一种基于对称性特征的仪表指针图像识别方法.pdf

上传人:1****2 文档编号:6095429 上传时间:2019-04-10 格式:PDF 页数:13 大小:1.17MB
返回 下载 相关 举报
摘要
申请专利号:

CN201610697650.5

申请日:

2016.08.19

公开号:

CN106339707A

公开日:

2017.01.18

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):G06K 9/32申请日:20160819|||公开

IPC分类号:

G06K9/32; G06K9/62

主分类号:

G06K9/32

申请人:

亿嘉和科技股份有限公司

发明人:

葛成伟; 赵伟; 邱显东; 许春山

地址:

210012 江苏省南京市雨花台区安德门大街57号5幢1楼至8楼

优先权:

专利代理机构:

南京知识律师事务所 32207

代理人:

李维朝

PDF下载: PDF下载
内容摘要

本发明通过提取被识别图像中对称性特征,并在此基础上进一步处理得到被识别指针的一系列参数信息;在全景图的感兴趣区域内,对边缘像素点在指针转角和参考距离的量化空间上进行累计矩阵投票,得到若干组候选指针对称轴。通过指针边缘像素点共线性特性和指针对称轴线段对应的图像像素值近似一致性特点,对候选指针进行提炼,使得最终的对称像素点对基本上都属于指针。候选指针合并去除重叠的候选指针,选择边缘像素点集最多的候选指针作为最终的指针识别结果。本发明能够克服表盘文字符号、光照不均以及部分遮挡等干扰因素,准确提取各种仪表指针的参数信息。

