提高60.4%。

试验2,利用具有外圈故障的滚动轴承振动数据对本发明所述算法的性能进行验
证。

实验所用轴承为6205-2RS JEM SKF,利用电火花加工方法在轴承外圈上加工深度
为0.2794mm、宽度为0.5334mm的凹槽来模拟轴承外圈故障,本实验负载约为2.237 kW,驱动
电机转频约为28.7Hz,轴承外圈故障特征频率约为103Hz,采样频率为4.8KHz,信号采样时
长为1s。

采集到的外圈故障信号如图7所示。

首先采用传统的包络分析方法对图7所示的信号进行分析,得到的分析结果如图8
所示。从图8可以看出,轴承的故障特征完全被掩盖,因此传统的包络分析方法不能有效地
提取轴承的故障特征;此外,从图8可以看出,包络谱的左端点存在异常高值,这说明由传统
方法得到的包络谱存在端点效应。

采用本发明所提出的方法对图7所示的信号进行分析,得到的分析结果如图9所
示。从图9可以看出,103Hz和206Hz所对应的谱线明显高于其它谱线,这两个频率分别对应
轴承外圈故障特征频率的1倍频和2倍频,据此可以判断轴承具有外圈故障;从图9可以看
出,由本发明得到的包络谱没有端点效应。。

经多次实验表明,在负载和故障尺寸深度不变的情况下,本发明能够可靠识别的
最小外圈故障尺寸宽度约为0.29mm,而传统方法能够可靠识别的最小外圈故障尺寸宽度约
为0.68mm,精度提高57.4%。

根据试验结果,分析后认为:

1) 传统的包络分析方法直接对原始信号进行包络分析,或者对仅经过简单处理后的
原始信号进行包络分析,与传统的包络分析方法不同,本发明首先利用EEMD对原始信号进
行分解,然后利用数据的重排和替代操作排除其中的噪声和趋势分量,仅仅保留信号分量
中的有用成分,从而避免了噪声和趋势分量对包络分析结果的影响,提高了准确度和精确
度。

2) 传统的包络分析方法以Hilbert变换为基础,而Hilbert变换要求被分析的信
号必须是单分量的窄带信号,否则信号的频率调制部分将要污染信号的包络分析结果,但
是目前待分析的信号都不严格满足单分量且窄带的条件,这样就会导致现有技术因精度不
高而容易出现误判问题,与传统包络分析方法不同,本发明利用平滑迭代包络分析方法将
信号包络与频率调制部分完全分离,能够避免频率调制部分对信号包络分析结果的影响,
从而提高包络分析的精度。

3)能够准确地检测出旋转机械的故障类型。

4) 由传统方法得到的包络谱存在端点效应,而由本发明得到的包络谱能够避免
端点效应。

5)各步骤作用:

第1)步:采集振动信号;

第2)步:将原始信号分解成不同分量和的形式,其中有些分量对应噪声和趋势项,有些
分量对应有用信号;

第3)~5)步:对上述分解得到的信号执行重排操作和替代操作,剔除其中的噪声分量和
趋势项,只保留有用信号;

第6)步:将剩余的有用信号求和,将该和作为信号经重排和替代滤波后的结果xf1(k);

第7)步:对滤波后的信号xf1(k)执行谱峭度分析,求出信号最大峭度处对应的中心频
率f0和带宽B;

第8)步:根据中心频率f0和带宽B对xf1(k)进行带通滤波,得到信号xf2(k);

第9)步:计算信号xf2(k)的包络eov(k);

第10)步:对eov(k)执行离散傅里叶变换得到包络谱,根据包络谱判断轴承的故障类
型。

本领域技术人员应该认识到,上述的具体实施方式只是示例性的,是为了使本领
域技术人员能够更好的理解本发明内容,不应理解为是对本发明保护范围的限制,只要是
根据本发明技术方案所作的改进,均落入本发明的保护范围。

一种旋转机械的EEMD和平滑迭代包络分析方法.pdf_第1页
第1页 / 共25页
一种旋转机械的EEMD和平滑迭代包络分析方法.pdf_第2页
第2页 / 共25页
一种旋转机械的EEMD和平滑迭代包络分析方法.pdf_第3页
第3页 / 共25页
点击查看更多>>
资源描述

《一种旋转机械的EEMD和平滑迭代包络分析方法.pdf》由会员分享,可在线阅读,更多相关《一种旋转机械的EEMD和平滑迭代包络分析方法.pdf(25页珍藏版)》请在专利查询网上搜索。

本发明公开了一种旋转机械的EEMD和平滑迭代包络分析方法,该方法首先利用集合经验模式分解方法对原始信号进行分解,然后利用数据的重排和替代操作排除分解结果中的噪声分量和趋势项,接着再采用谱峭度方法对第一次滤波后的信号进行分析,得到最优滤波器的中心频率和带宽,然后利用该滤波器对第一次滤波后的信号再进行第二次滤波,然后采用平滑迭代包络分析方法对第二次滤波后的信号进行包络分析,最后根据包络谱确定旋转机械的。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 测量;测试


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1