一种基于动平台的特定动目标快速跟踪方法技术领域
本发明具体涉及一种基于动平台的特定动目标快速跟踪方法。
背景技术
近些年,无人车和无人机的需求旺盛,研究火热。基于动平台的目标跟踪是无人
车、无人机领域亟待解决的技术难题。
依据传感器的不同,动目标的跟踪方法也不相同。雷达传感器常用于动目标跟踪
领域,依据雷达传感器数据进行动目标跟踪常采用最近邻法、广义相关法、经典分配法和交
互多模型法等跟踪方法。文献“一种基于径向加速度的Singer-EKF机动目标跟踪方法”
(2014,海军航空工程学院学报)针对雷达传感器无法提供目标加速度的问题,在信号处理
阶段利用RadonAmbiguity变换估计目标的径向加速度,并通过坐标系转换引入到量测向量
中,然后采用基于Singer模型的扩展卡尔曼滤波算法实现动目标的跟踪。但是对于特定动
目标的跟踪,雷达数据难以辨别哪一个目标是需要跟踪的特定动目标。尽管基于特定动目
标的先验运动信息可以区分部分运动目标,但是当特定动目标与其他目标运动属性相似
(如多台运动车辆中的某一台为特定动目标)时,依据雷达数据难以辨别特定动目标。针对
目标在图像中呈现的亮度分布和形状特征,如尺度不变特征变换(SIFT)、方向梯度直方图
(HOG)等特征,可以很好地识别图像中的目标。因此,可以基于计算机视觉技术进行特定动
目标的跟踪。然而,在全图上搜索特定动目标往往需要进行多尺度运算,耗时非常大,跟踪
效率极低。通常采用的解决方法是:先采用运动侦测技术快速检测候选的运动目标集合,然
后再对候选运动目标进行特征提取与分类识别,确认是特定动目标后再利用卡尔曼滤波技
术进行跟踪,这样可以大幅提高跟踪效率。然而,当摄像机的载体(平台)在运动时,难以通
过运动侦测技术检测到运动目标的精确位置。而在无人车、无人机应用领域,摄像机平台都
是运动的。如何在动平台下实现特定动目标的快速跟踪是当前的研究难点。
发明内容
本发明提出一种基于动平台的特定动目标快速跟踪方法,融合激光雷达和视觉摄
像机两种传感器的数据进行目标跟踪,首先依据激光雷达获取的运动目标速度、位置和尺
寸等信息进行目标粗筛选,得到候选目标集合;然后裁剪候选目标对应的图像区域,基于
SIFT匹配方法辨别特定动目标;最后在目标跟踪阶段,依据激光雷达获取的目标位置、速度
和方向信息估计特定动目标位置,进行目标跟踪,如果跟踪失败再扩大跟踪范围,结合SIFT
匹配辨别特定动目标进行跟踪。通过融合两类传感器数据进行动平台下的特定动目标跟
踪,可以不仅提高跟踪准确率,而且提高跟踪效率。
一种基于动平台的特定动目标快速跟踪方法,具体步骤如下:
1、基于激光雷达和视觉摄像机的多传感器数据获取
本发明所述的动平台上安装了两类目标感知传感器,分别是激光雷达和视觉摄像机。
(1)激光雷达
激光雷达用于测量动平台周围的障碍物的分布及运动情况,包括获取障碍物的尺寸、
位置、速度和运动方向等信息。
(2)视觉摄像机
视觉摄像机用于获取动平台前方的自然场景视频。
激光雷达和视觉摄像机两个传感器的位置是经过人工校正的,这样激光雷达测量
的数据和视觉摄像机获取的数据可以在图像平面中进行对应,如图2所示。其中,图像左侧
为视觉摄像机获取的当前时刻动平台前方的自然场景图像,图像右侧为当前时刻激光雷达
获取的目标分布与运动信息。其中,右侧的白色矩形区域A展示了动平台的位置和尺寸,该
示例中的动平台是一台车辆。A两侧的线条B为道路两旁的护栏(遮挡物)。A前方的白色虚线
椭圆内的带线段的点C为运动的目标,对应的是视觉摄像机图像中骑电动车的人体目标,C
的尺寸代表目标的尺寸,与C相连接的线段的方向(以上述点C的中心为起点)代表目标的运
动方向,线段的长度代表目标的运动速度。
2、基于激光雷达数据的目标粗筛选
本发明依据激光雷达数据进行目标粗筛选,得到候选目标集。筛选条件如下:
(1)空间位置筛选条件
仅选取动平台前方的目标作为候选目标。
(2)目标属性筛选条件
候选目标的速度要大于零(即候选目标为运动目标)。目标的其他属性筛选条件根据实
际采用的特定动目标的先验信息来确定。如图2所示的示例中,特定动目标为电动车,则速
度筛选条件为5~30km/h,尺寸为50~200cm(多次实验得到)。
本发明将激光雷达数据中满足以上两类筛选条件的目标作为候选目标,进行后续