权利要求书

1.一种基于对称性特征的仪表指针图像识别方法,其特征包括,
仪表定位:利用指针仪表模板在图像中进行模板匹配,得到仪表图像的ROI区域;
候选指针提取:在ROI区域内根据对称性特征提取若干组组候选指针的对称轴及其对
称边缘像素点对;
候选指针提炼:去除非候选指针边缘的对称边缘像素点对,使得最终的对称像素点对
基本上都属于候选指针,获得经过提炼后的候选指针对称边缘像素点对;
候选指针合并与选择:去除重叠的候选指针,获取指针识别结果。
2.如权利要求1所述的基于对称性特征的仪表指针图像识别方法,其特征在于,所述候
选指针提取具体为:根据ROI区域图像边缘的对称性构造累积矩阵Φ,计算累积矩阵Φ中前
T个最大值,计算旋转角与参考距离,作为T个候选指针的对称轴,并计算候选指针对称轴对
应的对称边缘像素点对。
3.如权利要求1所述的基于对称性特征的仪表指针图像识别方法,其特征在于,所述候
选指针提炼具体为:对对称边缘像素点对进行Ransac共线性检测,并获得满足共线性约束
的边缘像素点对,边缘像素点对对应的中点即为候选指针对称轴上的点,获得候选指针对
称轴像素点集;对候选指针对称轴像素点集进行分裂再组合,获得分裂再组合后的对称边
缘像素点对。
4.如权利要求1所述的基于对称性特征的仪表指针图像识别方法,其特征在于,候选指
针合并与选择包括以下步骤:
步骤1:根据候选指针对称边缘像素点对计算候选指针的最小最大宽度、指针夹角、对
称轴首尾端点与转角方向;
步骤2:若两候选指针同时满足:①转角方向近似一致、②指针夹角近似一致、③最小最
大宽度符合形态一致性要求,则将两候选指针进行合并,形成新的候选指针;
步骤3:选择边缘像素点集最多的候选指针作为最终的指针识别结果。
5.如权利要求1-4任一权利要求所述的基于对称性特征的仪表指针图像识别方法,其
特征在于,候选指针提取具体包括:
步骤1:将ROI区域图像由RGB转为灰度图像,采用自适应Canny边缘检测算子提取灰度
图像的边缘,并计算每个边缘像素点的梯度方向,记边缘像素点集为Ω;
步骤2:定义[θmin,θmax]为仪表指针的转角范围,[ρmin,ρmax]为仪表指针的对称轴与参考
点Pr(x,y)的参考距离范围,定义初始累积矩阵
Φij←0,其中,θmin≤i≤θmax,ρmin≤j≤ρmax;
对任意的转角θ,θmin≤θ≤θmax,首先,将所有边缘像素点旋转θ角,得到边缘像素点集
Ωθ;其次,计算旋转后的边缘像素点到图像原点O(0,0)的距离,将Ωθ按照距原点距离大小
进行分组,得到分组后的边缘像素点集Ωθk,其中,M、N分别表示ROI
区域的高度、宽度;最后,对任意的k,任意两个边缘像素点Pi与Pj,Pi,Pj∈Ωθk,若Pi与Pj同时
满足:①点对距离约束、②点对方向约束、③点对对称轴参考距离约束;则置
Φij←Φij+1,其中,θmin≤i≤θmax,ρmin≤j≤ρmax,
行索引i=θ表示指针对称轴的旋转角索引,列索引j为像素点Pi与
Pj的中点到参考点Pr(x,y)的距离,表示指针对称轴的参考距离索引;
步骤3:计算累积矩阵Φ中前T个最大值,以此作为候选指针的对称轴,相应的行索引表
明了指针对称轴的旋转角,列索引表明了指针对称轴的参考距离,记前T个候选指针的对称
轴两侧对称边缘像素点集分别为La与Ra,其中,a=1,2,…,T。
6.如权利要求5所述的基于对称性特征的仪表指针图像识别方法,其特征在于,候选指
针提炼具体包括:
步骤1:对候选指针的边缘像素点集La、Ra进行Ransac共线性检测,其中,a=1,2,…,T,
提取最多的共线性像素点,得到共线性像素点的索引集Lidx、Ridx;若索引idx满足idx∈
Lidx∧idx∈Ridx,则该索引对应的边缘像素对就是满足共线性约束的边缘对,记满足共线
性约束的边缘像素点集为L1a与R1a,L1a、R1a点对对应的中点即为候选指针对称轴上的点,
记候选指针对称轴像素点集为Ma;
步骤2:对候选指针对称轴点集Ma进行距离聚类,记候选指针的对称轴聚类簇为Γab,其
中,a=1,2,…,T;b=1,2,…L,b表明聚类簇的个数;
步骤3:对候选指针的对称轴聚类簇Γab进行再组合,具体地,设Γas与Γat表示第a个候
选指针对称轴的任意两个聚类簇,对应的聚类中心点像素坐标为Pas与Pat,统计ROI区域图
像从像素点Pas到像素点Pat的像素值变异系数CVst,若其值小于预设的阈值,则将聚类簇Γas
与Γat对应的边缘像素点集进行再组合,经过聚类簇再组合操作后的候选指针边缘像素点
集记为L2a与R2a,其中,a是候选指针的索引,s、t指任意两个聚类簇的聚类簇索引。
7.如权利要求5所述的基于对称性特征的仪表指针图像识别方法,其特征在于,自适应
Canny边缘检测算子的低阈值、高阈值分别为(1-σ)μ、(1+σ)μ,其中,μ为图像灰度值的均值,
σ为调节参数。

说明书

一种基于对称性特征的仪表指针图像识别方法

技术领域

本发明属于计算机图像处理领域,特别涉及一种指针式仪表读数的图像识别方
法,具体地,涉及一种基于对称性特征的仪表指针图像识别方法。

背景技术

指针式仪表作为一种测量仪器,由于其结构简单、维护方便、抗电磁干扰强、低成
本低故障率等诸多优点,被广泛应用于石油化工、电力系统等行业,如变电站的电流表、电
压表、功率表、SF6压力表等。传统的指针式仪表读数需要人工肉眼识别,该方法繁琐、劳动
强度大、效率低下,而且某些场合不适宜人工作业,这就使得利用图像处理与机器视觉算法
自动识别仪表读数具有重要的现实意义。

指针识别的准确性直接决定了仪表读数的精度,当前指针识别方法主要包括
Hough变换法与中心投影法。

(1)专利申请号为201310011025.7,名为《一种改进的变电站巡检机器人的多仪表
读数识别方法》的中国专利,首先利用自适应二值化算法分割出指针区域,然后采用形态学
方法提取指针的骨架,最后使用Hough变换提取指针,该方法依赖于二值图像的准确提取,
但实际情况中的光照不均、文字符号等因素将会使得指针团块与其他团块粘连在一起,导
致指针区域提取失效。

