一种基于电导率‑深度成像的时间域航空电磁数据反演方法.pdf

上传人:n****g 文档编号:6095246 上传时间:2019-04-10 格式:PDF 页数:11 大小:957.04KB
返回 下载 相关 举报
摘要
申请专利号:

CN201610720732.7

申请日:

2016.08.24

公开号:

CN106338774A

公开日:

2017.01.18

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):G01V 3/38申请日:20160824|||公开

IPC分类号:

G01V3/38

主分类号:

G01V3/38

申请人:

成都理工大学

发明人:

陆从德; 王绪本; 余小东; 高嵩

地址:

610059 四川省成都市成华区二仙桥东三路1号

优先权:

专利代理机构:

成都科奥专利事务所(普通合伙) 51101

代理人:

王蔚

PDF下载: PDF下载
内容摘要

本发明公开了一种基于电导率‑深度成像的时间域航空电磁数据反演方法,该方法首先采用基于查表法的电导率‑深度成像方法获得地下介质的视电导率和视深度,然后以此构建反演初始模型,最后应用阻尼特征参数法进行反演完成时间域航空电磁数据的组合解释。本发明不仅解决了反演初始模型选择困难的问题,而且由于这种反演方法是在获得近似成像结果的基础上进行反演,对反演结果有一定的约束作用,因此反演具有较高的收敛速率和成像精度。本发明为时间域航空电磁数据解释提供了一种快速且稳定的反演方法。

权利要求书

1.一种基于电导率-深度成像的时间域航空电磁数据反演方法,其特征在于包括如下
步骤:
(1)根据均匀半空间地电模型的电导率和各时间道的电磁响应值建立均匀半空间地电
模型电磁响应与电导率之间的函数关系表;
(2)将待解释的地电模型的时间域航空电磁正演模拟数据代入步骤(1)中所述的函数
关系表中,获得待解释地电模型各时间道电磁响应对应的视电导率;
(3)将视电导率代入深度转换公式中计算各时间道对应的成像视深度;
(4)由视电导率和视深度构建初始模型,计算初始模型的理论电磁响应值;
(5)将初始模型理论电磁响应值进行反演,并计算初始模型的理论电磁响应值与反演
数据之间的误差;
(6)判断误差是否满足收敛条件,如果满足则反演结束,否则修正模型参数,判断修正
后模型的理论电磁响应值与其反演数据之间的误差是否满足收敛条件,如果满足则反演结
束,否则继续修正模型参数,直至达到预期设定的收敛条件;
(7)输出反演结果。
2.根据权利要求1所述的基于电导率-深度成像的时间域航空电磁数据反演方法,其特
征在于:步骤(3)中所述深度转换公式为:
<mrow> <msub> <mi>d</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>k</mi> <mo>&CenterDot;</mo> <mi>&delta;</mi> <mo>=</mo> <mi>k</mi> <mo>&CenterDot;</mo> <msqrt> <mfrac> <mrow> <mn>2</mn> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> <mrow> <msubsup> <mi>&sigma;</mi> <mi>i</mi> <mi>a</mi> </msubsup> <msub> <mi>&mu;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </msqrt> <mo>=</mo> <mn>503</mn> <msqrt> <mfrac> <msub> <mi>t</mi> <mi>i</mi> </msub> <msubsup> <mi>&sigma;</mi> <mi>i</mi> <mi>a</mi> </msubsup> </mfrac> </msqrt> </mrow>
式中:k为有效勘探深度计算系数(k≈2.51),δ为扩散深度,t为各时间道时间,μ0为空气
介质的磁导率,σa为步骤(2)中确定的各时间道的视电导率。
3.根据权利要求1所述的基于电导率-深度成像的时间域航空电磁数据反演方法,其特
征在于:步骤(6)中所述修正模型参数是指引入阻尼因子,计算模型参数修正步长,形成新
的模型参数,所述修正步长的计算公式为:式中:T为阻尼因子,Q=VTP,R=UTε,P
为雅可比矩阵J的秩。