的处理。如果目标粗筛选失败,则标记跟踪失败,重新获取数据进行目标粗筛选。
3、基于视觉摄像机图像的目标细匹配
对于每个候选目标,裁剪该候选目标在视觉摄像机当前帧图像中对应的目标区域图
像。然后对每个候选目标区域图像进行目标细匹配处理,具体思路是:将每个候选目标区域
图像与特定动目标模块图像进行SIFT特征匹配,匹配步骤为:
Step1:生成尺度空间;
Step2:检测空间极值点;
Step3:寻找关键点并计算其方向;
Step4:生成特征描述子;
Step5:匹配关键点;
详细实现过程见文献“Object recognition from local scale-invariant
features,ICCV1999”。
本发明依据匹配率指标来判别目标匹配是否成功,匹配率的计算方法为:
其中,Nm是指Step5中匹配的关键点数量,N是指特定动目标模块图像中检测到的SIFT
关键点数量。
当匹配率r大于50%时(多次实验得到),认为目标匹配成功,该目标即为待跟踪的
特定动目标。
需要说明的是,本发明中的特定动目标模板图像是事先拍摄的,为了适应跟踪过
程中特定动目标的姿态变化,本发明以无人车平台下跟踪骑电动车人体目标为例,说明多
姿态特定动目标模板图像的制作步骤,为:
Step1:令特定动目标在摄像机的正前方10米处静止,拍摄一张图像;
Step2:摄像机分别水平向左旋转10°、15°、20°、25°、30°(多次实验得到),拍摄五张图
像;
Step3:令摄像机回到初始位置,再分别水平向右旋转10°、15°、20°、25°、30°,拍摄五张
图像;
Step4:对拍摄的11张图像进行人工裁剪,裁出仅包含特定动目标的最大外接矩形区域
的图像块;
Step5:将11个图像块的尺寸归一化到相同尺寸(本发明中为120×120,多次实验得
到),再保存为256级(即8位)灰度图像作为模板图像。
Step6:提取11幅模板图像的SIFT特征,并存储。
在目标细匹配时,将候选目标区域图像的SIFT特征分别与11幅不同姿态的特定动目标
模板图像的SIFT特征进行匹配,只要有一组匹配率大于50%(多次实验得到),即认为匹配
成功。如果所有候选目标区域图像与所有特定动目标模板图像都不匹配,则认为图像中不
包含特定动目标,此时标记跟踪失败,重新获取数据进行目标粗筛选。
4、基于多传感器融合的目标跟踪策略
当检测到特定动目标之后,本发明制定以下跟踪策略进行目标跟踪。
Step1:从激光雷达图像数据中获取检测到的特定动目标的当前位置、速度和方向信
息;
Step2:假定目标做匀速运动,计算下一时刻t目标的估计位置p;
Step3:获取时刻t的激光雷达数据,查找位置p处是否存在运动目标。如果存在,认为该
目标为跟踪的目标,标记跟踪成功,并记录目标位置,然后转到Step1;否则进入下一步;
Step4:从激光雷达数据中查找目标估算位置p周围10m范围内的运动目标,如果只有一
个运动目标,则认为该目标为跟踪目标,标记跟踪成功,并记录目标位置,然后转到Step1;
否则进入下一步;
Step5:获取时刻t的摄像机图像,从中裁剪上一步得到的运动目标区域的图像块,进行
图像细匹配,如果匹配成功,则认为该图像块对应的运动目标为跟踪目标,标记跟踪成功,
并记录目标位置,然后转到Step1;如果所有图像块都不满足图像细匹配条件,则认为跟踪
失败,此时标记跟踪失败,重新获取数据进行目标粗筛选。
本发明的优点在于,依据激光雷达数据进行目标的粗筛选和跟踪,提高目标跟踪
效率;依据摄像机视频进行目标的细匹配,辨识特定动目标,提高跟踪的正确率。通过融合
两类传感器的数据,实现动平台下特定动目标的快速可靠跟踪。
附图说明
图1是目标跟踪流程图;
图2是传感器数据获取示例。
具体实施方式
一种基于动平台的特定动目标快速跟踪方法,融合激光雷达和视觉摄像机两种传
感器的数据进行目标跟踪,首先依据激光雷达获取的运动目标速度、位置和尺寸等信息进
行目标粗筛选,得到候选目标集合;然后裁剪候选目标对应的图像区域,基于SIFT匹配方法
辨别特定动目标;最后在目标跟踪阶段,依据激光雷达获取的目标位置、速度和方向信息估
计特定动目标位置,进行目标跟踪,如果跟踪失败再扩大跟踪范围,结合SIFT匹配辨别特定
动目标进行跟踪。