(2)专利申请号为201110359130.0,名为《高鲁棒仪表指针图像识别方法》公开了
一种高鲁棒的指针提取方法:针对细指针,利用Hough变换法求取直线,以此作为指针所在
直线;针对粗指针,以仪表中心为起点,计算射线方向上像素灰度值之和,其最大值对应的
射线即代表指针所在直线。该方法容易受到表盘各类线条的干扰,粗指针的识别对仪表中
心点位置的准确性要求较高。对于表盘文字符号干扰、光照不均、指针部分遮挡等问题,现
有的Hough变换法与中心投影法缺乏一定的鲁棒性,指针识别的稳定性不高。

发明内容

为解决现有技术存在的问题,本发明提供一种基于对称性特征的仪表指针图像识
别方法,能够克服表盘文字符号、光照不均以及指针部分遮挡等干扰因素,准确提取各种指
针的参数信息。

本发明提供的基于对称性特征的仪表指针图像识别方法,包括,

仪表定位:利用指针仪表模板在图像中进行模板匹配,得到仪表图像的ROI区域;

候选指针提取:在ROI区域内根据对称性特征提取若干组组候选指针的对称轴及
其对称边缘像素点对;

候选指针提炼:去除非候选指针边缘的对称边缘像素点对,使得最终的对称像素
点对基本上都属于候选指针,获得经过提炼后的候选指针对称边缘像素点对;

候选指针合并与选择:去除重叠的候选指针,获取指针识别结果。

优选地,所述候选指针提取具体为:根据ROI区域图像边缘的对称性构造累积矩阵
Φ,计算累积矩阵Φ中前T个最大值,计算旋转角与参考距离,作为T个候选指针的对称轴,
并计算候选指针对称轴对应的对称边缘像素点对。

优选地,所述候选指针提炼具体为:对对称边缘像素点对进行Ransac共线性检测,
并获得满足共线性约束的边缘像素点对,边缘像素点对对应的中点即为候选指针对称轴上
的点,获得候选指针对称轴像素点集;对候选指针对称轴像素点集进行分裂再组合,获得分
裂再组合后的对称边缘像素点对。

优选地,候选指针合并与选择包括以下步骤:

步骤1:根据候选指针对称边缘像素点对计算候选指针的最小最大宽度、指针夹
角、对称轴首尾端点与转角方向;

步骤2:若两候选指针同时满足:①转角方向近似一致、②指针夹角近似一致、③最
小最大宽度符合形态一致性要求,则将两候选指针进行合并,形成新的候选指针;

步骤3:选择边缘像素点集最多的候选指针作为最终的指针识别结果。

候选指针提取进一步具体包括:

步骤1:将ROI区域图像由RGB转为灰度图像,采用自适应Canny边缘检测算子提取
灰度图像的边缘,并计算每个边缘像素点的梯度方向,记边缘像素点集为Ω;

步骤2:定义[θmin,θmax]为仪表指针的转角范围,[ρmin,ρmax]为仪表指针的对称轴与
参考点Pr(x,y)的参考距离范围,定义初始累积矩阵

Φij←0,其中,θmin≤i≤θmax,ρmin≤j≤ρmax;

对任意的转角θ,θmin≤θ≤θmax,首先,将所有边缘像素点旋转θ角,得到边缘像素点
集Ωθ;其次,计算旋转后的边缘像素点到图像原点O(0,0)的距离,将Ωθ按照距原点距离大
小进行分组,得到分组后的边缘像素点集Ωθk,其中,M、N分别表示
ROI区域的高度、宽度;最后,对任意的k,任意两个边缘像素点Pi与Pj,Pi,Pj∈Ωθk,若Pi与Pj
同时满足:①点对距离约束、②点对方向约束、③点对对称轴参考距离约束;则置