说明书

一种基于电导率-深度成像的时间域航空电磁数据反演方法

技术领域

本发明涉及一种时间域航空电磁法领域的数据反演方法,特别是涉及一种基于时
间域航空电磁数据电导率-深度成像与阻尼特征参数的组合反演方法。

背景技术

时间域航空电磁法(ATEM)是以飞机为载体,电磁感应理论为基础的航空地球物理
勘探方法,它具有速度快、成本低、可大面积勘探、能适应复杂地形条件等优点,已广泛应用
于矿产资源勘查、地质填图、水资源勘查和环境监测等领域。然而,时间域航空电磁法获得
的数据量较大,数据解释比较困难。近年来,一些学者对时间域航空电磁数据三维反演进行
了研究,并提出了一些减少三维反演计算量的改进方法。但是,这些方法大都还处于研究阶
段,因此没能得到广泛的使用。在实际工程应用中,时间域航空电磁法数据主要解释方法还
是快速成像和一维反演方法。

快速成像是ATEM数据的一种近似解释方法,它是将时间域航空电磁数据通过简单
的变换转换成解释所需的参数,如视电导率和视深度等。早期,航空电磁数据的解释方法相
对较简单,采用曲线拟合的方法将测量数据与简单地质模型(如均匀半空间、层状地层和球
体等)的电磁响应进行拟合获得电导率和深度等信息,并与其它地球物理方法结果进行对
比,从而获得一个粗略的解释结果。这种方法主要还是以经验判断为主,解释精度不够。随
着仪器系统的不断更新,出现了一系列航空电磁数据成像算法,如微分电阻率法、基于假层
半空间模型的电导率-深度成像(CDI)方法、镜像源深度扩散成像方法等。这些快速成像方
法不需要建立初始模型,也没有传统反演算法的迭代与最优化过程,因此能快速地获得地
下介质结构的基本分布情况。但是,其解释结果精度较低,只能用于航空电磁观测数据的初
步解释。

时间域航空电磁数据反演能够获得更加精确的解释结果,其中一维反演是数据快
速解释的首选方法。传统的一维反演方法是基于层状大地模型的反演,即层状大地反演
(Layered Earth Inversion),这类算法通常是将目标函数最小化,通过迭代计算改变地下
模型参数来使得模型的响应数据与观测数据之间的拟合差到达最小。一维反演解释方法虽
然具有较高的精度,并能够提供更为准确的地下介质结构信息,但通常需要建立反演初始
模型,需要进行迭代计算,计算速率比CDI慢。一个较差的反演初始模型可能使得反演结果
与真实模型相差很大。初始模型不仅影响反演收敛的速率,也对反演结果的精度有很大的
影响。建立初始模型时,在没有相关地质资料情况下,一般都假设为层状地层或者均匀半空
间模型,模型的参数也只能根据经验设置,从而使得反演初始模型的选取比较随意。

现有的快速成像方法精度低和反演初始模型选择困难限制了时间域航空电磁数
据快速有效的解释。

发明内容

本发明的目的在于提供一种基于电导率-深度成像的时间域航空电磁数据反演方
法,该方法能解决快速成像方法精度低和反演方法初始模型选择困难等问题。

为达到上述目的,本发明提供的基于电导率-深度成像的时间域航空电磁数据反
演方法包括如下步骤:

(1)根据均匀半空间地电模型的电导率和各时间道的电磁响应值建立均匀半空间
地电模型电磁响应与电导率之间的函数关系表;

(2)将待解释的地电模型的时间域航空电磁正演模拟数据代入步骤(1)中所述的
函数关系表中,获得待解释地电模型各时间道电磁响应对应的视电导率;

(3)将视电导率代入深度转换公式中计算各时间道对应的成像视深度;

(4)由视电导率和视深度构建初始模型,计算初始模型的理论电磁响应值;

(5)将初始模型理论电磁响应值进行反演,计算初始模型的理论电磁响应值与反
演数据之间的误差;

(6)判断误差是否满足收敛条件,如果满足则反演结束,否则修正模型参数,判断
修正后模型的理论电磁响应值与其反演数据之间的误差是否满足收敛条件,如果满足则反
演结束,否则继续修正模型参数,直至达到预期设定的收敛条件;

(7)输出反演结果。

进一步地,步骤(3)中所述深度转换公式为

式中:k为有效勘探深度计算系数(k≈2.51),δ为扩散深度,t为各时间道时间,μ0
为空气介质的磁导率,σa为步骤(2)中确定的各时间道的视电导率。

进一步地,步骤(6)中所述修正模型参数是指引入阻尼因子,计算模型参数修正步
长,形成新的模型参数,所述修正步长的计算公式为式中:T为阻尼因子,Q=VTP,
R=UTε,P为雅可比矩阵J的秩。

本发明首先采用基于查表法的电导率-深度成像方法获得地下介质的视电导率和
视深度,然后以此构建反演初始模型,不仅解决了反演初始模型选择困难的问题,而且由于
这种反演方法是在获得近似成像结果的基础上进行反演,对反演结果有一定的约束作用,
因此反演具有较高的收敛速率和成像精度。本发明为时间域航空电磁数据解释提供了一种
快速且稳定的反演方法。

附图说明

图1为本发明方法的流程图。

图2为实施例1中三层H型地电模型正演模拟数据的成像和反演结果。

图3为实施例1中三层H型地电模型正演模拟数据不同反演解释方法的均方根误差
变化曲线。

图4为实施例2中倾斜低阻层地电模型图。

图5为实施例2中倾斜低阻层地电模型正演模拟数据电导率-深度成像结果图。

图6为实施例2中倾斜低阻层地电模型正演模拟数据以电导率-深度成像结果构建
初始模型的反演结果图。

图7为实施例2中倾斜低阻层地电模型正演模拟数据以均匀半空间模型为反演初
始模型的反演结果图。

具体实施方式

为了更好地理解本发明,下面结合具体实施例对本发明作进一步描述,但本发明
的保护范围不限于此。

实施例1

本发明的工作流程如图1所示,包括如下步骤:

(1)假设时间域航空电磁探测系统在飞机飞行时保持平稳飞行状态,线圈在飞行
过程中保持水平状态,线圈高度为30m。利用中心回线源时间域航空电磁一维正演模拟算
法,计算均匀半空间地电模型电导率在0.0001S/m-100S/m范围内及断电后10ms内26个时间
道的垂直方向二次场电磁响应值,根据电导率和电磁响应值建立电磁响应与电导率之间的
函数关系表;

(2)将三层H型地电模型的一维正演电磁响应模拟数据代入步骤(1)中所述的函数
关系表中,获得该地电模型各时间道电磁响应对应的视电导率值,该模型二次场时间道采
样与步骤(1)中26个时间道一致,发射线圈高度仍为30m,模型三层介质电阻率分别为ρ1=
100Ω·m,ρ2=10Ω·m,ρ3=100Ω·m,厚度分别为d1=50m,d2=100m,d3→∞;

由于晚期时间道电磁响应与电导率之间的函数关系接近一一映射关系,通过插值
可以唯一地确定电磁响应对应的电导率具体的值,因此首先获得晚期时间道对应的视电导
率值,然后采用从晚期时间道到早期时间道的倒序方式,确定各时间道的视电导率值,当早
期时间道容易出现双值的情况时,选取与其相邻的晚一个时间道电导率接近的值为该时间
道的视电导率值,依此顺序直到确定第一个时间道的视电导率;

(3)将视电导率代入如下公式中计算各时间道对应的成像视深度,

<mrow> <msub> <mi>d</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>k</mi> <mo>&CenterDot;</mo> <mi>&delta;</mi> <mo>=</mo> <mi>k</mi> <mo>&CenterDot;</mo> <msqrt> <mfrac> <mrow> <mn>2</mn> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> <mrow> <msubsup> <mi>&sigma;</mi> <mi>i</mi> <mi>a</mi> </msubsup> <msub> <mi>&mu;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </msqrt> <mo>=</mo> <mn>503</mn> <msqrt> <mfrac> <msub> <mi>t</mi> <mi>i</mi> </msub> <msubsup> <mi>&sigma;</mi> <mi>i</mi> <mi>a</mi> </msubsup> </mfrac> </msqrt> </mrow>

式中:k为有效勘探深度计算系数(k≈2.51),δ为扩散深度,t为各时间道时间,μ0
为空气介质的磁导率,σa为步骤(2)中确定的各时间道的视电导率;

(4)由视电导率和视深度计算初始模型各层的厚度和电导率,并将电导率取倒数
转换成电阻率,初始模型各层厚度hi和电导率σi的计算公式分别为:

<mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>d</mi> <mi>i</mi> <mi>a</mi> </msubsup> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>a</mi> </msubsup> <mo>,</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>&lt;</mo> <mi>i</mi> <mo>&le;</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>

<mrow> <msub> <mi>&sigma;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msubsup> <mi>&sigma;</mi> <mi>n</mi> <mi>a</mi> </msubsup> <mo>,</mo> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mi>n</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msubsup> <mi>&sigma;</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>a</mi> </msubsup> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>&sigma;</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>d</mi> <mi>i</mi> </msub> </mfrac> <mo>,</mo> <mo>(</mo> <mn>1</mn> <mo>&le;</mo> <mi>i</mi> <mo>&lt;</mo> <mi>n</mi> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> </mrow>