Φij←Φij+1,其中,θmin≤i≤θmax,ρmin≤j≤ρmax,

行索引i=θ表示指针对称轴的旋转角索引,列索引j为像素点Pi与Pj的中点到参考
点Pr(x,y)的距离,表示指针对称轴的参考距离索引;

步骤3:计算累积矩阵Φ中前T个最大值,以此作为候选指针的对称轴,相应的行索
引表明了指针对称轴的旋转角,列索引表明了指针对称轴的参考距离,记前T个候选指针的
对称轴两侧对称边缘像素点集分别为La与Ra,其中,a=1,2,…,T。

候选指针提炼进一步具体包括:

步骤1:对候选指针的边缘像素点集La、Ra进行Ransac共线性检测,其中,a=1,
2,…,T,提取最多的共线性像素点,得到共线性像素点的索引集Lidx、Ridx;若索引idx满足
idx∈Lidx∧idx∈Ridx,则该索引对应的边缘像素对就是满足共线性约束的边缘对,记满
足共线性约束的边缘像素点集为L1a与R1a,L1a、R1a点对对应的中点即为候选指针对称轴上
的点,记候选指针对称轴像素点集为Ma;

步骤2:对候选指针对称轴点集Ma进行距离聚类,记候选指针的对称轴聚类簇为
Γab,其中,a=1,2,…,T;b=1,2,…L,b表明聚类簇的个数;

步骤3:对候选指针的对称轴聚类簇Γab进行再组合,具体地,设Γas与Γat表示第a
个候选指针对称轴的任意两个聚类簇,对应的聚类中心点像素坐标为Pas与Pat,统计ROI区
域图像从像素点Pas到像素点Pat的像素值变异系数CVst,若其值小于预设的阈值,则将聚类
簇Γas与Γat对应的边缘像素点集进行再组合,经过聚类簇再组合操作后的候选指针边缘
像素点集记为L2a与R2a,其中,a是候选指针的索引,s、t指任意两个聚类簇的聚类簇索引。

优选地,自适应Canny边缘检测算子的低阈值、高阈值分别为(1-σ)μ、(1+σ)μ,其
中,μ为图像灰度值的均值,σ为调节参数,调节参数σ过小会使得弱边缘丢失,过大将产生许
多伪边缘,根据经验值,优选设定为0.33。

本发明通过提取被识别图像中对称性特征,并在此基础上进一步处理得到被识别
指针的一系列信息;在全景图的感兴趣区域内,对边缘像素点在指针转角和参考距离的量
化空间上进行累计矩阵投票,得到若干组组候选指针对称轴。通过指针边缘像素点共线性
特性和指针对称轴线段对应的图像像素值近似一致性特点,对候选指针进行提炼,使得最
终的对称像素点对基本上都属于指针。候选指针合并去除重叠的候选指针,选择边缘像素
点集最多的候选指针作为最终的指针识别结果。

本发明具有以下有益效果:(1)基于对称性特征的仪表指针自动识别方法,高精
度、高鲁棒性可大大增强自动化仪表和检测装置的适应性;(2)基于对称性特征的仪表指针
自动识别方法可以更加精确的提取指针的转角方向,对不同大小的仪表指针具有较好的普
适性;(3)能够克服表光照不均、表盘文字符号干扰、指针部分遮挡等因素的干扰,实现仪表
指针稳定精确的识别。

附图说明

图1是候选指针提取的流程图;

图2是累积矩阵累加策略流程图;

图3是候选指针提炼与合并的流程图;

图4是候选指针提取的结果图;

图5是候选指针提炼的结果图;

图6是最终识别的指针结果图。

具体实施方式

下面将结合附图阐述本发明的最优实施例:

以某变电站中BWY(WTYK)-803型变压器温度控制器仪表为例,本发明提供的基于
对称性特征的仪表指针图像识别方法,按以下步骤进行:

仪表定位:在含有BWY(WTYK)-803型变压器温度控制器仪表的全景图中,利用事先
标定好的仪表模板进行模板匹配,寻找指针仪表的感兴趣(Region Of Interesting,ROI)
区域,记为Iyx(1≤y≤M,1≤x≤N),其中M、N分别表示ROI区域的高度与宽度。

候选指针提取:如图1所示,根据图像边缘的对称性构造累积矩阵Φ,计算累积矩
阵Φ中前T个最大值,据此计算旋转角与参考距离,作为T个候选指针的对称轴,并计算对称
轴对应的对称边缘像素点对,具体地包含以下几个步骤:

2.1)将仪表ROI图像由RGB颜色空间转换到灰度空间,采用自适应Canny边缘检测
算法提取仪表ROI灰度图像的边缘,其中Canny边缘检测的低阈值、高阈值分别设为(1-σ)μ、
(1+σ)μ,这里μ为图像灰度值的均值,σ为调节参数,参数σ过小会使得弱边缘丢失,过大将产
生许多伪边缘,根据经验值,这里设定为0.33,同时计算每个边缘像素点的梯度方向,记边
缘像素点集为Ω。

2.2)定义[θmin,θmax]为仪表指针的转角范围,[ρmin,ρmax]为仪表指针的对称轴与事
先标定的参考点Pr(x,y)的参考距离范围,将参数空间(θ,ρ)(θ为转角、ρ为参考距离)在
[θmin,θmax]×[ρmin,ρmax]区域上进行等间隔量化,构造累积矩阵Φ,并将其初始化为0,

Φij←0(θmin≤i≤θmax,ρmin≤j≤ρmax)。

累积矩阵的累加策略如图2所示,对每一个转角参数θ(θmin≤θ≤θmax),首先,将所
有边缘像素点逆时针旋转θ角,得到旋转后的边缘像素点集Ωθ;其次,计算旋转后的边缘像
素点到图像原点O(0,0)的距离,将Ωθ按照距图像原点距离的大小进行分组,得到分组后的
边缘像素点集这里为向下取整符号;最后,对每一个距
离参数任意两个边缘像素点Pi与Pj(Pi,Pj∈Ωθk),若Pi与Pj同时满
足:

①点对距离约束,即点Pi与Pj的距离必须在一定范围内;

②点对方向约束,指针边缘像素对的方向近似相对或者向背,且与指针对称轴近
似垂直;

③点对对称轴参考距离约束,点对对应的对称轴必须与参考点满足一定的距离约
束;

则置

Φij←Φij+1(θmin≤i≤θmax,ρmin≤j≤ρmax),

这里的行索引i=θ表示指针对称轴的旋转角索引,列索引j为像素点Pi与Pj的中点
到参考点Pr(x,y)的距离,表示指针对称轴的参考距离索引,据此完成累积矩阵的投票累
加。

2.3)累积矩阵Φ的元素值表明了边缘像素对的多少,Φ的最大值代表了最多的对
称边缘像素对。计算累积矩阵Φ中前T个最大值,相应的行索引表明了对称轴的旋转角,列
索引表明了指针对称轴与参考点的参考距离,以此作为候选指针的对称轴,记T个候选指针
的对称轴两侧边缘像素点集分别为La与Ra(a=1,2,…,T),La、Ra构成候选指针对称轴对应
的对称边缘像素点对。

图4显示了BWY(WTYK)-803型变压器温度控制器仪表ROI区域经过步骤2.1)至2.3)
得到的候选指针图像。

候选指针提炼:如图4所示,候选指针提取的结果通常存在许多伪指针边缘像素
对,候选指针提炼的目的在于去除这些非指针边缘的像素对,使得最终的像素对基本上都
属于指针。通过观察发现:①指针两侧的边缘像素点基本上满足共线性特性;②指针对称轴
线段对应的图像像素值近似一致,即满足一致性。如图3所示,候选指针提炼具体包括以下
几个子步骤:

3.1)对候选指针的边缘像素点集La(a=1,2,…,T)进行Ransac共线性检测,提取
最多的共线性像素点,得到共线像素点的索引集记为Lidx。同理可以得到边缘像素点集Ra
(a=1,2,…,T)的共线边缘像素点的索引集记为Ridx,若索引idx同时满足idx∈Lidx∧idx
∈Ridx,则说明该索引对应的边缘像素对就是满足共线性约束的边缘对,记满足共线性约
束的边缘像素点集为L1a与R1a(a=1,2,…,T),L1a、R1a构成满足共线性约束的边缘像素点
对,L1a、R1a(a=1,2,…,T)点对对应的中点即为指针对称轴上的点,记对称轴像素点集为Ma
(a=1,2,…,T)。