式中,n为初始模型层数,其余参数同上;

(5)分别以步骤(4)中电导率-深度成像结果换算的模型和均匀半空间模型(电阻
率为100Ω·m)作为初始模型参数,分别计算两种不同初始模型的理论电磁响应值,并计算
各自理论电磁响应值与其反演数据之间的误差(这里对均匀半空间模型的理论电磁响应值
进行反演是为了便于后面分析);

(6)判断误差是否满足收敛要求,如已经满足要求则反演结束,输出反演结果,否
则继续进行下面的步骤:

A.计算雅可比矩阵J=USVT,引入阻尼因子,调整反演迭代修正步长,阻尼修正步
长公式为:

<mrow> <mi>&delta;</mi> <mi>Q</mi> <mo>=</mo> <mfrac> <mi>T</mi> <mi>S</mi> </mfrac> <mi>R</mi> </mrow>

式中:T为阻尼因子,Q=VTP,R=UTε,P为雅可比矩阵J的秩;

B.计算新模型的参数及其电磁响应,并再次计算模型响应与反演数据之间的误
差;

C.判断误差是否满足收敛要求或迭代次数到达预设置,如已经达到要求则反演结
束,输出反演结果;否则返回操作步骤A,重新进行模型调整计算,直到满足预期设定的要
求;

(7)根据反演结果成图,如图2、图3所示,图2是三层H型地电模型正演模拟数据的
解释结果,其中实线为理论模型,带小圆点的实线为电导率-深度成像结果,短虚线为以电
导率-深度成像结果作为反演初始模型的反演结果,长虚线为以均匀半空间模型为反演初
始模型的反演结果。从图2可以看出以电导率-深度成像结果作为反演初始模型的反演结果
更接近于理论模型,说明以电导率-深度成像结果作为反演初始模型的反演结果精度更高。

图3是三层H型地电模型正演模拟数据不同反演解释方法的均方根误差变化曲线,
其中带“·”的实线为以电导率-深度成像结果作为反演初始模型反演迭代的均方根误差,
带“×”的实线为以均匀半空间模型作为反演初始模型反演迭代的均方根误差。从图3可以
看出,以电导率-深度成像结果作为反演初始模型的反演结果收敛更快。

实施例2

本实施例的步骤与实施例1基本相同,仅将实施例1步骤(2)中输入的三层H型地电
模型的一维正演电磁响应模拟数据改为了倾斜低阻层地电模型的一维正演电磁响应数据,
二次场采样时间一致,发射线圈高度仍为30m,倾斜低阻层地电模型图如图4所示,其中中间
倾斜低阻层电阻率为50Ω·m,围岩的电阻率为500Ω·m。

反演结果成图如图5、6、7所示,图5是电导率-深度成像结果图,图6是以电导率-深
度成像结果构建初始模型的反演结果图,图7是以均匀半空间模型为初始模型的反演结果
图。比较图5、6、7可明显看出,图6所示的反演结果更接近于图4所示的地电模型,说明以电
导率-深度成像结果作为反演初始模型的反演结果精度更高。

以上所述仅是本发明较好的实施方式,但本发明的保护范围并不局限于此,任何
基于本发明的方案和构思进行的改进和替换都应涵盖在本发明的保护范围内。

一种基于电导率‑深度成像的时间域航空电磁数据反演方法.pdf_第1页
第1页 / 共11页
一种基于电导率‑深度成像的时间域航空电磁数据反演方法.pdf_第2页
第2页 / 共11页
一种基于电导率‑深度成像的时间域航空电磁数据反演方法.pdf_第3页
第3页 / 共11页
点击查看更多>>
资源描述

《一种基于电导率‑深度成像的时间域航空电磁数据反演方法.pdf》由会员分享,可在线阅读,更多相关《一种基于电导率‑深度成像的时间域航空电磁数据反演方法.pdf(11页珍藏版)》请在专利查询网上搜索。

本发明公开了一种基于电导率深度成像的时间域航空电磁数据反演方法,该方法首先采用基于查表法的电导率深度成像方法获得地下介质的视电导率和视深度,然后以此构建反演初始模型,最后应用阻尼特征参数法进行反演完成时间域航空电磁数据的组合解释。本发明不仅解决了反演初始模型选择困难的问题,而且由于这种反演方法是在获得近似成像结果的基础上进行反演,对反演结果有一定的约束作用,因此反演具有较高的收敛速率和成像精度。本。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 测量;测试


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1