3.2)对称轴像素点集分裂与再组合:由于光线、条纹、符号等干扰,提取到的指针
对称轴会存在断开的情况,为了得到准确的指针信息,需要对对称轴像素点集进行分裂与
再组合处理。首先,像素对距离在小范围内的理论上可以认为属于同一目标,具体地,对候
选指针对称轴点集Ma(a=1,2,…,T)进行距离聚类,将距离较小的点对聚成一簇,记得到的
聚类簇为Γab(a=1,2,…,T;b=1,2,…,L),下标b表明聚类簇的个数,不同的候选指针具有
不同的聚类簇数目。其次,对聚类簇Γab(a=1,2,…,T;b=1,2,…,T)进行再组合,具体地,
设Γas与Γat表示第a个候选指针对称轴的任意两个聚类簇,对应的聚类中心像素点坐标为
Pas与Pat,统计ROI区域图像内从像素点Pas到Pat直线段对应的像素值变异系数,可以描述为

<mrow> <msub> <mi>CV</mi> <mrow> <mi>s</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>&sigma;</mi> <mrow> <mi>s</mi> <mi>t</mi> </mrow> </msub> <msub> <mi>&mu;</mi> <mrow> <mi>s</mi> <mi>t</mi> </mrow> </msub> </mfrac> <mo>,</mo> </mrow>

其中σst、μst分别为直线段对应像素值的标准差与均值,若变异系数CVst小于事先
指定的阈值,则将聚类簇Γas与Γat对应的边缘像素点集进行再组合,边缘像素点集L1a与
R1a(a=1,2,…,T)经过聚类簇再组合操作后的边缘像素点集记为L2a与R2a(a=1,2,…,T),
L2a、R2a构成聚类簇再组合操作后的边缘像素点对,其中,a是候选指针的索引,s、t指任意两
个聚类簇的聚类簇索引。

指针合并与选择:指针合并的目的是去除重叠的候选指针。

首先,根据对称边缘像素点集L2a与R2a(a=1,2,…,T)计算候选指针的最小最大宽
度、指针夹角、对称轴首尾端点与转角方向等信息;

其次,若两候选指针同时满足:①转角方向近似一致;②指针夹角近似一致;③最
小最大宽度符合形态一致性要求,则将两候选指针进行合并,形成新的候选指针。

选择边缘像素点集最多的候选指针作为最终的指针识别结果。

图像5显示了BWY(WTYK)-803型变压器温度控制器仪表候选指针提炼的结果,图像
6显示了最终识别的指针结果。

本发明还可以有其它实施方法,凡采用同等替换或等效变换形成的技术方案,均
落在本发明要求保护的范围之内。

一种基于对称性特征的仪表指针图像识别方法.pdf_第1页
第1页 / 共13页
一种基于对称性特征的仪表指针图像识别方法.pdf_第2页
第2页 / 共13页
一种基于对称性特征的仪表指针图像识别方法.pdf_第3页
第3页 / 共13页
点击查看更多>>
资源描述

《一种基于对称性特征的仪表指针图像识别方法.pdf》由会员分享,可在线阅读,更多相关《一种基于对称性特征的仪表指针图像识别方法.pdf(13页珍藏版)》请在专利查询网上搜索。

本发明通过提取被识别图像中对称性特征,并在此基础上进一步处理得到被识别指针的一系列参数信息;在全景图的感兴趣区域内,对边缘像素点在指针转角和参考距离的量化空间上进行累计矩阵投票,得到若干组候选指针对称轴。通过指针边缘像素点共线性特性和指针对称轴线段对应的图像像素值近似一致性特点,对候选指针进行提炼,使得最终的对称像素点对基本上都属于指针。候选指针合并去除重叠的候选指针,选择边缘像素点集最多的候选指。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 计算;推算;计数


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1